智能算法综述-最新范文

合集下载

《2024年人工智能技术发展综述》范文

《2024年人工智能技术发展综述》范文

《人工智能技术发展综述》篇一一、引言随着科技的飞速发展,人工智能()技术已经成为了全球科技领域内最为热门的话题之一。

技术以其强大的自主学习和自主决策能力,对现代社会的发展和进步起到了不可替代的推动作用。

从基础的智能语音助手到高级的机器人,再到复杂的数据分析模型,技术的应用场景和需求越来越广泛,这也为人工智能技术的快速发展提供了源源不断的动力。

二、人工智能技术的发展历程人工智能技术的发展可以追溯到上世纪五十年代。

早期的人工智能技术主要基于符号逻辑和知识表示,用于解决一些简单的推理和决策问题。

随着计算机技术的飞速发展,特别是深度学习和机器学习等技术的出现,人工智能技术得到了极大的推动和突破。

在过去的几十年里,人工智能技术经历了从符号主义到连接主义,再到深度学习的三个主要阶段。

每个阶段都有其独特的特点和挑战,但都为人工智能技术的快速发展奠定了基础。

三、人工智能技术的关键技术及发展现状1. 深度学习:深度学习是人工智能技术的重要分支,通过模拟人脑神经网络的工作方式,实现复杂的模式识别和决策任务。

目前,深度学习已经在语音识别、图像识别、自然语言处理等领域取得了显著的成果。

2. 机器学习:机器学习是人工智能技术的另一重要分支,通过训练大量的数据来建立模型,实现自动学习和决策。

随着大数据和云计算技术的发展,机器学习的应用越来越广泛。

3. 自然语言处理:自然语言处理技术是技术的重要应用之一,旨在使计算机理解和处理人类语言的文字信息。

随着深度学习技术的发展,自然语言处理的能力越来越强大。

四、人工智能技术的具体应用1. 智能语音助手:通过语音识别和自然语言处理技术,智能语音助手可以实现语音输入、语音查询、语音控制等功能。

2. 机器人技术:机器人技术是技术的另一重要应用领域,可以应用于工业制造、医疗护理、军事侦察等领域。

3. 数据分析与预测:技术可以通过分析大量的数据来预测未来的趋势和事件,为企业决策提供有力的支持。

经典人工智能算法综述

经典人工智能算法综述

经典人工智能算法综述一、专家系统专家系统是人工智能领域最早的知识工程技术之一,该技术首次在20世纪70年代末提出。

专家系统利用专家知识来解决特定问题,主要包括知识表示、知识推理和知识获取等方面。

专家系统常常包括知识库、推理机、用户接口等组成部分,通过模拟专家的经验和知识,来完成推理和决策。

专家系统在医疗、金融、制造等领域得到了广泛的应用,例如Dendral系统是一个专家系统,用于分析气相色谱质谱仪的输出数据以确定化合物的结构。

二、遗传算法遗传算法是一种模仿自然进化过程的搜索优化算法,它通过模拟自然选择、交叉和变异等进化过程来搜索问题的最优解。

遗传算法最早是由美国的约翰·霍兰德于20世纪60年代提出的。

遗传算法主要包括编码、选择、交叉、变异等操作,通过不断进化生成适应度更高的解,从而找到问题的最优解。

