对称性和守恒定律

合集下载

物理学中的对称性与守恒定律

物理学中的对称性与守恒定律

物理学中的对称性与守恒定律对称性和守恒定律是物理学中的基本概念,它们在理解和解释自然界中各种物理现象和规律中起着重要作用。

本文将探讨物理学中的对称性和守恒定律,并探讨它们之间的密切关系。

一、对称性在物理学中的意义对称性是物理学中的重要概念,它描述了物理系统在某些变换下保持不变的性质。

在物理学中,对称性可以分为时空对称性和内禀对称性两种。

1. 时空对称性时空对称性是指物理系统在时空变换下保持不变。

在相对论物理学中,洛伦兹变换是描述时空变换的数学工具。

根据洛伦兹变换的不同类型,物理系统可以表现出平移对称性、旋转对称性和洛伦兹对称性等。

平移对称性是指物理系统在空间位置上的平移不会改变其物理性质。

例如,一个均匀介质中的物理规律在空间中的任何位置都是相同的。

旋转对称性是指物理系统在空间方向的旋转下保持不变。

例如,地球的自转周期不会影响物理规律的成立。

洛伦兹对称性是指物理系统在洛伦兹变换下保持不变,包括时间和空间的坐标变换。

相对论物理学中的基本原理就是洛伦兹对称性。

2. 内禀对称性内禀对称性是指物理系统在内部变换下保持不变。

在粒子物理学中,内禀对称性描述了粒子的基本性质。

例如,电荷共轭对称性指粒子与其反粒子具有相同的物理性质。

对称性在物理学中具有广泛的应用。

它不仅可以用于解释物理定律的成因,还可以帮助物理学家发现新的规律和预测新的物理现象。

二、守恒定律与对称性的关系守恒定律是物理学中的基本定律,描述了物理系统在某些变换下某个物理量保持不变的规律。

守恒定律与对称性之间存在着密切的关系。

以能量守恒定律为例,它描述了物理系统的能量在各种变换下保持不变。

能量守恒定律与时间平移对称性密切相关,即物理规律在时间上的平移不变性保证了能量守恒。

动量守恒定律是另一个重要的守恒定律,它描述了物理系统的总动量在某些变换下保持不变。

动量守恒定律与空间平移对称性密切相关,即物理规律在空间上的平移不变性保证了动量守恒。

角动量守恒定律和电荷守恒定律等也与对称性有着密切的联系。

理论物理中对称性与守恒定律的关系

理论物理中对称性与守恒定律的关系

理论物理中对称性与守恒定律的关系在理论物理中,对称性与守恒定律是两个核心概念。

对称性描述了系统在某些变换下保持不变的性质,而守恒定律则说明了系统在各种变化中某些物理量的不变性。

这两个概念之间存在着密切的关系,对称性的存在导致了守恒定律的存在,反之亦然。

本文将深入探讨对称性与守恒定律的关系。

首先,让我们来了解对称性的概念。

对称性可以简单地理解为某种变换下系统保持不变的性质。

在物理学中,常见的对称性有平移对称性、旋转对称性、时间平移对称性和粒子对称性等。

平移对称性指的是系统在空间中的平移下保持不变,旋转对称性指的是系统在空间中的旋转下保持不变,时间平移对称性指的是系统在时间上的平移下保持不变,而粒子对称性指的是系统在粒子交换下保持不变。

