2020版高中数学第三章概率3.3几何概型学案(含解析)新人教A版必修3
高中数学 第三章 概率 3.3.1 几何概型学案 新人教A版必修3

3.3.1 几何概型[学习目标] 1.了解几何概型与古典概型的区别.2.理解几何概型的定义及其特点.3.会用几何概型的概率计算公式求几何概型的概率.知识点一几何概型的含义1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.思考几何概型与古典概型有何区别?答几何概型与古典概型的异同点P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.思考计算几何概型的概率时,首先考虑的应该是什么?答首先考虑取点的区域,即要计算的区域的几何度量.题型一与长度有关的几何概型例1 取一根长为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率有多大?解如图,记“剪得两段的长都不小于1m”为事件A.把绳子三等分,于是当剪断位置处在中间一段时,事件A发生,因为中间一段的长度为1m,所以事件A 发生的概率为P (A )=13.反思与感悟 在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D ,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A 发生对应的区域d ,在找区域d 的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A 的概率. 跟踪训练1 某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A.13 B.12 C.23 D.34 答案 B解析 如图所示,画出时间轴:小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P =10+1040=12,故选B.题型二 与面积有关的几何概型例2 射箭比赛的箭靶中有五个涂有不同颜色的圆环,从外向内分别为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm ,运动员在一定距离外射箭,假设每箭都能中靶,且射中靶面内任意一点是等可能的,那么射中黄心的概率为多少? 解 如图,记“射中黄心”为事件B.因为中靶点随机地落在面积为⎝ ⎛⎭⎪⎫14×π×1222cm 2的大圆内,而当中靶点落在面积为⎝ ⎛⎭⎪⎫14×π×12.22cm 2的黄心内时,事件B 发生,所以事件B 发生的概率P (B )=14×π×12.2214×π×1222=0.01.反思与感悟 解此类几何概型问题的关键:(1)根据题意确定是不是与面积有关的几何概型问题.(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积,套用公式从而求得随机事件的概率.跟踪训练2 一只海豚在水池中自由游弋,水池为长30m ,宽20m 的长方形,求此刻海豚嘴尖离岸边不超过2m 的概率.解 如图所示,区域Ω是长30m 、宽20m 的长方形.图中阴影部分表示事件A :“海豚嘴尖离岸边不超过2m”,问题可以理解为求海豚嘴尖出现在图中阴影部分的概率.由于区域Ω的面积为30×20=600(m 2),阴影部分的面积为30×20-26×16=184(m 2). 所以P (A )=184600=2375≈0.31.即海豚嘴尖离岸边不超过2m 的概率约为0.31. 题型三 与体积有关的几何概型例3 已知正三棱锥S -ABC 的底面边长为a ,高为h ,在正三棱锥内取点M ,试求点M 到底面的距离小于h2的概率.解 如图,分别在SA ,SB ,SC 上取点A 1,B 1,C 1,使A 1,B 1,C 1分别为SA ,SB ,SC 的中点,则当点M 位于平面ABC 和平面A 1B 1C 1之间时,点M 到底面的距离小于h2.设△ABC 的面积为S ,由△ABC ∽△A 1B 1C 1,且相似比为2,得△A 1B 1C 1的面积为S4.由题意,知区域D (三棱锥S -ABC )的体积为13Sh ,区域d (三棱台ABC -A 1B 1C 1)的体积为13Sh -13·S 4·h 2=13Sh ·78.所以点M 到底面的距离小于h 2的概率为P =78.反思与感悟 如果试验的全部结果所构成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的区域体积及事件A 所占的区域体积.其概率的计算公式为P (A )=构成事件A 的区域体积试验的全部结果构成的区域体积.跟踪训练3 一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,求蜜蜂“安全飞行”的概率. 解 依题意,在棱长为3的正方体内任意取一点,这个点到各面的距离均大于1.则满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为P =1333=127.题型四 与角度有关的几何概型例4 如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,求射线OA 落在∠xOT 内的概率.解 以O 为起点作射线OA 是随机的,因而射线OA 落在任何位置都是等可能的,落在∠xOT 内的概率只与∠xOT 的大小有关,符合几何概型的条件. 于是,记事件B ={射线OA 落在∠xOT 内}. 因为∠xOT =60°,所以P (B )=60°360°=16.反思与感悟 当涉及射线的运动、扇形中有关落点区域问题时,常以角的大小作为区域度量来计算概率,切不可用线段代替,这是两种不同的度量手段.跟踪训练4 如图,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M .求AM <AC 的概率.解 因为CM 是∠ACB 内部的任意一条射线,而总的基本事件是∠ACB 的大小,即为90°, 所以作AC ′=AC ,且∠ACC ′=180°-45°2=67.5°.如图,当CM 在∠ACC ′内部的任意一个位置时,皆有AM <AC ′=AC ,即P (AM <AC )=67.5°90°=34.转化与化归思想例5 把长度为a 的木棒任意折成三段,求它们可以构成一个三角形的概率.分析 将长度为a 的木棒任意折成三段,要能够构成三角形必须满足“两边之和大于第三边”这个条件,进而求解即可.解 设将长度为a 的木棒任意折成三段的长分别为x ,y ,a -x -y ,则(x ,y )满足的条件为⎩⎪⎨⎪⎧0≤x ≤a ,0≤y ≤a ,0≤x +y ≤a ,它所构成的区域为图中的△AOB .设事件M ={能构成一个三角形},则当(x ,y )满足下列条件时,事件M 发生.⎩⎪⎨⎪⎧x +y >a -x -y ,x +a -x -y >y ,y +a -x -y >x ,即⎩⎪⎨⎪⎧x +y >a2,y <a2,x <a 2,它所构成的区域为图中的阴影部分, 故P (M )=S 阴影S △AOB =12×⎝ ⎛⎭⎪⎫a 2212×a 2=14.故满足条件的概率为14.解后反思 解决本题的关键是将之转化为与面积有关的几何概型问题.一般地,有一个变量可以转化为与长度有关的几何概型,有两个变量可以转化为与面积有关的几何概型,有三个变量可以转化为与体积有关的几何概型.1.在区间[0,3]上任取一个数,则此数不大于2的概率是( ) A.13B.12C.23D.79 答案 C解析 此数不大于2的概率P =区间[0,2]的长度区间[0,3]的长度=23.2.在半径为2的球O 内任取一点P ,则|OP |>1的概率为( ) A.78B.56C.34D.12 答案 A解析 问题相当于在以O 为球心,1为半径的球外,且在以O 为球心,2为半径的球内任取一点,所以P =43π×23-43π×1343π×23=78.3.如图,边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率是13,则阴影区域的面积是()A.13B.23C.43 D .无法计算答案 C解析 在正方形中随机撒一粒豆子,其结果有无限个,属于几何概型.设“落在阴影区域内”为事件A ,则事件A 构成的区域是阴影部分.设阴影区域的面积为S ,全部结果构成的区域面积是正方形的面积,则有P (A )=S 22=S 4=13,解得S =43.4.当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是( )A.112B.38C.116D.56 答案 C解析 由题意可知,在80秒内路口的红、黄、绿灯是随机出现的,可以认为是无限次等可能出现的,符合几何概型的条件.事件“看到黄灯”的时间长度为5秒,而整个灯的变换时间长度为80秒,据几何概型概率计算公式,得看到黄灯的概率为P =580=116.5.在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________. 答案 34解析 由已知得,圆心(5,0)到直线y =kx 的距离小于半径,∴|5k |k 2+1<3,解得-34<k <34,由几何概型得P =34-⎝ ⎛⎭⎪⎫-341--=34.1.几何概型适用于试验结果是无限多且事件是等可能发生的概率模型. 2.几何概型主要用于解决与长度、面积、体积有关的题目. 3.注意理解几何概型与古典概型的区别.4.理解如何将实际问题转化为几何概型的问题,利用几何概型公式求解,概率公式为P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.。