遗传算法在优化问题、机器学习、数据挖掘等领域得到了广泛的应用,例如在大规模旅行商问题、神经网络权值优化等问题上展现出了优势。

三、模糊逻辑模糊逻辑是一种用于表示不确定性、模糊性信息的逻辑系统,它在20世纪70年代被提出。

模糊逻辑将传统的逻辑二元关系扩展到了模糊的多值逻辑关系,使得不确定性、模糊性信息能够得到有效的处理。

模糊逻辑主要包括模糊集合理论、模糊关系、模糊推理等内容,被广泛应用于人工智能、控制系统、信息检索等领域。

例如在智能控制系统中,模糊逻辑被用于建模、推理,实现了对复杂系统的精确控制。

四、人工神经网络人工神经网络是一种模仿生物神经网络结构和功能的计算模型,它借鉴了大脑中的神经元和突触结构。

人工神经网络可以通过学习来自动地调整网络的连接权值,从而实现对信息的处理和识别。

人工神经网络于20世纪50年代被提出,并在之后得到了不断的改进和发展。

人工神经网络在模式识别、控制系统、金融预测等领域展现出了优势,例如AlphaGo就是基于深度神经网络的围棋程序,击败了世界冠军。

五、规则学习规则学习是指利用训练数据自动学习出数据中的规则并进行预测和决策的技术。

人工智能新技术发展综述报告范文

人工智能新技术发展综述报告范文

人工智能新技术发展综述报告范文一、自然语言处理技术的突破自然语言处理(NLP)技术一直是人工智能领域的研究热点之一。

近年来,随着深度学习算法的快速发展,自然语言处理技术取得了巨大的突破。

2018年,谷歌发布了BERT模型,该模型在多项NLP任务中取得了state-of-the-art的表现,大大提升了文本理解和语言生成的能力。

GPT-3模型更是在语言生成方面达到了前所未有的水平,展现出了惊人的创造力和表达能力。

二、计算机视觉技术的深度发展计算机视觉技术在人工智能领域的应用也取得了长足的进步。

随着卷积神经网络(CNN)的不断优化和改进,计算机视觉算法在图像识别、物体检测、图像生成等方面取得了显著成果。

深度学习模型如YOLO、Mask R-CNN等在目标检测和图像分割领域表现出色,推动了计算机视觉技术的发展。

三、强化学习技术的新应用强化学习作为人工智能的重要分支,近年来也取得了许多突破性的进展,在游戏、机器人控制、自动驾驶等领域都有了广泛的应用。

以AlphaGo为代表的基于强化学习的人工智能系统成功击败了多名国际围棋高手,引起了全球范围内的热烈讨论。

强化学习在自动驾驶领域也取得了重大突破,许多公司都在积极探索基于强化学习的自动驾驶技术。

四、应用领域的拓展与融合人工智能技术的应用领域也在不断拓展和融合,涉及医疗、金融、农业、制造等多个行业。

在医疗领域,人工智能技术已经被成功应用于疾病诊断、药物研发、健康管理等方面;在金融领域,人工智能技术被用于风险预测、欺诈检测、交易智能等方面。

这些领域的拓展与融合为人工智能技术的发展提供了更广阔的空间。

五、未来发展趋势展望随着人工智能技术的不断进步,未来的发展方向将更加注重人工智能与其他领域的融合,例如人工智能与物联网、生物医学、无人机等领域的结合将会成为未来的研究热点。