对称性在物理学中起着非常重要的作用。

与对称性相关联的是守恒定律。

守恒定律描述了系统在各种变化中某些物理量守恒的性质。

守恒定律可以用数学表达式表示为:某一物理量的变化率等于该物理量进入与离开系统的流量之差。

根据对称性的不同,我们可以得到不同的守恒定律。

首先,根据时间平移对称性,我们可以得到能量守恒定律。

能量守恒定律指的是系统的能量在时间上保持不变。

这是因为系统的物理规律在时间上的不变性导致的。

无论系统中发生了怎样的能量转化,总能量的变化率始终为零,能量守恒得到维持。

其次,根据空间平移对称性,我们可以得到动量守恒定律。

动量守恒定律指的是系统的动量在空间上保持不变。

这是因为系统的物理规律在空间上的不变性导致的。

无论系统中的物体如何运动,总动量的变化率始终为零,动量守恒得到维持。

此外,根据空间旋转对称性,我们可以得到角动量守恒定律。

角动量守恒定律指的是系统的角动量在空间上保持不变。

这是因为空间旋转对称性导致的。

无论系统中的物体如何旋转,总角动量的变化率始终为零,角动量守恒得到维持。

最后,根据粒子对称性,我们可以得到电荷守恒定律。

电荷守恒定律指的是系统中的总电荷量在粒子交换下保持不变。

对称性与守恒定律

对称性与守恒定律

对称性与守恒律物理规律是分层次的,有的只对某些具体事物适用,如胡克定律只适用于弹性体;有的在一定范畴内成立,如牛顿定律适用于一切低速运动的宏观物体;有的如能量、动量守恒等守恒律,则在所有领域的自然界起作用。

后者属于自然界更深层次、最为基本的规律。

而守恒律和对称性有紧密联系。

了解对称性的概念、规律及其分析方法,对于深入地认识自然有重要意义。

一、什么是对称性对称的概念日常生活中就有,如人体外部器官的左右对称,紫禁城建设布局的东西对称,不带任何标记的球的中心对称等。

对称性的定义如下。

若某个体系(研究对象)经某种操作(或称变换)后,其前后状态等价(相同),则称该体系对此操作具有对称性,相应的操作称为对称操作。

简言之,对称性就是某种变换下的不变性。

二、物理学中几种常见的(对称)变换1.空间变换1)平移:即对位矢作的变换,相应的对称性谓之平移对称性。

例如,一个不带任何标记的无限大平面,对沿平面的任意平移具有对称性,而当此平面上均匀布满方格时,则对沿平面的特定方位(如边长或对角线方位)平移某个长度的整数倍具有对称性。