人教A版高中数学必修3《第三章 概率 3.3 几何概型 3.3.2 均匀随机数的产生》_6

均匀随机数的产生教学设计教学目标:1.能够利用随机模拟试验估计事件的概率.2.了解把未知量的估计问题转化为随机模拟问题.3.会根据题目条件合理设计简单的随机模拟试验. 教学重点:会根据题目条件合理设计简单的随机模拟试验. 教学方法:讲练结合、启发式. 教学过程: 知识梳理知识点1: 均匀随机数定义:如果试验的结果是在区间[a ,b]上的__________,并且出现每一个实数都是________的,则称这些实数为均匀随机数. 知识点2:均匀随机数的产生1.计算器上产生[0,1]的均匀随机数的函数是________函数.2.Excel 软件产生[0,1]区间上均匀随机数的函数为“________”. 知识点3:用模拟方法近似计算某事件概率的方法[化解疑难](1)均匀随机数的理解①均匀随机数是随机产生的,在一定的区域长度上出现的概率是均等的.②均匀随机数是小数或整数,相邻两个均匀随机数的步长是人为设定的.(2)应用模拟试验近似计算概率的方法要点分析用均匀随机数模拟试验时,首先把实际问题转化为可以用随机数来模拟试验结果的概率模型,也就是怎样用随机数刻画影响随机事件结果的量.我们可以从以下几个方面考虑:①由影响随机事件结果的量的个数确定需要产生的随机数组数.如长度型、角度型只用一组,面积型需要两组.②由所有基本事件总体对应的区域确定产生随机数的范围.③由事件A发生的条件确定随机数所应满足的关系式求事件A的概率.基础自测1.用均匀随机数进行随机模拟,可以解决( )A.只能求几何概型的概率,不能解决其他问题B.不仅能求几何概型的概率,还能计算图形的面积C.不但能估计几何概型的概率,还能估计图形的面积D.最适合估计古典概型的概率解析:很明显用均匀随机数进行随机模拟,不但能估计几何概型的概率,还能估计图形的面积,得到的是近似值,不是精确值,用均匀随机数进行随机模拟,不适合估计古典概型的概率.2.将[0,1]内的均匀随机数转化为[-2,6]内的均匀随机数,需实施的变换为( )A.a=a1*8B.a=a1*8+2C.a=a1*8-2D.a=a1*6解析:将[0,1]内的随机数转化为[a,b]内的随机数需进行的变化为a=a1*(b-a)+a=a1*8-2.答案:C3.下列关于随机数的说法中:①计算器只能产生(0,1)之间的随机数;②计算器能产生指定两个整数值之间的均匀随机数;用随机模拟法估计长度型几何概型自主练透型例1、 取一根长度为5 m 的绳子,拉直后在任意位置剪断,用均匀随机模拟方法估计剪得两段的长都不小于2 m 的概率有多大? 解析: 设剪得两段的长都不小于2 m 为事件A.法一:(1)利用计算器或计算机产生n 个0~1之间的均匀随机数,x =RAND ; (2)作伸缩变换:y =x*(5-0),转化为[0,5]上的均匀随机数; (3)统计出[2,3]内均匀随机数的个数m ; (4)则概率P(A)的近似值为m/n.法二:(1)做一个带有指针的转盘,把圆周五等分,标上刻度[0,5](这里5和0重合); (2)固定指针转动转盘或固定转盘旋转指针,记下指针在[2,3]内(表示剪断绳子位置在[2,3]范围内)的次数m 及试验总次数n ; (3)则概率P(A)的近似值为m/n. [归纳升华]利用随机模拟计算概率的步骤 (1)确定概率模型;(2)进行随机模拟试验,即利用计算器等以及伸缩和平移变换得到[a,b]上的均匀随机数;(3)统计计算;(4)得出结论,近似求得概率.1.已知米粒等可能地落入如图所示的四边形ABCD 内,如果通过大量的实验发现米粒落入△BCD 内的频率稳定在49附近,那么点A 和点C 到直线BD 的距离之比约为 .解析: 设米粒落入△BCD 内的频率为P 1,米粒落入△BAD 内的频率为P 2,点C 和点A 到直线BD的距离分别为d 1,d 2,根据题意:P 2=1-P 1=1-49=59, 又∵P 1=S △BCDS 四边形ABCD=12×BD ×d 1S 四边形ABCD , P 2=S △BAD S 四边形ABCD =12×BD ×d 2S 四边形ABCD∴P 2P1=d 2d 1=54. 用随机模拟估计面积型的几何概型多维探究型如图所示,在墙上挂着一块边长为32 cm 的正方形木板,上面画了小、中、大三个同心圆,半径分别为3 cm ,6 cm ,9 cm ,某人站在3 m 之外向此板投镖,假设投镖击在线上或没有投中木板不算,可重投,用随机模拟的方法估计:(1)“投中小圆内”的概率是多少?(2)“投中小圆与中圆形成的圆环”的概率是多少?解析:记事件A ={投中小圆内},事件B={投中小圆与中圆形成的圆环}.按如下步骤进行:(1)用计算机产生两组[0,1]上的均匀随机数,a1=RAND,b1=RAND;(2)经过伸缩和平移变换,a=a1·32-16,b=b1·32-16,得到两组[-16,16]上的均匀随机数;(3)统计投在小圆内的次数N1(即满足a2+b2<9的点(a,b)的个数),投中小圆与中圆形成的圆环的次数N2(即满足9<a2+b2<36的点(a,b)的个数),投中木板的总次数N(即满足-16<a<16,-16<b<16的点(a,b)的个数);(4)计算频率f n(A)=N1N,f n(B)=N2N,即分别为概率P(A),P(B)的近似值.[归纳升华]用随机模拟方法估计长度型与面积型几何概型的概率的联系与区别(1)联系:二者模拟试验的方法和步骤基本相同,都需产生随机数;(2)区别:长度型几何概型只要产生一组均匀随机数即可,所求事件的概率为表示事件的长度之比,对面积型几何概型问题,一般需要确定点的位置,而一组随机数是不能在平面上确定点的位置的,故需要利用两组均匀随机数分别表示点的横纵坐标,从而确定点的位置,所求事件的概率为点的个数比.2.现向图中所示正方形内随机地投掷飞镖,试用随机模拟的方法求飞镖落在阴影部分的概率.解析:(1)利用计算器或计算机产生两组0至1区间内的均匀随机数a1、b1(共N组);(2)经过平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2;(3)数出满足不等式b<2a-43,即6a-3b>4的数组数N1.所求概率P≈N1N.可以发现,试验次数越多,概率P越接近25 144.利用随机模拟的方法计算不规则图形的面积多维探究型(1)如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23D.无法计算(2)利用随机模拟的方法近似计算图中阴影部分(抛物线y =2-2x -x 2与x 轴围成的图形)的面积.解析: (1)由几何概型的公式可得S 阴影S 正方形=23,又S 正方形=4, ∴S 阴影=4×23=83.(2)①利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND ,b 1=RAND ;②经过平移和伸缩变换,a =a 1·4-3,b =b 1·3,得到一组[-3,1]和一组[0,3]上的均匀随机数;③统计试验总次数N 和落在阴影部分的点数N 1(满足条件b <2-2a -a 2的点(a ,b )的个数);④计算频率N 1N就是点落在阴影部分的概率的近似值;⑤设阴影部分的面积为S ,由几何概型概率公式得点落在阴影部分的概率为S 12,所以S 12≈N 1N ,故S ≈12N 1N即为阴影部分面积的近似值.[归纳升华]利用随机模拟法估计图形面积的步骤(1)把已知图形放在平面直角坐标系中,将图形看成某规则图形(长方形或圆等)内的一部分,并用阴影表示;(2)利用随机模拟方法在规则图形内任取一点,求出落在阴影部分的概率P (A )=N 1N ;(3)设阴影部分的面积是S ,规则图形的面积是S ′,则有S S ′=N 1N ,解得S =N 1NS ′,则已知图形面积的近似值为N 1NS ′.3.利用随机模拟的方法近似计算图中阴影部分(曲线y =2x与直线x =±1及x 轴围成的图形)的面积.解析: 设事件A 为“随机向正方形内投点,所投的点落在阴影部分”,操作步骤如下:第一步,用计数器n 记录做了多少次试验,用计数器m 记录其中有多少次(x ,y )满足-1<x <1,0<y <2x(即点落在图中阴影部分),首先设置n =0,m =0;第二步,用变换rand( )*2-1产生-1~1之间的均匀随机数x 表示所投点的横坐标,用变换rand( )*2产生0~2之间的均匀随机数y 表示所投点的纵坐标;第三步,判断点是否落在阴影部分,即是否满足y <2x,如果是, 则计数器m 的值加1,即m =m +1,如果不是,m 的值保持不变;第四步,表示随机试验次数的计数器n的值加1,即n=n+1,如果还要试验,则返回步骤第二步继续执行,否则结束.程序结束后事件A发生的频率mn作为事件A的概率的近似值.设阴影部分的面积为S,正方形面积为4,由几何概型概率计算公式得,P(A)=S4,所以mn≈S4,故4mn可作为阴影部分面积S的近似值.。