人工智能技术的发展还将更加注重对技术伦理、安全和隐私保护的关注,建立人工智能技术的良性发展框架,为人工智能技术的未来发展打下良好的基础。

人工智能算法综述范文

人工智能算法综述范文

人工智能算法综述范文人工智能(Artificial intelligence, AI)是一门研究如何使机器能够展示出与人类智能相仿的智能行为的学科。

人工智能算法是实现人工智能的关键技术之一,目前已经涌现出了众多不同的人工智能算法,为解决各种问题提供了有效的工具和方法。

本文将综述部分常见的人工智能算法,以便读者对此有一个基本的了解。

首先是最常见的机器学习算法。

机器学习是人工智能的核心内容之一,它通过让机器从数据中归纳出模式和规律,从而使机器能够做出预测和判断。

机器学习算法可以分为监督学习、无监督学习和强化学习三类。

在监督学习中,机器学习算法通过学习带有标签的训练数据来预测未知数据的标签。

常见的监督学习算法包括线性回归、决策树、支持向量机等。

在无监督学习中,机器学习算法在没有标签的情况下分析数据,寻找数据中的内在结构和模式。

常见的无监督学习算法包括聚类、降维等。

在强化学习中,机器学习算法通过与环境的交互来学习优化策略。

强化学习的经典算法包括Q-learning和深度强化学习等。

其次是常见的深度学习算法。

深度学习是机器学习的一个分支,它通过构建多层神经网络来提取高层次的特征,并实现对大规模数据的处理和分析。

深度学习算法可以解决传统机器学习算法难以解决的高维数据和复杂模式识别问题。

常见的深度学习算法包括卷积神经网络、循环神经网络等。

深度学习算法在图像识别、自然语言处理等领域取得了显著成果。

此外,还有一些其他的人工智能算法。

例如,遗传算法是一种模拟达尔文进化论的算法,通过模拟基因变异和适应度选择来寻找问题的最优解。

模糊逻辑是一种处理模糊信息的数学方法,可以用于模糊推理和决策。

贝叶斯网络是一种用于处理不确定性和概率推理的图模型。

综上所述,人工智能算法是实现人工智能的关键技术之一,包括机器学习算法、深度学习算法以及其他一些算法。

随着技术的发展和应用场景的增加,人工智能算法将继续得到广泛的应用和研究。

算法优势总结报告范文(3篇)

算法优势总结报告范文(3篇)

第1篇一、引言随着信息技术的飞速发展,算法已成为现代社会不可或缺的技术支撑。

从互联网搜索到自动驾驶,从金融风控到医疗诊断,算法的应用已经渗透到各行各业。

本报告旨在总结各类算法的优势,分析其在不同领域的应用价值,为我国算法技术的发展提供参考。

二、算法概述算法(Algorithm)是一系列解决问题的步骤,它通过一系列操作将输入转化为输出。

在计算机科学中,算法是程序设计的核心,是解决复杂问题的基石。

根据不同的分类标准,算法可以分为多种类型,如:排序算法、搜索算法、图算法、机器学习算法等。

三、算法优势总结1. 高效性算法的高效性体现在两个方面:时间复杂度和空间复杂度。

一个好的算法能够在有限的时间内完成大量的计算任务,降低计算成本。

例如,快速排序算法在平均情况下具有较高的时间复杂度,但实际运行速度却远超其他排序算法。

2. 可靠性算法的可靠性是指其在各种情况下都能稳定运行,不会出现错误。

为了提高算法的可靠性,研究人员通常会采用多种测试方法,如单元测试、集成测试、性能测试等。

3. 可扩展性算法的可扩展性是指其能够适应不同规模的数据。

一个好的算法不仅能够处理小规模数据,还能够应对大规模数据的挑战。

例如,分布式算法能够在多台计算机上并行处理数据,提高处理速度。

4. 泛化能力算法的泛化能力是指其能够适应不同类型的问题。

一个好的算法不仅能够解决特定领域的问题,还能够解决其他领域的问题。

例如,深度学习算法在图像识别、语音识别等领域取得了显著成果,其泛化能力得到了广泛认可。

5. 智能化随着人工智能技术的发展,算法逐渐向智能化方向发展。

智能化算法能够自主学习、适应环境,提高解决问题的能力。

例如,强化学习算法能够通过不断尝试和错误,找到最优策略。

四、算法在不同领域的应用1. 互联网搜索互联网搜索是算法应用最为广泛的领域之一。

搜索引擎通过关键词匹配、页面相关性计算等算法,为用户提供精准的搜索结果。

近年来,深度学习算法在图像识别、语音识别等领域取得了突破,进一步提升了搜索引擎的智能化水平。

智能优化算法综述

智能优化算法综述

智能优化算法综述智能优化算法(Intelligent Optimization Algorithms)是一类基于智能计算的优化算法,它们通过模拟生物进化、群体行为等自然现象,在空间中寻找最优解。