2)转动:绕某定点或轴线的转动前述球的中心对称,就是指球对绕球心的任意旋转对称,通常就称之为球对称。

一圆柱体,对绕其中心轴旋转任一角度状态不变,即具有旋转轴对称……3)镜像反射(反演):俗称照镜子。

指对镜面作物像变换。

紫禁城建筑的东西对称,就是以天安门中轴面(南北竖直面)为镜面的镜像对称。

●物理矢量的镜面反射——极矢量和轴矢量按镜面反射时,矢量物像的方向之间的关系,物理矢量分两类。

一类,以位移为例,其镜像为,如图1(a)所示。

它们平行于镜面的分量方向相同,垂直于镜面的分量的方向相反,这类矢量叫极矢量。

,,等都是极矢量。

另一类矢量,如图1(b)中右侧所示一沿圆轨道运动的质点的角速度。

保持角速度方向与轨道旋向成右手关系的规定不变,则其镜像为左侧的。

和沿镜面的平行分量反向,而垂直分量方向相同。

这类矢量叫轴矢量,又称赝矢量。

量子力学中的对称性与守恒定律

量子力学中的对称性与守恒定律

量子力学中的对称性与守恒定律量子力学是描述微观世界的物理学理论,它主要研究微观粒子的行为和性质。

在量子力学中,对称性和守恒定律是十分重要的概念,它们不仅帮助我们理解微观世界的规律,还对于解释和预测自然现象都起到了关键作用。

本文将对量子力学中的对称性与守恒定律进行论述。

1. 对称性在量子力学中的作用对称性在物理学中具有重要的地位,它可以帮助我们理解自然界中的各种现象。

在量子力学中,对称性可以通过算符的变换来描述。

对称性的存在意味着系统在某些变换下保持不变,这些变换可以是平移、旋转、粒子交换等。

不同的对称性对应着不同的物理规律和守恒量。

2. 空间对称性与动量守恒定律空间平移对称性是量子力学中的重要对称性之一。

根据诺特定理,一个系统的平移不变性对应着动量的守恒,即动量守恒定律。

在量子力学中,动量被表示为动量算符,根据平移算符的性质,能量本征态同时也是动量本征态,从而推导出动量守恒的数学表达式。

3. 时间对称性与能量守恒定律时间平移对称性是量子力学中另一个重要的对称性。

根据诺特定理,一个系统的时间平移不变性对应着能量的守恒,即能量守恒定律。

在量子力学中,能量被表示为能量算符,根据时间平移算符的性质,能量本征态同时也是时间本征态,从而推导出能量守恒的数学表达式。

4. 粒子交换对称性与电荷守恒定律粒子交换对称性是量子力学中独特的对称性。

根据粒子交换的性质,不同种类的粒子在交换后会得到正负符号不同的波函数。

通过对称性的研究,我们可以得出守恒定律,例如电荷守恒定律。

在量子力学中,电荷被表示为电荷算符,根据粒子交换算符的性质,电荷守恒可以被推导出来。

5. 空间反演对称性与正负宇称守恒空间反演对称性是又一种重要的对称性。

根据空间反演的性质,物理过程在空间反演后会得到相反的结果。

通过对称性的研究,我们可以得出守恒定律,例如正负宇称守恒。

正负宇称守恒与粒子的手性和反粒子的存在有关,通过对称性的分析可以得到这一守恒定律的数学表达式。

对称性和守恒律

对称性和守恒律

对称性和守恒律概念及其重要性对称性(Symmetry)与守恒律(Conservation Law)是物理学中最重要的概念之一,它们有助与我们理解和描述这个宇宙的运行机制。

对称性是物理学上的一种基本假设,指的是存在着外界因素(如时间、空间、组织、排列、颜色)的变化,使得一个模式具有重叠性,称为对称性。

而守恒律指的是一个物理量的大小是不变的,只有根据特定的定律允许存在一定的变化,而不存在消失或诞生的情况。

质量守恒律质量守恒律是物理变换过程中最重要的守恒律之一,它表明量子物理中物质的平衡性,即物质总量保持不变,任何形式的物质是可以通过相互转换得到的。

质量守恒的定义是:质量的总量在物理变换的过程中不会变化,因此在化学反应中反应前后物质的总量是一致的。

电量守恒律电量守恒律是物理变化过程中另一个重要的守恒律,其定义是:在带电粒子运动的物理变化过程中,电子、正电子等电荷总量保持不变,不发生增减。

换言之,任何形式的电荷,只要经过合理计算,都是可以表示为电荷量的,从而可以被计算出来。

动量守恒律动量守恒律是物理变换过程中的另一个守恒律,其定义是:在物理变化的过程中,物质所携带的动量是守恒的,即动量总量保持不变。

动量守恒律是物理变换中最重要的守恒律之一,它表明,在无外力作用的情况下,物体的运动状态是恒定的,物质的动量不会发生变化。

这个定律是有“动量守恒定律”这一名称的,它通常也被称为“牛顿拉普拉斯定律”。

结论由上文可以得出,对称性与守恒律是物理学中不可或缺的重要概念,其中,质量守恒律、电量守恒律和动量守恒律是最为重要的。

这些守恒律在影响物理变换过程中产生了重要的作用,对我们对物质和能量的理解和认识极为重要,它们是理解宇宙现象的基础科学。

对称性与物理学中的守恒定律

对称性与物理学中的守恒定律

对称性与物理学中的守恒定律物理学中对称性与守恒定律是一对密不可分的概念。

对称性是自然界的一种基本现象,而守恒定律则是对称性的体现。

本文将介绍对称性与物理学中的守恒定律的基本概念及其在物理学中的应用。

对称与对称性对称是指一个物体在某个操作下仍能保持不变。

常见的对称有平移对称、旋转对称和镜像对称等。

以矩形为例,它有平移、旋转和镜像三种对称。

当你将矩形向一个方向平移一定距离时,它仍看起来一模一样;当你绕矩形中心旋转90度时,它也仍然不变;当你将矩形沿着某一直线对折时,它还是一样的。

在数学中,对称主要是通过变换来定义的。

例如,将平面上的点(x,y)绕原点旋转一个角度θ得到(x',y'),则(x,y)和(x',y')就是关于原点对称的。

物理学中的对称性是指物理现象在某种变换下仍然保持不变。

例如,物体在不同位置、不同时间、不同方向和不同状态下具有平移、时间、旋转和内禀对称性。

具体而言,平移对称意味着物理定律在位置的变换下不变;时间对称性要求物理现象在时间上前后对称;旋转对称性要求物理定律在空间旋转下不变;内禀对称性指的是物理现象在基本粒子的内部对称变换下保持不变。