2019-2020学年数学高中人教A版必修3学案:3.3.1几何概型 Word版含解析

第三章概率3.3几何概型3.3.1几何概型学习目标1.通过本节内容的学习,了解几何概型,理解其基本计算方法并会运用.2.通过对照前面学过的知识,自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养实际操作能力.3.通过学习,体会试验结果的随机性与规律性,培养科学思维方法,提高对自然界的认知水平.合作学习一、设计问题,创设情境问题1:前面我们都学过哪些求概率的方法?学生思考后给出:.问题2:下面事件的概率能否用古典概型的方法求解?[情境一]教师取一根长度为60厘米的绳子,拉直后在任意位置剪断,使得剪出的两段的长都不小于绳子长度13(记为事件A),求此事件发生的概率.师生共同探究:此试验中,从每一个位置剪断都是一个试验结果,剪断位置可以是绳子上任一点,试验的可能结果为,发现不是,不可以用古典概型的方法求解.探索:如图所示,把绳子三等分,于是当剪断位置在中间一段时,事件A发生,于是P(A)=中间绳子长度整条绳子长度=13.教师:这个模型就是我们今天要学习的几何概率模型,简称几何概型.[情境二]教师用多媒体展示商场里面的抽奖场景视频,拿出如图所示的两个转盘,规定当指针指向B区域时顾客中奖.问题3:在两种情况下某顾客中奖的概率分别是多少?学生思考并回答,可见在图(1)中,顾客中奖的概率为,图(2)中顾客中奖的概率为.[情境三]问题4:一只苍蝇在一棱长为60cm的正方体笼子里飞.苍蝇距笼边大于10cm的概率是多少?问题5:同学们观察对比,找出三个情境的共同点与不同点.问题6:同学们能否根据自己的理解说说什么是几何概型?二、信息交流,揭示规律在问题情境的铺垫下,教师引导学生用自己的语言描述几何概型的概念:,简称为几何概型.问题7:古典概型与几何概型的区别和联系是什么?引导学生通过对前面三个情境的总结,得到在几何概型中,事件A发生的概率的计算公式为三、运用规律,解决问题【例1】在500mL的水中有一只草履虫,现从中随机取出2mL水样放到显微镜下观察,求发现草履虫的概率.【例2】取一个边长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率.【例3】某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,求他等待的时间不多于10分钟的概率.归纳总结:怎样求几何概型的概率?对于复杂的实际问题,解题的关键是要建立模型,找出随机事件与所有基本事件相对应的几何区域,把问题转化为几何概率问题,利用几何概率公式求解,具体分以下四个步骤:(1)(2)(3)(4)四、变式训练,深化提高1.在区间[1,3]上任意取一个数,则这个数不小于1.5的概率是多少?2.在高产小麦种子100mL中混入了一粒带锈病的种子,从中随机取出3mL,求含有带锈病种子的概率是多少?3.在墙上挂着一块边长为16cm的正方形木板,上面画了小、中、大三个同心圆,半径分别为2cm,4cm,6cm,某人站在3m之外向此板投镖,投镖击中线上或没有投中木板时都不算,可重投,问:(1)投中大圆内的概率是多少?(2)投中小圆与中圆形成的圆环的概率是多少?(3)投中大圆之外的概率是多少?五、反思小结,观点提炼布置作业1.必做题课本P142习题3.3A组第1,2题.2.选做题(1)在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC的概率.(2)平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.(3)两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.参考答案一、设计问题,创设情境问题1:用做试验或计算机模拟试验等方法得到事件发生的频率来估计概率;用古典概型的公式计算事件发生的概率.问题2:无限个古典概型问题3:123 5二、信息交流,揭示规律如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型问题7:P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)三、运用规律,解决问题【例1】解:取出2mL水,其中“发现草履虫”这一事件记为A,则P(A)=取出水的体积所有水的体积=2500=0.004.答:发现草履虫的概率是0.004.【例2】解:记“豆子落入圆内”为事件A,则P(A)=圆的面积正方形的面积=πa24a2=π4.答:豆子落入圆内的概率为π4.【例3】解:记“等待的时间不多于10分钟”为事件A,则P(A)=1060=16.答:等待的时间不多于10分钟的概率为16.归纳总结(1)利用几何概型的定义判断该问题能否转化为几何概型求解;(2)把基本事件空间转化为与之对应的区域Ω;(3)把随机事件A转化为与之对应的区域A;(4)利用几何概型概率公式计算.四、变式训练,深化提高1.P=[1.5,3]的长度[1,3]的长度=3-1.53-1=1.52=0.75.2.P (A )=取出的小麦种子的体积所有小麦种子的体积=3100=0.03. 3.(1)P 1=大圆的面积正方形的面积=36π256=9π64.(2)P 2=中圆的面积-小圆的面积正方形的面积=16π-4π256=3π64.(3)P 3=1-大圆的面积正方形的面积=1-9π64.五、反思小结,观点提炼1.几何概型的概念及基本特点.2.几何概型中概率的计算公式;一般地,在几何区域Ω中随机地取一点,记事件“该点落在其内部一个区域A 内”为事件A ,则事件A 的概率计算公式为P (A )=μA μΩ.其中μΩ表示区域Ω的几何度量,μA 表示区域A 的几何度量.3.背景相似的问题,当等可能的角度不同时,其概率是不一样的.4.区域Ω内随机取点是指:该点落在区域Ω内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比,而与其形状位置无关.布置作业 2.选做题:(1)解:在AB 上截取AC'=AC.于是 P (AM<AC )=P (AM<AC')=AC 'AB=AC AB=√22. 答:AM 小于AC 的概率为√22.(2)解:把“硬币不与任一条平行线相碰”记为事件A ,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM ,垂足为M ,如图所示,这样线段OM 长度(记作OM )的取值范围就是[0,a ],只有当r<OM ≤a 时硬币才不与平行线相碰,所以,所求事件A 的概率P (A )=(r ,a ]的长度[0,a ]的长度=a -r a.(3)解:设甲、乙各在第x 分钟和第y 分钟到达,则样本空间为Ω:{(x ,y )|0≤x ≤60,0≤y ≤60},画成图为一正方形(如图).以x ,y 分别表示两人的到达时刻,则两人能会面的充要条件为|x-y|≤20,而能会面的点的区域用阴影标出,所求概率P=阴影的面积正方形的面积=602-402602=59.。
人教A版高中数学必修3第三章概率3.3几何概型教案(2)

1.设 x 是[0,1] 内的一个均匀随机数 ,经过变换 y=2x+ 3,则 x=0.5 对应变换成的均匀随机数是
A.0
B.2
C.4
D.5
【知识点:随机模拟方法】
解 C :当 x=0.5 时,y=2×0.5+3= 4. 2. 在线段 [0,3]上任投一点,则此点坐标小于 1 的概率为 ( )
1
1
1
A. 2
(2)经过伸缩变换, a=a1*12 得到 [0, 12]内的均匀随机数.