智能优化算法被广泛应用于工程优化、机器学习、数据挖掘等领域,具有全局能力、适应性强、鲁棒性好等特点。

目前,智能优化算法主要分为传统数值优化算法和进化算法两大类。

传统数值优化算法包括梯度法、牛顿法等,它们适用于连续可导的优化问题,但在处理非线性、非光滑、多模态等复杂问题时表现不佳。

而进化算法则通过模拟生物进化过程,以群体中个体之间的竞争、合作、适应度等概念来进行。

常见的进化算法包括遗传算法(GA)、粒子群优化(PSO)、人工蜂群算法(ABC)等。

下面将分别介绍这些算法的特点和应用领域。

遗传算法(Genetic Algorithm,GA)是模拟自然进化过程的一种优化算法。

它通过定义适应度函数,以染色体编码候选解,通过选择、交叉、变异等操作来最优解。

GA适用于空间巨大、多峰问题,如参数优化、组合优化等。

它具有全局能力、适应性强、并行计算等优点,但收敛速度较慢。

粒子群优化(Particle Swarm Optimization,PSO)是受鸟群觅食行为启发的优化算法。

它通过模拟成群的鸟或鱼在空间中的相互合作和个体局部来找到最优解。

PSO具有全局能力强、适应性强、收敛速度快等特点,适用于连续优化问题,如函数拟合、机器学习模型参数优化等。

人工蜂群算法(Artificial Bee Colony,ABC)是模拟蜜蜂觅食行为的一种优化算法。

ABC通过模拟蜜蜂在资源的与做决策过程,包括采蜜、跳舞等行为,以找到最优解。

ABC具有全局能力强、适应性强、收敛速度快等特点,适用于连续优化问题,如函数优化、机器学习模型参数优化等。

除了上述三种算法,还有模拟退火算法(Simulated Annealing,SA)、蚁群算法(Ant Colony Optimization,ACO)、混沌优化算法等等。

人工智能十大算法总结(精选五篇)

人工智能十大算法总结(精选五篇)

人工智能十大算法总结(精选五篇)第一篇:人工智能十大算法总结5-1 简述机器学习十大算法的每个算法的核心思想、工作原理、适用情况及优缺点等。

1)C4.5 算法:ID3 算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。

ID3 算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定的测试属性。

C4.5 算法核心思想是ID3 算法,是ID3 算法的改进,改进方面有:1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;2)在树构造过程中进行剪枝3)能处理非离散的数据4)能处理不完整的数据C4.5 算法优点:产生的分类规则易于理解,准确率较高。

缺点:1)在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

2)C4.5 只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。

2)K means 算法:是一个简单的聚类算法,把n 的对象根据他们的属性分为k 个分割,k < n。

算法的核心就是要优化失真函数J,使其收敛到局部最小值但不是全局最小值。

其中N 为样本数,K 是簇数,rnk b 表示n 属于第k 个簇,uk 是第k 个中心点的值。

然后求出最优的uk优点:算法速度很快缺点是,分组的数目k 是一个输入参数,不合适的k 可能返回较差的结果。

3)朴素贝叶斯算法:朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。

算法的基础是概率问题,分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。

朴素贝叶斯假设是约束性很强的假设,假设特征条件独立,但朴素贝叶斯算法简单,快速,具有较小的出错率。

在朴素贝叶斯的应用中,主要研究了电子邮件过滤以及文本分类研究。

4)K 最近邻分类算法(KNN)分类思想比较简单,从训练样本中找出K个与其最相近的样本,然后看这k个样本中哪个类别的样本多,则待判定的值(或说抽样)就属于这个类别。