对称性原理对称性原理是物理学中一个重要的基本原理。

其基本思想是,自然界的基本定律应该具有某些对称性,而这些对称性可以用来推导自然界的规律。

换言之,对称性原理是自然界中某些规律的先决条件。

在物理学中,对称性原理有多个方面。

首先,对称性原理要求物理定律在各种对称变换下不变。

例如,物体的质量在不同位置、不同方向和不同速度下应该保持不变。

这是牛顿运动定律中的一个例子。

更具体地说,在牛顿定律中,物体的运动状态不随时间、空间和速度的变化而改变。

其次,对称性原理还要求物理定律在内部对称变换下不变。

例如,在电动力学中,电场和磁场在某些线性旋转下保持不变。

最后,对称性原理还要求物理定律在粒子转换下不变。

例如,在核物理学中,电荷守恒原理要求在粒子转换时总电荷量不变。

物理中的对称性与守恒定律

物理中的对称性与守恒定律

物理中的对称性与守恒定律在物理学中,对称性与守恒定律是两个非常重要的概念,它们贯穿于整个物理学的各个领域,为我们解释世界的运行规律提供了重要的理论支撑。

对称性和守恒定律之间存在着密切的联系,它们相辅相成,相互促进,共同构成了物理学中的基本框架。

本文将从对称性和守恒定律的基本概念入手,探讨它们在物理学中的重要作用以及彼此之间的内在联系。

## 对称性的基本概念对称性在物理学中是一个非常重要的概念,它指的是系统在某种变换下保持不变的性质。

具体来说,对称性可以分为空间对称性、时间对称性和内禀对称性等多种类型。

在物理学中,对称性通常表现为物理定律在某种变换下保持不变,这种不变性为我们揭示了自然界中隐藏的规律和对称性。

空间对称性是指系统在空间变换下保持不变的性质。

例如,一个物理系统在进行平移、旋转或镜像变换后仍保持不变,那么我们就说这个系统具有相应的空间对称性。

空间对称性的存在为我们提供了研究物理系统的重要线索,帮助我们揭示物质世界的奥秘。

时间对称性是指系统在时间变换下保持不变的性质。

在经典力学中,时间是一个普遍的参量,物理定律在时间平移下保持不变,这就是时间对称性。

时间对称性的存在为我们提供了研究物理系统随时间演化的重要线索,帮助我们理解自然界中的时间规律。

内禀对称性是指系统在内部变换下保持不变的性质。

例如,电荷守恒定律要求电荷在物理过程中保持不变,这就是内禀对称性的体现。

内禀对称性揭示了物理系统内部的稳定性和规律性,为我们理解微观世界提供了重要线索。

## 守恒定律的基本概念守恒定律是物理学中的另一个重要概念,它描述了系统某些物理量在时间演化过程中保持不变的规律。

根据不同的物理量和系统,可以得到不同的守恒定律,如能量守恒定律、动量守恒定律、角动量守恒定律等。

能量守恒定律是物理学中最基本的守恒定律之一,它表明一个封闭系统中能量的总量在时间演化过程中保持不变。

能量可以在不同形式之间转化,但总能量守恒。

能量守恒定律揭示了自然界中能量转化的规律,为我们研究能量转换和利用提供了基本原则。

守恒定律和对称性

守恒定律和对称性
对称程度自发降低—— 对称性自发破缺。
例1.贝纳德对流
T2 > T1
T1
液体
T2
均匀加热
例2.弱作用中宇称不守恒 宇称守恒——与微观粒子的镜象对称性相联系的守 恒定律。强作用下宇称守恒得到实验证实。
但对 和 粒子的衰变,它们质量相等,电荷相同,
寿命也一样。但它们衰变的产物却不相同,即
或 0 0
得:fab fba
空间平移 对称性
作用与反作用 等大反向
动量守恒 定律
例3.空间旋转对称性——角动量守恒定律 角动量守恒定律
质点系所受合外力矩为零时,其总角动量 为恒矢量。 来源于质点系内力矩的矢量和为零,