(3)统计试验总次数 N 和[6 ,9] 内随机数个数 N1
(4)计算频率 N1 . N
记事件 A={ 面积介于 36cm2 与 81cm2 之间 }={ 长度介于 6cm 与 9cm 之间 } ,则 P(A )的近似
值为 fn(A)= N1 . N
B.3
C.4
D.1
【知识点:几何概型】 解: B 3. 若将一个质点随机投入如图所示的长方形 ABCD 中,其中 AB= 2, BC= 1, 则质点落在以 AB 为直径的半圆内的概率是 ( )
π
π
π
A. 2
B.4
C.6
π D.8
【知识点:几何概型】
阴影面积
12π·2 1π
解 B:设质点落在以 AB 为直径的半圆内为事件 A,则 P(A)= 长方形面积 = 1×2 = 4.
在古典概型中, 涉及到用随机模拟的方法求随机事件的概率, 那么能否用随机模拟的方 法解一些几何概型问题呢?
例 4. 取一根长度为 3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于 概率有多大? 【知识点:几何概型,随机模拟方法;数学思想:数学抽象,数学建模】 详解 1:(1)利用计算器或计算机产生一组 0 到 1 区间的均匀随机数 a1=RAND . (2)经过伸缩变换, a=a1*3 . (3)统计出 [1 ,2]内随机数的个数 N1 和 [0,3] 内随机数的个数 N.
人教版高中数学必修3第三章概率-《3.3几何概型》教案

几何概型一、教学目标(1)学生能掌握几何概型的特点,明确几何概型与古典概型的区别。
(2)能识别实际问题中概率模型是否为几何概型。
(3)会利用几何概型公式对简单的几何概型问题进行计算。
二、教学重点与难点教学重点:(1)几何概型的特点及与古典概型的区别(2)几何概型概率计算公式及应用。
教学难点:把求未知量的问题转化为几何概型求概率的问题;三、教学方法与手段让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会。
感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。
四、教学过程一、 创设情境 引入新课【知识回顾】(1)1 (2) 2A () A P A ⎧⎧⎨⎪⎩⎪⎪⎨=⎪⎪⎪⎩试验中所有可能出现的基本事件只有有限个;、古典概型的特点每个基本事件出现的可能性相等。
古典概型包含基本事件的个数、事件的概率公式:基本事件的总数 【课前练习】判断下列试验中事件发生的概率是否为古典概型?(1)抛掷两颗骰子,求出现两个“4点”的概率;(学生口答)(2)5本不同的语文书,4本不同的数学书,从中任取2本,取出的书恰好都是数学书的概率;(学生口答)(3)取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1m的概率;学生分析:剪刀落在绳子的任意一个位置是等可能的,但剪刀落的位置是无限个的,因而无法利用古典概型;(4)下图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向黄色区域时,甲获胜,否则乙获胜.你认为甲获胜的概率分别是多少?(1)(2)学生分析:指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而无法利用古典概型;(5)有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.学生分析:细菌在1升水的杯中任何位置的机会是等可能的,但细菌所在的位置却是无限多个的,因而不能利用古典概型。
人教版高中数学必修三 第三章 概率 《几何概型》教案

《几何概型》教案教材分析:几何概型是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.几何概型的基本特点是:在每次随机试验中,不同的试验结果有无限多个,即基本事件有无限个;在这个随机试验中,每个试验结果出现的可能性相等,即基本事件是等可能的.几何概型与古典概型的区别在于,几何概型是无限个等可能事件的情况,而古典概型中的等可能事件只有有限个.教材从两者的比较入手,通过分析简单的几何概型的例子入手引出几何概型的计算方法。
本节安排的例题和习题分别从一维的长度,二维的面积,三维的体积作为测度进行分析的.教学目标:知识与技能:1.学生初步掌握并运用几何概型解决有关概率问题;2、能够正确区分几何概型与古典概型;3、提高学生判断与选择几何概型的概率公式的能力;过程与方法:通过实例把几何概型与古典概型进行比较分析发掘几何概型的特点以及几何概型的概率计算方法;情感态度价值观:学生体会数学来源于实践,并且培养学生发现问题、分析问题进而解决问题的良好习惯.教学重点与难点:重点:几何概型的特点及其几何概型的概率公式的判断与选择;难点:几何概型的概率公式的判断与选择.教学方法:探究性学习,体现以“教师为主导,学生为主体”教学过程:一、知识回顾1.古典概型的特点2.概率公式:二、探索研究【对比研究】(骰子游戏):甲乙两人掷骰子,掷一次,规定谁掷出6点朝上则谁胜,请问甲、乙谁获胜的概率大?学生分析:掷骰子的结果是有限个,且掷得每个结果都是等可能性的,符合古典概型的特点,因而可以利用古典概型计算;学生求解:1;6p=甲16p=乙。
(转盘游戏):图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?①②师生共同分析:1、指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而不是古典概型;2、利用B区域的所对弧长、所占的角度或所占的面积与整个圆的弧长、角度或面积成比例研究概率;学生求解:法一(利用B区域所占的弧长):1(1)();2B p B ==所在扇形区域的弧长整个圆的弧长3(2)().5B p B ==所在扇形区域的弧长整个圆的弧长法二(利用B 区域所占的圆心角):1801(1)();3602B p B ︒︒===所在圆心角的大小圆周角336035(2)();3605B p B ︒︒⨯===所在圆心角的大小圆周角 法三(利用B 区域所占的面积):1(1)();2B p B ==所在扇形的面积整个圆的面积3(2)().5B p B ==所在扇形的面积整个圆的面积【提出问题】⑴两个问题中,求概率的方法一样吗?若不一样,请问是什么原因? ⑵你是如何解决这些问题的?学生对比分析:⑴ 骰子游戏中色子的六个面上的数字是有限个的,且每次投掷都是等可能性的,因而是古典概型;转盘游戏中指针指向的每个方向都是等可能性的,但指针所指的方向却是无限个的,因而不是古典概型.⑵借助几何图形的长度、面积等计算概率;【问题探究】分析下列三个问题的概率,从中你能得出哪些求概率的结论?问题 1(绳子问题):某人在家门前相距6米的两棵树间系一条绳子,并在绳子上挂一个衣架,求衣架钩与两树的距离都大于2米的概率.学生分析:衣架钩与两树的距离都大于2米, 所以衣架钩应在图中B 、C 之间的任何一点都可以,结果有无数多种,而且等可能,所以不是古典概型;学生求解:记“衣架钩与两树的距离都大于2米”为事件A , 所以30P()0.650A == 学生归纳:1、该概率的特点不符合古典概型,不能利用古典概型;2、A P()A =构成事件的区域长度试验的全部结果构成的区域长度 问题2(撒豆子问题):如图,假设你在每个图形上随机撒一粒黄豆,计算它落到阴影部分的概率.学生分析:豆子撒在图形的每个位置的机会是等可能的,但豆子的位置却是无限多个的,因而不能利用古典概型。
高中数学 第三章 概率 3.3.1几何概型学案 新人教A版必修3-新人教A版高一必修3数学学案

3.3 几何概型3.3.1 几何概型1.问题导航(1)当试验的所有可能结果是无穷多的情况,还能用古典概型来计算事件发生的概率吗?(2)什么叫几何概率模型?其求解方法是什么?(3)几何概型有几种模型?2.例题导读通过例1的学习,学会如何求解长度型的几何概型的概率.1.几何概型的定义与特点(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)特点:①可能出现的结果有无限多个;②每个结果发生的可能性相等.2.几何概型中事件A的概率的计算公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).1.下列概率模型都是几何概型吗?(对的打“√”,错的打“×”)(1)从区间[-10,10]中任取出一个数,求取到1的概率;( )(2)从区间[-10,10]中任取出一个数,求取到绝对值不大于1的数的概率;( )(3)从区间[-10,10]中任取出一个数,求取到大于1且小于2的数的概率;( )(4)向一个边长为4 cm的正方形ABCD内投一点P,求点P离正方形的中心不超过1 cm的概率.( )解析:(1)不是几何概型;(2)(3)(4)是几何概型,满足无限性,且等可能性. 答案:(1)× (2)√ (3)√ (4)√2.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为( ) A.13 B.12 C.14D.23解析:选D.由|x |≤1,得-1≤x ≤1,所以|x |≤1的概率为P (|x |≤1)=23.3.如图,假设你在如图所示的图形中随机撒一粒黄豆,则它落到阴影部分的概率为________.解析:设圆的半径为R ,则圆的面积为S =πR 2,阴影的面积S 阴=12·2R ·R =R 2,故所求概率P =S 阴S =R 2πR 2=1π. 