《2024年人工智能技术发展综述》范文

《2024年人工智能技术发展综述》范文

《人工智能技术发展综述》篇一一、引言人工智能(Artificial Intelligence,)已经成为当前科技领域的热门话题。

其快速发展及广泛的应用正在对全球经济、科技、文化和社会产生深远的影响。

本综述将就人工智能技术的发展历程、关键技术、应用领域、发展趋势以及面临的挑战进行全面的分析和总结。

二、人工智能技术的发展历程自20世纪50年代人工智能概念首次提出以来,经过几十年的发展,人工智能技术已经取得了显著的进步。

从最初的符号逻辑推理到现在的深度学习,人工智能的发展经历了以下几个阶段:1. 符号逻辑推理阶段:这个阶段主要关注的是符号逻辑和规则推理,是人工智能的初步尝试。

2. 知识表示与推理阶段:该阶段开始利用知识表示和推理来模拟人类智能。

3. 机器学习与深度学习阶段:随着计算机技术的进步,机器学习和深度学习逐渐成为人工智能的主流技术。

三、关键技术1. 机器学习:机器学习是人工智能的核心技术之一,通过训练算法使计算机能够从数据中学习和识别模式。

2. 深度学习:深度学习是机器学习的一个分支,通过模拟人脑神经网络的工作方式,实现对复杂数据的处理和识别。

3. 自然语言处理:自然语言处理使计算机能够理解和生成人类语言,是人工智能在语言交流方面的关键技术。

4. 计算机视觉:计算机视觉使计算机能够识别和处理图像和视频信息,是实现智能识别和监控的重要技术。

四、应用领域人工智能技术的应用已经渗透到各个领域,包括但不限于:1. 工业制造:通过智能机器人和自动化设备提高生产效率和质量。

2. 医疗健康:利用大数据和机器学习技术进行疾病预测、诊断和治疗。

3. 金融服务:通过智能投顾和风险控制系统提高金融服务的质量和效率。

4. 交通物流:利用智能交通系统和物流管理系统提高交通效率和物流效率。

5. 教育科技:利用智能教学系统和在线教育平台改善教育质量和效率。

五、发展趋势未来,人工智能技术的发展将呈现以下几个趋势:1. 算法优化:随着算法的不断优化,人工智能将能够处理更复杂的任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智能算法综述1什么是智能算法智能计算也有人称之为“软计算”,是们受自然(生物界)规律的启迪,根据其原理,模仿求解问题的算法。

从自然界得到启迪,模仿其结构进行发明创造,这就是仿生学。

这是我们向自然界学习的一个方而。

另一方而,我们还可以利用仿生原理进行设计(包括设计算法),这就是智能计算的思想。

这方面的内容很多,如人工神经网络技术、遗传算法、模拟退火算法、模拟退火技术和群集智能技术等。

2人工神经网络算法“人匸神经网络”(xxxxxxxxxxxxRK,简称AN\)是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。

早在本世纪40年代初期,心理学家McCulloch.数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。

其后,FRosenblattWidrow和J. J. Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。

神经系统的基木构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。

据神经生物学家研究的结果表明, 人的一个大脑一般有1010〜1011个神经元。

每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。

轴突的功能是将木神经元的输出信号(兴奋)传递给别的神经元。

其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。

树突的功能是接受来自其它神经元的兴奋。

神经元细胞体将接受到的所有信号进行简单处理(如:加权求和,即对所有的输入信号都加以考虑且对每个信号的重视程度一一体现在权值上一一有所不同)后由轴突输出。

神经元的树突与另外的神经元的神经末梢相连的部分称为突触。

2.1人工神经网络的特点人工神经网络是由大量的神经元广泛互连而成的系统,它的这一结构特点决定着人工神经网络具有高速信息处理的能力。

人脑的每个神经元大约有103〜104个树突及相应的突触,一个人的大脑总计约形成1014〜1015个突触。

用神经网络的术语来说,即是人脑具有1014〜1015个互相连接的存储潜力。

虽然每个神经元的运算功能十分简单,且信号传输速率也较低(大约100次/秒),但由于各神经元之间的极度并行互连功能,最终使得一个普通人的大脑在约1秒内就能完成现行计算机至少需要数10亿次处理步骤才能完成的任务。