来源于质点间相互作用沿二者连线 思路: 空间旋转对称性-作用力与反作用力在同一直线上
角动量守恒定律
香莲碧水动风凉 水动风凉夏日长 长日夏凉风动水 凉风动水碧莲香 镜面对称
一. 物理学中的对称性
关于对称的基本概念
被研究的对象——体系
对体系的描述——状态
体系从一个状态到另一个状态的变化——“变换”或“操作”
变换前后体系状态相同——“等价”或“不变”
如果一个操作能使某体系从一个状态变换到另一 个与之等价的状态,即体系的状态在此操作下保持 不变,则该体系对这一操作对称,这一操作称为该 体系的一个对称操作。
重点:对称性概念, 时空对称性与力学中三个守恒定律的联系
难点:对称性原理,对称性方法
对称性的概念最初来源于生活:动物、植物、建筑、 文学艺术……
何其相似!
C60分子结构(巴基球)
截角正20面体,每个顶点 上一个C原子,构成笼状 32面体(20个六边形, 12个五边形)。1985年 发现(1996 诺贝尔化学) 开创有机化学新篇章。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空气阻力: f = –v,在时间反演下变为 f = v 不具有时间反演对称性
匀角速转动参照系 惯性离心力或科里奥利力 牛顿定律不成立
物理定律不具有匀速转动的对称性
傅科摆
物理定律不具有标度对称性
材料的强度并不恰好与其尺寸成比例
一只蚂蚁能够举起超过自身体重400倍的东西,如果将蚂蚁按 比例放大到人的尺度,举起同样比例的重物将会把它压垮
对称性的普遍定义 1951年,德国数学家威尔(H. Weyl)
一个系统经过一个操作(变换)变换到它的等价状态,则称 系统具有这种操作(变换)下的对称性,这个操作称为系统的 对称操作。
空间反演操作 (x, y, z)(-x, -y, -z)
反映操作
(x, y, z) (x, y, -z)
绕着z轴逆时针旋转/2 (x, y, z)(-y, x, z)
偎回月台泛来走开 林望明映舟客上篷 傍四孤碧渔仙烟一 水山寺泉浦亭花棹 绿观古寒满闲踏远 悠落林井飞伴径溪 悠日幽冷鸥鹤游流
标度变换对称性
分形
共性: 被研究对象通过某种方式与最初的状态等价 被研究的对象称为系统,系统可以处于不同的状态。 系统从一个状态变到另一个状态的过程,叫做变换或操作 两个状态观察不出任何区别,称这两个状态等价
据估计现在质子和中子数与光子数的比值大约是 1: 1010, 即不对称性是微乎其微的,只有 1/ 1010, 然而这对称性破缺的残 渣却构成了大千世界和人类本身.
对称性的破缺
星系,太阳,地球,人类.
这个对称性破缺是如何发生的 ? 大统一理论正企图解决,尚无结果
例3:生物界的不对称性: 生命的微观过程最显著的一个特征,是分子水平上的对称性破缺
生面体
Escher骑士图案
巴赫短曲
文学中的对称性——回文
将这首诗从头朗诵到尾, 再反过来, 从尾到头去朗诵, 分别都是一首绝妙好诗. 它们可以 合成一首“对称性”的诗,其中每一首相当于一首“手性”诗.
流游鹤鸥冷幽日悠 溪径伴飞井林落悠 远踏闲满寒古观绿 棹花亭浦泉寺山水 一烟仙渔碧孤四傍 篷上客舟映明望林 开走来泛台月回偎
如果对称操作(变换)是近似的,那么物理规律也是近似的
牛顿定律具有伽利略变换下的对称性,但伽利略变换是近似的, 所以牛顿定律也是近似的。
5.7.2 对称性的破缺
系统的对称操作越多,对称性越高 由于某种原因,系统的对称性降低, 即出现了某种对称性的缺失,就称 系统发生了对称性的破缺。 对称性破缺的标志是有序性的产生, 出现了表征系统状态的新物理量。