答案:1π4.古典概型与几何概型有何区别?解:几何概型也是一种概率模型,它与古典概型的区别是:古典概型的试验结果是有限的,而几何概型的试验结果是无限的.1.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.2.如果一个随机试验可能出现的结果有无限多个,并且每个结果发生的可能性相等,那么该试验可以看作是几何概型.3.几何概型是不同于古典概型的又一个最基本、最常见的概率模型,对应随机事件及试验结果的几何量可以是长度、面积或体积.与长度有关的几何概型(2014·高考湖南卷)在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( ) A.45 B.35 C.25D.15[解析] 在区间[-2,3]上随机选取一个数X ,则X ≤1,即-2≤X ≤1的概率为P =35.[答案] B[互动探究] 本例中,若将“X ≤1”改为“|X |≤1”,则概率为多少?解:由|X |≤1,得-1≤X ≤1,由几何概型概率计算公式可得,|X |≤1的概率为P =1-(-1)3-(-2)=25.方法归纳(1)本题的关键是判断事件发生的概率是只与长度有关的几何概型.(2)将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解.1.(1)某人从甲地去乙地共走了500米,途经一条宽为x 米的河流,他不小心把一件物品丢到途中,如果物品掉到河里就找不到,若物品不掉到河里,则能找到,已知该物品被找到的概率是45,则河宽为( )A .80米B .100米C .40米D .50米解析:选B.该物品能够被找到的路径长为500-x 米,由几何概型知,45=500-x500,解得x =100米,故选B.(2)某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.(链接教材P 136例1)解:设A ={等待的时间不多于10分钟},我们所关心的事件A 恰好是打开收音机的时刻位于[50,60]时间段内,因此由几何概型的概率公式得P (A )=60-5060=16.即“等待报时的时间不多于10分钟”的概率为16.与面积有关的几何概型(2014·高考辽宁卷)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8[解析] 设质点落在以AB 为直径的半圆内为事件A , 则P (A )=阴影面积长方形面积=12π·121×2=π4.[答案] B方法归纳(1)与面积有关的几何概型的概率公式如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为:P (A )=构成事件A 的区域面积试验的全部结果所构成的区域面积.(2)解与面积相关的几何概型问题的三个关键点 ①根据题意确认是否是与面积有关的几何概型问题;②找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积; ③套用公式,从而求得随机事件的概率.2.一海豚在水池中自由游弋,水池为长30 m ,宽20 m 的长方形,求海豚嘴尖离岸边不超过2 m 的概率.解:如图所示,区域Ω是长30 m 、宽20 m 的长方形,图中阴影部分表示事件A :“海豚嘴尖离岸边不超过2 m ”,问题可以理解为求海豚嘴尖出现在图中阴影部分的概率.由于区域Ω的面积为30×20=600(m 2),阴影部分的面积为30×20-26×16=184(m 2). 所以P (A )=184600=2375.即海豚嘴尖离岸边不超过2 m 的概率约为2375.与体积有关的几何概型一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,则称其为“安全飞行”,求蜜蜂“安全飞行”的概率.[解] 满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为:P =1333=127.方法归纳“体积比”求几何概型的概率是常见题型,通常利用图形的几何特征度量来求随机事件的概率.3.(1)如图所示,有一瓶2升的水,其中含有1个细菌.用一小杯从这瓶水中取出0.1升水,求小杯水中含有这个细菌的概率.解:记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.∵小瓶中有0.1升水,原瓶中有2升水, ∴由几何概型求概率的公式得P (A )=0.12=0.05.(2)在1升高产小麦种子中混入一粒带麦锈病的种子,从中随机抽取10毫升,则其含有麦锈病种子的概率是多少?解:1升=1 000毫升,记事件A =“取10毫升种子含有这粒带麦锈病的种子”,则P (A )=101 000=0.01,即取出10毫升种子含有这粒带麦锈病的种子的概率是0.01.数学思想数形结合思想在求解几何概型中的应用(2014·高考重庆卷)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.(用数字作答)[解析] 设小王到校时间为x ,小张到校时间为y ,则小张比小王至少早到5分钟时满足x -y ≥5.如图,原点O 表示7:30,在平面直角坐标系中画出小王和小张到校的时间构成的平面区域(图中正方形区域),该正方形区域的面积为400,小张比小王至少早到5分钟对应的图形(图中阴影部分)的面积为12×15×15=2252,故所求概率为P =2252400=932.[答案]932[感悟提高]数形结合思想的实质就是把抽象的数学语言、数量关系和直观的图形结合起来.包含“以形助数”和“以数辅形”两个方面.在本节中把几何概型问题利用坐标系转化成图形问题(或符合条件的点集问题)去解决.本题的难点是把两个时间分别用x 、y 两个坐标轴表示,构成平面内的点(x ,y ),从而把时间这一个一维长度问题转化为平面图形的二维面积问题,转化成面积型几何概型问题,这种方法是解决这类问题的常用手法,不失为一种好方法.1.如图,在边长为25 cm 的正方形中挖去边长为23 cm 的两个等腰直角三角形,现有均匀的粒子散落在正方形中,则粒子落在中间带形区域的概率为( )A.529625B.433625C.192625D.96625解析:选D.因为均匀的粒子落在正方形内任何一点是等可能的,所以符合几何概型的条件.设A =“粒子落在中间带形区域”,则依题意得正方形面积为25×25=625,两个等腰直角三角形的面积为2×12×23×23=529,带形区域的面积为625-529=96,故所求概率为P (A )=96625. 2.如图所示,四边形ABCD 为矩形, AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是( )A.13B.23C.25D.35解析:选A.连结AC ,交弧DE 于P (图略).由题意知,∠BAC =π6.弧PE 的长度为π6,弧DE 的长度为π2,则直线AP 与线段BC 有公共点的概率是P =π6÷π2=13.3.已知方程x 2+3x +p4+1=0,若p 在[0,10]中随机取值,则方程有实数根的概率为( )A.12B.13C.25D.23解析:选A.因为总的基本事件是[0,10]内的全部实数,所以基本事件总数为无限个,符合几何概型的条件,事件对应的测度为区间的长度,总的基本事件对应区间[0,10],长度为10,而事件“方程有实数根”应满足Δ≥0,即9-4×1×⎝ ⎛⎭⎪⎫p4+1≥0,得p ≤5,所以对应区间[0,5],长度为5,所以所求概率为510=12.4.一个球型容器的半径为3 cm ,里面装有纯净水,因为实验人员不小心混入了一个H7N9病毒,从中任取1 mL 水,含有H7N9病毒的概率是________.解析:水的体积为43πR 3=43×π×33=36π(cm 3)=36π(mL).故含有病毒的概率为P =136π. 答案:136π[A.基础达标]1.下列关于几何概型的说法中,错误的是( ) A .几何概型是古典概型的一种,基本事件都具有等可能性 B .几何概型中事件发生的概率与它的位置或形状无关 C .几何概型在一次试验中可能出现的结果有无限多个 D .几何概型中每个结果的发生都具有等可能性解析:选A.几何概型和古典概型是两种不同的概率模型,故选A.2.在圆心角为90°的扇形中,以圆心O 为起点作射线OC ,则使得∠AOC 和∠BOC 都不小于30°的概率为( )A.13B.23C.14D.34解析:选A.记M =“射线OC 使得∠AOC 和∠BOC 都不小于30°”.如图所示,作射线OD ,OE 使∠AOD =30°,∠AOE =60°.当OC 在∠DOE 内时,使得∠AOC 和∠BOC 都不小于30°,此时的测度为度数30,所有基本事件的测度为直角的度数90.所以P (M )=3090=13.3.在2015年春节期间,3路公交车由原来的每15分钟一班改为现在的每10分钟一班,在车站停1分钟,则乘客到达站台立即乘上车的概率是( )A.110B.19C.111D.910解析:选A.记“乘客到达站台立即乘上车”为事件A ,则A 所占时间区域长度为1分钟,而整个区域的时间长度为10分钟,故由几何概型的概率公式,得P (A )=110.4.已知在一个边长为2的正方形中有一个圆,随机向正方形内丢一粒豆子,若落入圆内的概率为0.3,则该圆的面积为( )A .0.6B .0.8C .1.2D .1.6解析:选C.