人工神经网络的知识存储容量很大。

在神经网络中,知识与信息的存储表现为神经元之间分布式的物理联系。

它分散地表示和存储于整个网络内的各神经元及其连线上。

每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。

只有通过各神经元的分布式综合效果才能表达出特定的概念和知识。

由于人工神经网络中神经元个数众多以及整个网络存储信息容量的巨大,使得它具有很强的不确定性信息处理能力。

即使输入信息不完全、不准确或模糊不清,神经网络仍然能够联想思维存在于记忆中的事物的完整图象。

只要输入的模式接近于训练样木,系统就能给出正确的推理结论。

正是因为人工神经网络的结构特点和其信息存储的分布式特点, 使得它相对于其它的判断识别系统,如:专家系统等,具有另一个显著的优点:健壮性。

生物神经网络不会因为个别神经元的损失而失去对原有模式的记忆。

最有力的证明是,当一个人的大脑因意外事故受轻微损伤之后,并不会失去原有事物的全部记忆。

人工神经网络也有类似的情况。

因某些原因,无论是网络的硬件实现还是软件实现中的某个或某些神经元失效,整个网络仍然能继续工作。

人工神经网络是一种非线性的处理单元。

只有当神经元对所有的输入信号的综合处理结果超过某一门限值后才输出一个信号。

因此神经网络是一种具有高度非线性的超大规模连续时间动力学系统。

它突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能信息处理能力和模拟人脑智能行为能力的一大飞跃。

2. 2几种典型神经网络简介2. 2.1多层感知网络(误差逆传播神经网络)在1986年以Rumelhart和McCelland为首的科学家出版的《ParallelDistributedProcessing^ 一书中,完整地提出了误差逆传播学习算法,并被广泛接受。

多层感知网络是一种具有三层或三层以上的阶层型神经网络。

典型的多层感知网络是三层、前馈的阶层网络, 即:输入层I、隐含层(也称中间层)J和输出层K。

相邻层之间的各神经元实现全连接,即下一层的每一个神经元与上一层的每个神经元都实现全连接,而且每层各神经元之间无连接。

但BP网并不是十分的完善,它存在以下一些主要缺陷:学习收敛速度太慢、网络的学习记忆具有不稳定性,即:当给一个训练好的网提供新的学习记忆模式时,将使己有的连接权值被打乱,导致己记忆的学习模式的信息的消失。

2.2. 2竞争型(xxxx)神经网络它是基于人的视网膜及大脑皮层对剌激的反应而引出的。

神经生物学的研究结果表明:生物视网膜中,有许多特定的细胞,对特定的图形(输入模式)比较敏感,并使得大脑皮层中的特定细胞产生大的兴奋, 而其相邻的神经细胞的兴奋程度被抑制。

对于某一个输入模式,通过竞争在输岀层中只激活一个相应的输出神经元。

许多输入模式,在输出层中将激活许多个神经元,从而形成一个反映输入数据的“特征图形”。

竞争型神经网络是一种以无教师方式进行网络训练的网络。

它通过自身训练,自动对输入模式进行分类。

竞争型神经网络及其学习规则与其它类型的神经网络和学习规则相比,有其自己的鲜明特点。

在网络结构上,它既不象阶层型神经网络那样各层神经元之间只有单向连接,也不象全连接型网络那样在网络结构上没有明显的层次界限。

它一般是由输入层(模拟视网膜神经元)和竞争层(模拟大脑皮层神经元,也叫输出层)构成的两层网络。

两层之间的各神经元实现双向全连接,而且网络中没有隐含层。

有时竞争层各神经元之间还存在横向连接。

竞争型神经网络的基木思想是网络竞争层各神经元竞争对输入模式的响应机会,最后仅有一个神经元成为竞争的胜者,并且只将与获胜神经元有关的各连接权值进行修正,使之朝着更有利于它竞争的方向调整。