蛋白质由氨基酸的链组成,人工合成的氨基酸有左旋和右旋两 种异构体,互为镜象对称,成份相等. 但是生物蛋白质几乎全部 由左旋氨基酸组成. 生物体内的催化剂 酶 在起作用,它只消化 和制造左旋氨基酸. 生物一旦死亡,酶失去活性,体内的氨基酸逐渐转化,直至达到 左右旋成份相等. 在老化过程中,右旋氨基酸已开始积累.
决定对称性的变换还可以是几种变换组成的复合变换。
电荷对称: 一组带电粒子极性互换, 其相互作用不变(但在弱 相互作用下这种对称被部分破坏).
物理定律的对称性
在现代物理学中,对称性是一个很深刻的问题。它的数学基础 是群论。在粒子物理,固体物理,原子物理,以及生命现象等 领域它都很重要。
物理规律的对称性:经过一定的变换(操作)后,若物理规 律的形式保持不变,则称物理规律具有这种变换下的对称性。
生命与对称性破缺息息相关
对称性和对称性破缺的研究十分重要
5.7.3 对称性原理
自然发生的事件总是遵循一定的规律,反映了一种因果关系
法国物理学家皮埃尔居里(Pierre Curie)在1894年提出了 对称性原理:
原因的对称性必反映在结果中,即结果中的对称性至少有原因 中的那么多。 反过来说:结果中的对称性必在原因中有反映,即原因中的不 对称性至少有结果中的不对称性那么多 通过对称性原理,对某些物理问题不必进行定量的计算,即可 给出正确的结论
几何对称性
空间反演对称性 反演中心 凸透镜成像
反映对称性 反映面
旋转对称性 旋转轴
在三维空间中,球形物体具有最高的对称性; 二维空间中,圆形的对称性最高。 古希腊的毕达哥拉斯学派认为一切平面图形中最美的是圆形, 一切立体图形中最美的是球形。
生活中的对称图形 空间反演对称性
反映对称性
旋转对称性
自然界中没有两个完全一样的雪花!
物理定律具有空间平移对称性、空间转动对称性、时间平移对 称性。 伽利略变换,洛伦兹变换下,物理定律具有对称性。
时间反演变换 t变为 –t, v 变为 –v,f,m不变 在微观尺度上,物理定律是对称的 宏观尺度,有些物理定律是对称的,有些不对称
加速度 a = dv/dt 保持不变
牛顿第二定律具有时间反演对称性
交换操作使两个物体互换位置;
标度变换使空间尺度放大或缩小。
平移对称操作
一条无限长的直线
时间平移操作,改变时间零点;
时间反演操作使时间t变为-t 动量由p = dr/dt变为-p,角动量由l = rp变为-l
如果系统在这些操作下变换为等价状态,就称系统具有时间平 移和时间反演对称性。相应的操作即为对称操作。 全同粒子置换,规范变换、正反粒子共轭变换等。
液-固转变
例1: Benard 对流
T1
T2
加热
T2 >T1
当温差达到一定数值时,产生Benard 对流,液体对称性迅速 下降,产生了对称性的自发破缺。
例2:宇宙早期处在极高温度下,质子中子和它们的反粒子与 光子处于热平衡状态,它们的数量大致相等。
当温度降低到1013 K,光子的平均能量远小于质子和中子的 m0c2,质子对和中子对不再产生,大量的质子和中子在与他们 的反粒子碰撞中湮灭,最后只剩下多余的中子和质子,(对称性 破缺的产物)。
f v
有心力作用下的行星轨道
斜抛运动的轨迹
求棱AB、面对角线AF和体对角线AG之间的电阻
AG间等效电路
AC间等效电路
AB间等效电路
5R/6
3R/4
7R/12
5.7.4 对称性与守恒定律
1. 守恒定律 在宇宙中,某些量 (如:能量,动量和角动量等)的总量不变, 这些量是守恒的, 并用守恒定律的形式来描述这些概念 守恒定律是最基本的规律, 它们具有极大的普遍性和可靠性 ,因而可以预言哪些过程是允许的,哪些过程是禁戒的, 而不 必考虑引起这些过程的物理机制
相关文档
最新文档