记“豆子落入圆内”为事件A ,豆子落入正方形内任一点的机会都是等可能的,这是一个几何概型,P (A )=S 圆S 正,所以S 圆=P (A )×S 正=0.3×22=1.2.因此,圆的面积为1.2.5.(2013·高考湖南卷)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB=( )A.12 B.14 C.32D.74解析:选D.由于满足条件的点P 发生的概率为12,且点P 在边CD 上运动,根据图形的对称性当点P 在靠近点D 的CD 边的14分点时,EB =AB (当点P 超过点E 向点D 运动时,PB >AB ).设AB =x ,过点E 作EF ⊥AB 交AB 于点F ,则BF =34x .在Rt △FBE 中,EF 2=BE2-FB 2=AB 2-FB 2=716x 2,即EF =74x ,∴AD AB =74.6.(2015·西安质检)在正方体ABCD A 1B 1C 1D 1内随机取点,则该点落在三棱锥A 1ABC 内的概率是______.解析:设正方体的棱长为a ,则所求概率P =VA 1ABC VABCD A 1B 1C 1D 1=13×12a 2·a a 3=16.答案:167.如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,则射线OA 落在∠xOT 内的概率为________.解析:记“射线OA 落在∠xOT 内”为事件A .构成事件A 的区域最大角度是60°,所有基本事件对应的区域最大角度是360°,所以由几何概型的概率公式得P (A )=60°360°=16. 答案:168.(2014·高考福建卷)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.解析:由题意知,这是个几何概型问题,S 阴S 正=1801 000=0.18, ∵S 正=1,∴S 阴=0.18. 答案:0.189.如图,已知AB 是半圆O 的直径,AB =8,M ,N ,P 是将半圆圆周四等分的三个分点.(1)从A ,B ,M ,N ,P 这5个点中任取3个点,求这3个点组成直角三角形的概率; (2)在半圆内任取一点S ,求△SAB 的面积大于82的概率.解:(1)从A ,B ,M ,N ,P 这5个点中任取3个点,一共可以组成10个三角形:△ABM ,△ABN ,△ABP ,△AMN ,△AMP ,△ANP ,△BMN ,△BMP ,△BNP ,△MNP ,其中是直角三角形的只有△ABM ,△ABN ,△ABP 3个,所以组成直角三角形的概率为310.(2)连接MP ,取线段MP 的中点D ,则OD ⊥MP ,易求得OD =22,当S 点在线段MP 上时,S △ABS =12×22×8=82,所以只有当S 点落在阴影部分时,△SAB 的面积才能大于82,而S 阴影=S 扇形MOP -S △OMP =12×π2×42-12×42=4π-8,所以由几何概型的概率公式得△SAB 的面积大于82的概率为4π-88π=π-22π. 10.射箭比赛的箭靶涂有五个彩色得分环.从外向内分为白色、黑色、蓝色、红色、靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm ,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能中靶,且射中靶面内任一点都是等可能的,那么射中“黄心”的概率为多少?解:因为射中靶面内任一点都是等可能的, 所以基本事件总数为无限个.此问题属于几何概型,事件对应的测度为面积, 总的基本事件为整个箭靶的面积,它的面积为π⎝ ⎛⎭⎪⎫12222cm 2;记事件A ={射中“黄心”},它的测度为“黄心”的面积,它的面积为π⎝ ⎛⎭⎪⎫12.222cm 2,P (A )=“黄心”的面积箭靶的面积=π⎝ ⎛⎭⎪⎫12.222π⎝ ⎛⎭⎪⎫12222=1100, 所以射中“黄心”的概率为1100. [B.能力提升]1.有四个游戏盘,如果撒一粒黄豆落在阴影部分,即可中奖,小明希望中奖,则他应当选择的游戏盘为( )解析:选A.根据几何概型的面积比,A 游戏盘的中奖概率为38,B 游戏盘的中奖概率为13,C 游戏盘的中奖概率为(2r )2-πr 2(2r )2=4-π4,D 游戏盘的中奖概率为r 2πr 2=1π,故A 游戏盘的中奖概率最大.2.(2015·郑州六校联考)如图,扇形AOB 的半径为1,圆心角为90°,点C ,D ,E 将弧AB 等分成四份.连接OC ,OD ,OE ,从图中所有扇形中随机取出一个,面积恰为π8的概率是( )A.310B.15C.25D.12解析:选A.题图中共有10个不同的扇形,分别为扇形AOB 、AOC 、AOD 、AOE 、EOB 、EOC 、EOD 、DOC 、DOB 、COB ,其中面积恰为π8的扇形(即相应圆心角恰为π4的扇形)共有3个(即扇形AOD 、EOC 、BOD ),因此所求的概率等于310.3.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一个人一刻钟,过时即可离去,则两人能会面的概率为________.解析:以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的条件是|x -y |≤15.如图,平面直角坐标系下,(x ,y )的所有可能结果是边长为60的正方形,而事件A “两人能够会面”的可能结果由图中的阴影部分表示,由几何概型的概率公式得P (A )=S A S =602-452602=716. 答案:7164.如图,正方形OABC 的边长为2.(1)在其四边或内部取点P (x ,y ),且x ,y ∈Z ,则事件“|OP |>1”的概率为________.(2)在其内部取点P (x ,y ),且x ,y ∈R ,则事件“△POA ,△PAB ,△PBC ,△PCO 的面积均大于23”的概率是________.解析:(1)在正方形的四边和内部取点P (x ,y ),且x ,y ∈Z ,则所有可能的事件是(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),共有n =9个,其中满足|OP |>1的事件是(0,2),(1,1),(1,2),(2,0),(2,1),(2,2),共有m =6个,所以满足|OP |>1的概率为P =69=23.(2)在正方形内部取点,其总的事件包含的区域面积为4,由于各边长为2,所以要使△POA ,△PAB ,△PBC ,△PCO 的面积均大于23,应该三角形的高大于23,所以这个区域为每个边长从两端各去掉23后剩余的正方形,其面积为23×23=49,所以满足条件的概率为494=19.答案:(1)23 (2)195.2013年度世界新闻人物——斯诺登,他揭露了美国的监听丑闻.国家安全机关监听录音机记录了两个间谍的谈话,发现30 min 长的磁带上在开始录音的1 min 内从第30 s 后的某一时刻开始,有10 s 长的一段内容包含间谍犯罪的信息.后来发现,这段谈话的一部分被某工作人员擦掉了,该工作人员声称他完全是无意中按错了键,使从此处起往后的所有内容都被擦掉了,那么由于按错了键使含有犯罪内容的谈话被部分或全部擦掉的概率有多大?解:记A ={按错键使含有犯罪内容的谈话被部分或全部擦掉},A 发生就是在0到23 min时间段内按错键.P (A )=2330=145.6.(选做题)一个多面体的直观图和三视图如图所示,其中M 是AB 的中点.一只苍蝇在几何体ADF BCE 内自由飞行,求它飞入几何体F AMCD 内的概率. 解:由三视图可得直观图为直三棱柱且底面ADF 中AD ⊥DF ,DF =AD =DC . 因为V F AMCD =13S 四边形AMCD ×DF =13×12(12a +a )·a ·a =14a 3,V ADF BCE =12a 2·a =12a 3,所以苍蝇飞入几何体F AMCD 内的概率为14a 312a 3=12.。
高中数学 第三章《概率》《3.3几何概型》教案 新人教A版必修3

黑龙江省大庆外国语学校高中数学 第三章《概率》《3.3几何概型》教案 新人教A 版必修3一、教学目标:1、 知识与技能:(1)正确理解几何概型的概念; (2)掌握几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型; (4)了解均匀随机数的概念;(5)掌握利用计算器(计算机)产生均匀随机数的方法; (6)会利用均匀随机数解决具体的有关概率的问题. 二、重点与难点:1、几何概型的概念、公式及应用;2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.三、学法:通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法; 四、教学过程:1、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。
例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。
2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.3、 例题分析: 课本例题略例1 判下列试验中事件A 发生的概度是古典概型, 还是几何概型。