神经网络工作时,对于某一输入模式,网络中与该模式最相近的学习输入模式相对应的竞争层神经元将有最大的输出值,即以竞争层获胜神经元来表示分类结果。

这是通过竞争得以实现的,实际上也就是网络回忆联想的过程。

除了竞争的方法外,还有通过抑制手段获取胜利的方法,即网络竞争层各神经元抑制所有其它神经元对输入模式的响应机会,从而使自己“脱颖而出”,成为获胜神经元。

除此之外还有一种称为侧抑制的方法,即每个神经元只抑制与自己邻近的神经元,而对远离自己的神经元不抑制。

这种方法常常用于图象边缘处理,解决图象边缘的缺陷问题。

竞争型神经网络的缺点和不足:因为它仅以输出层中的单个神经元代表某一类模式。

所以一旦输出层中的某个输岀神经元损坏,则导致该神经元所代表的该模式信息全部丢失。

2. 2. 3Hopfield 神经网络1986年美国物理学家J. J. Hopfield陆续发表几篇,提出了Hopfield神经网络。

他利用非线性动力学系统理论中的能量函数方法研究反馈人工神经网络的稳定性,并利用此方法建立求解优化计算问题的系统方程式。

基本的Hopfield神经网络是一个由非线性元件构成的全连接型单层反馈系统。

网络中的每一个神经元都将自己的输出通过连接权传送给所有其它神经元,同时又都接收所有其它神经元传递过来的信息。

即:网络中的神经元t时刻的输出状态实际上间接地与自己的t-1时刻的输出状态有关。

所以Hopfield神经网络是一个反馈型的网络。

其状态变化可以用差分方程来表征。

反馈型网络的一个重要特点就是它具有稳定状态。

当网络达到稳定状态的时候,也就是它的能量函数达到最小的时候。

这里的能量函数不是物理意义上的能量函数,而是在表达形式上与物理意义上的能量概念一致,表征网络状态的变化趋势,并可以依据Hopfield工作运行规则不断进行状态变化,最终能够达到的某个极小值的目标函数。

网络收敛就是指能量函数达到极小值。

如果把一个最优化问题的目标函数转换成网络的能量函数,把问题的变量对应于网络的状态,那么Hopfield神经网络就能够用于解决优化组合问题。

对于同样结构的网络,当网络参数(指连接权值和阀值)有所变化时,网络能量函数的极小点(称为网络的稳定平衡点)的个数和极小值的大小也将变化。

因此,可以把所需记忆的模式设计成某个确定网络状态的一个稳定平衡点。

若网络有M个平衡点,则可以记忆M个记忆模式。

当网络从与记忆模式较靠近的某个初始状态(相当于发生了某些变形或含有某些噪声的记忆模式,也即:只提供了某个模式的部分信息)出发后,网络按Hopfield工作运行规则进行状态更新,最后网络的状态将稳定在能量函数的极小点。

这样就完成了由部分信息的联想过程。

Hopfield神经网络的能量函数是朝着梯度减小的方向变化,但它仍然存在一个问题,那就是一旦能量函数陷入到局部极小值,它将不能自动跳出局部极小点,到达全局最小点,因而无法求得网络最优解。

3遗传算法遗传算法(GeneticAlgorithms )是基于生物进化理论的原理发展起来的一种广为应用的、高效的随机搜索与优化的方法。

其主要特点是群体搜索策略和群体中个体之间的信息交换,搜索不依赖于梯度信息。

它是在70年代初期由美国密执根(Michigan)大学的霍兰(Holland)教授发展起来的。

1975年霍兰教授发表了第一木比较系统论述遗传算法的专著《自然系统与人工系统中的适应性》(《AdaptationinXaturalandArtif icialSysterns》)。

遗传算法最初被研究的出发点不是为专门解决最优化问题而设计的,它与进化策略、进化规划共同构成了进化算法的主要框架,都是为当时人工智能的发展服务的。

迄今为止,遗传算法是进化算法中最广为人知的算法。

近几年来,遗传算法主要在复杂优化问题求解和工业工程领域应用方而,取得了一些令人信服的结果,所以引起了很多人的关注。

在发展过程中,进化策略、进化规划和遗传算法之间差异越来越小。

遗传算法成功的应用包扌鼻作业调度与排序、可靠性设计、车辆路径选择与调度、成组技术、设备布置与分配、交通问题等等。

3. 1特点遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。

搜索算法的共同特征为:①首先组成一组候选解;②依据某些适应性条件测算这些候选解的适应度;③根据适应度保留某些候选解,放弃其他候选解;④对保留的候选解进行某些操作,生成新的候选解。

在遗传算法中,上述几个特征以一种特殊的方式组合在一起:基于染色体群的并行搜索,带有猜测性质的选择操作、交换操作和突变操作。

这种特殊的组合方式将遗传算法与其它搜索算法区别开来。

遗传算法还具有以下几方而的特点:(1)遗传算法从问题解的串集开始嫂索,而不是从单个解开始。

相关文档
最新文档