(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如课本P132图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.3几何概型学习目标 1.通过具体问题感受几何概型的概念,体会几何概型的意义.2.会求一些简单的几何概型的概率.3.会用随机模拟的方法近似计算某事件的概率.知识点一几何概型的概念及特点1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.知识点二几何概型的概率公式事件发生的概率与构成该事件的区域测度(如长度、面积、体积)成比例,故可用区域的测度代替基本事件数.P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.知识点三均匀随机数1.均匀随机数的定义如果试验的结果是区间[a,b]内的任何一个实数,而且出现任何一个实数是等可能的,则称这些实数为均匀随机数.2.均匀随机数的特征(1)随机数是在一定范围内产生的.(2)在这个范围内的每一个数被取到的可能性相等.3.均匀随机数的产生(1)计算器产生区间[0,1]上的均匀随机数的函数是RAND.(2)Excel软件产生区间[0,1]上的均匀随机数的函数为“rand()”.(3)产生方法:①由几何概型产生;②由转盘产生;③由计算器或计算机产生.1.在一个正方形区域内任取一点的概率是零.( √)2.与面积有关的几何概型的概率与几何图形的形状有关.( ×)3.随机模拟方法是以事件发生的频率估计概率.( √)4.几何概型的概率计算与构成事件的区域形状有关.( ×)题型一几何概型的识别例1 下列关于几何概型的说法错误的是( )A.几何概型是古典概型的一种,基本事件都要具有等可能性B.几何概型中事件发生的概率与它的形状或位置无关C.几何概型在一次试验中可能出现的结果有无限多个D.几何概型中每个结果的发生都具有等可能性答案 A解析几何概型和古典概型是两种不同的概率模型,几何概型中的基本事件有无限多个,古典概型中的基本事件有有限个.反思感悟几何概型特点的理解(1)无限性:在每次随机试验中,不同的试验结果有无穷多个,即基本事件有无限多个;(2)等可能性:在每次随机试验中,每个试验结果出现的可能性相等,即基本事件的发生是等可能的.跟踪训练1 判断下列概率模型是古典概型还是几何概型.(1)先后抛掷两枚质地均匀的骰子,求出现两个“4点”的概率;(2)如图所示,图中有一个转盘,甲、乙玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率.解(1)先后抛掷两枚质地均匀的骰子,所有可能结果有6×6=36(种),且它们的发生都是等可能的,因此属于古典概型.(2)游戏中指针指向B区域时有无限多个结果,且它们的发生都是等可能的,而且不难发现“指针落在阴影部分”的概率可以用阴影部分的面积与总面积的比来衡量,即与区域面积有关,因此属于几何概型.题型二 几何概型的计算命题角度1 与长度有关的几何概型例2 取一根长为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m 的概率为多少?解 如图,记“剪得两段的长都不小于1m”为事件A .把绳子三等分,于是当剪断位置处在中间一段时,事件A 发生,因为中间一段的长度为1m ,所以事件A 发生的概率为P (A )=13.反思感悟 在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D ,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A 发生对应的区域d ,在找区域d 的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A 的概率. 跟踪训练2 (1)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A.13B.12C.23D.34(2)在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为. 答案 (1)B (2)23解析 (1)如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知,所求概率为P =2040=12.故选B.(2)∵区间[-1,2]的长度为3,由|x |≤1,得x ∈[-1,1],而区间[-1,1]的长度为2,x 取每个值为随机的,∴在[-1,2]上取一个数x ,则|x |≤1的概率P =23.命题角度2 与面积有关的几何概型例3 (1)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是( )A .1-π4B.π2-1C .2-π2D.π4(2)在区间[-2,2]上任取两个实数x ,y 组成有序数对(x ,y ),求满足x 2+y 2≤4的概率. (1)答案 A解析 由题意知,将两个四分之一圆合在一起,其面积为12×π×12=π2,矩形面积为2,则所求概率为2-π22=1-π4.(2)解 在区间[-2,2]上任取两个实数x ,y 组成有序数对(x ,y ),区域Ω是边长为4的正方形区域,其中满足x 2+y 2≤4的是图中阴影区域(如图所示),S 阴=π×22=4π,所以P =4π16=π4.反思感悟 解与面积有关的几何概型问题的关键点 (1)根据题意确认是不是与面积有关的几何概型问题.(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积,套用公式求得概率.跟踪训练3 一只海豚在水池中自由游弋,水池为长30m ,宽20m 的长方形,求此刻海豚嘴尖离岸边不超过2m 的概率.解 如图所示,区域Ω是长30m 、宽20m 的长方形.图中阴影部分表示事件A :“海豚嘴尖离岸边不超过2m”,问题可以理解为求海豚嘴尖出现在图中阴影部分的概率.由于区域Ω的面积为30×20=600(m 2),阴影部分的面积为30×20-26×16=184(m 2).所以P (A )=184600=2375≈0.31.即海豚嘴尖离岸边不超过2m 的概率约为0.31. 命题角度3 与体积有关的几何概型例4 已知正三棱锥S -ABC 的底面边长为a ,高为h ,在正三棱锥内取点M ,试求点M 到底面的距离小于h2的概率.解 如图,分别在SA ,SB ,SC 上取点A 1,B 1,C 1,使A 1,B 1,C 1分别为SA ,SB ,SC 的中点,则当点M 位于平面ABC 和平面A 1B 1C 1之间时,点M 到底面的距离小于h2.设△ABC 的面积为S ,由△ABC ∽△A 1B 1C 1,且相似比为2,得△A 1B 1C 1的面积为S4.由题意,知区域D (三棱锥S -ABC )的体积为13Sh ,区域d (三棱台ABC -A 1B 1C 1)的体积为 13Sh -13·S 4·h 2=13Sh ·78. 所以点M 到底面的距离小于h 2的概率为P =78.反思感悟 如果试验的全部结果所构成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的区域体积及事件A 所占的区域体积.其概率的计算公式为P (A )=构成事件A 的区域体积试验的全部结果构成的区域体积.跟踪训练4 在一个球内有一棱长为1的内接正方体,一动点在球内运动,则此点落在正方体内部的概率为( ) A.6πB.32πC.3πD.233π 答案 D解析 由题意可知这是一个几何概型,棱长为1的正方体的体积V 1=1,球的直径是正方体的体对角线长,故球的半径R =32,球的体积V 2=43π×⎝ ⎛⎭⎪⎫323=32π,则此点落在正方体内部的概率P =V 1V 2=233π.随机模拟方法的应用典例 (1)(2016·全国Ⅱ)从区间[0,1]上随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n mB.2n mC.4m nD.2m n(2)如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为.答案 (1)C (2)83解析 (1)由题意得,(x i ,y i )(i =1,2,…,n )在如图所示的正方形中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知,π41=m n ,所以π=4mn .(2)由几何概型的概率公式可得S 阴影S 正方形=23, 又S 正方形=4,所以S 阴影=4×23=83.[素养评析] (1)解决此类问题时应注意两点:一是选取适当的对应图形,二是由几何概型的概率公式正确地计算概率.(2)明确这类问题的运算对象,采用随机模拟的运算方法,设计运算程序,求得运算结果,这些就是数学核心素养中的数学运算.1.在半径为2的球O 内任取一点P ,则|OP |>1的概率为( ) A.78B.56C.34D.12 答案 A解析 问题相当于在以O 为球心,1为半径的球外,且在以O 为球心,2为半径的球内任取一点,所以P =43π×23-43π×1343π×23=78.2.如图,在平面直角坐标系中,射线OT 为60°角的终边,在任意角集合中任取一个角,则该角终边落在∠xOT 内的概率是()A.16B.23C.13D.160 答案 A解析 ∵在任意角集合中任取一个角,则该角终边落在∠xOT 内对应的角度为60°,而整个角集合对应的角度为360°,∴该角终边落在∠xOT 内的概率P =60°360°=16,故选A.3.当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是( ) A.112B.38C.116D.56 答案 C解析 由题意可知,在80秒内路口的红、黄、绿灯是随机出现的,可以认为是无限次等可能出现的,符合几何概型的条件.事件“看到黄灯”的时间长度为5秒,而整个灯的变换时间长度为80秒,由几何概型的概率计算公式,得看到黄灯的概率P =580=116.4.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是.答案π8解析 不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知,所求概率P =S 黑S 正方形=π24=π8.5.在区间[0,3]内任意取一个数,则此数大于2的概率为. 答案 13解析 由于区间[0,3]的长度为3,区间(2,3]的长度为1,故所求概率P =13.1.几何概型适用于试验结果是无穷多且事件是等可能发生的概率模型. 2.几何概型主要用于解决与长度、面积、体积有关的问题. 3.注意理解几何概型与古典概型的区别.4.理解如何将实际问题转化为几何概型的问题,利用几何概型公式求解,概率公式为P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.一、选择题1.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( ) A.925B.1625C.310D.15 答案 D解析 以AG 为半径作圆,面积介于36π平方厘米到64π平方厘米,则AG 的长度应介于6厘米到8厘米之间(如图).所以所求概率P =210=15.2.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )答案 A解析 ∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).3.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.23 答案 C解析 △ABE 的面积是矩形ABCD 面积的一半,由几何概型知,点Q 取自△ABE 内部的概率为12.4.已知地铁列车每10min 一班,在车站停1min ,则乘客到达站台立即乘上车的概率是( ) A.110B.19C.111D.18 答案 A解析 设“乘客到达站台立即乘上车”为事件A ,试验的所有结果构成的区域长度为10min ,而构成事件A 的区域长度为1min ,故P (A )=110.5.在长为12cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为( ) A.16B.13C.23D.45 答案 C解析 设AC =x cm ,则BC =(12-x )cm(0<x <12), ∴矩形面积为x (12-x )cm 2,由x (12-x )<32,解得x >8或x <4,∴0<x <4或8<x <12.∴所求概率为4+412=23,故选C.6.如图,在一个边长分别为a ,b (a >b >0)的矩形内画一个梯形,梯形的上、下底边长分别为a 3,a2,且高为b .现向该矩形内随机投一点,则该点落在梯形内部的概率是( )A.710B.57C.512D.58 答案 C解析 S 梯形=12⎝ ⎛⎭⎪⎫a 3+a 2b =512ab ,S 矩形=ab .所以P =S 梯形S 矩形=512. 7.在[0,5]之间随机取一个数作为x 的值,则使1<log 2(x -1)≤2成立的概率是( ) A.15B.25C.35D.45 答案 B解析 由1<log 2(x -1)≤2,得2<x -1≤4, 即3<x ≤5,则对应的概率P =5-35-0=25.故选B.8.如图,在等腰三角形ABC 中,∠ACB =120°,DA =DC ,过顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M ,则AM <33AC 的概率为( )A.33B.34C.32D.14答案 D解析 由题意,在等腰△ABC 中,∠ACB =120°,DA =DC ,则AC =3AD ,即AD =33AC ,AB =3AC =3AD ,所以要使过顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M ,则AM <33AC ,只要AM <AD 即可,由DA =DC ,得∠ACD =∠CAD =180°-120°2=30°,所以AM <33AC的概率为30°120°=14.故选D.9.函数f (x )=x 2-x -2,x ∈[-5,5],那么任取一点x 0使f (x 0)>0的概率为( ) A .0.5 B .0.6 C .0.7 D .0.8答案 C解析 如图,在[-5,5]上函数的图象和x 轴分别交于两点(-1,0),(2,0),只有x 0∈[-5,-1)∪(2,5]时,f (x 0)>0,由题意,知本题是几何概型问题.记事件A 为“任取一点x 0,使f (x 0)>0”,事件A 的区域长度是区间[-5,-1)与(2,5]的长度和,全体基本事件的长度是[-5,5]的区间长度.由几何概型的概率计算公式,得P (A )=4+310=0.7.故选C.二、填空题10.在棱长为a 的正方体ABCD —A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离小于等于a 的概率为. 答案 16π解析 点P 到点A 的距离小于等于a 可以看作是随机的,点P 到点A 的距离小于等于a 可视作构成事件的区域,棱长为a 的正方体ABCD —A 1B 1C 1D 1可视作试验的所有结果构成的区域,则用“体积比”公式计算概率,得 P =18×43πa 3a 3=16π. 11.有一个圆面,圆面内有一个内接正三角形,若随机向圆面上投一镖都中圆面,则镖落在三角形内的概率为. 答案334π解析 设圆面半径为R ,如图所示△ABC 的面积S △ABC =3·S △AOC =3·12AC ·OD =3·CD ·OD=3·R sin60°·R cos60°=33R24,∴P =S △ABC πR 2=33R 24πR 2=334π. 12.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =.答案 3解析 当m ≤0时,不合题意.当m ≤2时,2m 6=56无解.当2<m ≤4时,由m +26=56得m =3,综上m =3. 三、解答题13.(2018·惠州模拟)我国古代数学家赵爽在《周髀算经》一书中给出了勾股定理的绝妙证明.如图所示是赵爽的弦图.弦图是一个勾股形(即直角三角形)之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积称为朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实=弦2,化简得:勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷1000颗图钉(大小忽略不计),试估计落在黄色图形内的图钉个数.解 设勾为a ,则股为3a ,所以弦为2a ,小正方形的边长为3a -a ,所以题图中大正方形的面积为4a 2,小正方形的面积为(3-1)2a 2,所以小正方形与大正方形的面积比为3-24=1-32,所以落在黄色图形(小正方形)内的图钉数大约为⎝⎛⎭⎪⎫1-32×1000≈134.14.(1)在半径为1的圆的一条直径上任取一点,过该点作垂直于直径的弦,其长度超过3的概率是多少?(2)在半径为1的圆内任取一点,以该点为中点作弦,其长度超过3的概率是多少? (3)在半径为1的圆周上任取两点,连成一条弦,其长度超过3的概率是多少? 解 (1)设事件A ={弦长超过3},弦长只与它跟圆心的距离有关, 当且仅当它与圆心的距离小于12时才能满足条件.由几何概型概率公式知P (A )=12.(2)设事件B ={弦长超过3},由于弦中点已确定,故弦被确定,当且仅当弦中点在以半径为12的同心圆内时才能满足条件. 由几何概型概率公式知P (B )=π×⎝ ⎛⎭⎪⎫122π×12=14.(3)设事件C ={弦长超过3},如图,固定一点A 于圆周上,以此点为顶点作圆的内接正三角形ABC ,显然只有当弦的另一端点D 落在BC 上(不包括B ,C 两点)时,才有|AD |>|AB |=3,由几何概型概率公式知P (C )=13.15.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m >n 的概率为( ) A .0.3 B .0.6 C .0.7 D .0.8答案 C解析 画出图形(如图所示),m ,n 所满足的区域为矩形ABCD ,而m >n 所满足的区域为梯形ABCE ,所以m >n 的概率P =S 梯形ABCES 矩形ABCD =15-9215=0.7.故选C.16.某校早8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为.(用数字作答) 答案932解析 设小张和小王到校的时间分别为y 和x , 则⎩⎪⎨⎪⎧30≤x ≤50,30≤y ≤50,y -x ≥5,则满足条件的区域如图中阴影部分所示.故所求概率P =12×15×1520×20=932.。