焦磷酸测序步骤中文版

合集下载

焦磷酸测序技术的流程

焦磷酸测序技术的流程

焦磷酸测序技术的流程英文回答:Sequencing technologies have revolutionized the fieldof genomics, allowing us to unravel the genetic code of organisms. One of the widely used sequencing techniques is the Sanger sequencing method, also known as the chain termination method or dideoxy sequencing. This technique relies on the incorporation of chain-terminating dideoxynucleotides (ddNTPs) during DNA synthesis.The process of Sanger sequencing involves several steps. First, the DNA sample of interest is isolated and purified. This can be done from various sources, such as blood, tissue, or cultured cells. Once the DNA is extracted, it is fragmented into smaller pieces to facilitate the sequencing process.Next, the DNA fragments are amplified using the polymerase chain reaction (PCR). PCR is a technique thatallows for the amplification of specific DNA sequences. It involves multiple cycles of DNA denaturation, primer annealing, and DNA synthesis. During PCR, primers specific to the target DNA sequence are used to initiate DNA synthesis.After PCR amplification, the sequencing reaction is set up. This involves mixing the amplified DNA fragments with a primer, DNA polymerase, and a mixture of normal deoxynucleotides (dNTPs) and small amounts of chain-terminating ddNTPs. The ddNTPs lack the 3'-OH group necessary for DNA chain elongation, resulting in the termination of DNA synthesis at specific positions.The sequencing reaction mixture is then subjected to capillary electrophoresis. In this step, the DNA fragments are separated based on their size and charge as they migrate through a gel-filled capillary under the influence of an electric field. The fragments are detected by a fluorescent dye attached to the ddNTPs, which emits a signal when excited by a laser.The data obtained from the capillary electrophoresisare processed and analyzed using specialized software. The software assigns a nucleotide base to each peak in the electropherogram, which represents the sequence of the DNA fragment. The sequence is determined by analyzing the order of the peaks corresponding to the different nucleotides.Once the sequence is obtained, it can be compared to known reference sequences or analyzed further for various purposes, such as identifying genetic variations orstudying gene expression patterns.中文回答:焦磷酸测序技术(Sanger测序)已经彻底改变了基因组学领域,使我们能够解读生物体的遗传密码。

焦磷酸测序

焦磷酸测序

焦磷酸测序
峰形图
➢ 峰高与结合模板的dNTP数量成正比 ➢ 原始数据会被软件自动转化为序列信息
2.复性:温度下降到50 ℃左右,两种引物通 过碱基互补配对与两条单链DNA结合
3.延伸:温度上升到72℃左右,溶液中的四 种脱氧核苷酸(A,T,C,G)在DNA聚合酶 的作用下,根据碱基互补配对原则合成新的 DNA链。
4. 循环特点:
① 上一次循环的产物为下一 循环的模板 ② 结果单链中有最初母链的 只两条(无引物存于两个子代 DNA分子中 ) ,其它子代 DNA分子都为双引物分子 ③ 处于两引物之间的DNA序 列呈指数增长1×2N
基因测序
➢ 对DNA分子的核苷酸排列顺序的测 定,也就是测定组成DNA分子的A.T、 G、C的排列顺序。
➢ A-T-T-C-A-C-G-G-T-A-C
焦磷酸测序步骤
一 PCR 二 焦磷酸测序
PCR
➢ 聚合酶链式反应 ➢ 亦称之为DNA扩增, 是 DNA复制的体外模拟
普通PCR 实时荧光定量PCR
PCR反应的基本步骤
✓ 高温变性 ✓ 低温退火 ✓ 适温延伸
具有特异性强、灵敏度高、操 作简便、省时等特点
一、PCR反应的条件
1、一定的缓冲溶液; 2、DNA模板; 3、分别与两条模板链相结合的两种引物; 4、四种脱氧核苷酸:4种dNTP混合物; 5、耐热的DNA聚合酶; 6.控制温度(PCR重要条件)。
二、DNA变性和复性
• 在80-100℃的温度范围内, DNA的 双螺旋结构将解体, 双链分开, 这个过 程称为变性;当温度缓慢降低后, 两条 彼此分离的DNA链又会重新结合成双 链, 这个过程称为复性。
三、复制方向(5’~3’)
1、DNA分子的3’端与5’端:-OH端 为3’; 磷酸基团的末端为5’ 。 2.DNA分子由两条反向平行的脱氧核苷 酸链根据碱基互补配对原则形成氢键连 接而成。

焦磷酸测序实验步骤

焦磷酸测序实验步骤

焦磷酸测序实验步骤Control oligo稀释配置,需要二次稀释到0.04um:第一次稀释:体积浓度Control oligo 5ul 20um1×Dilution buffer 45ul第一次所得溶液50ul 2um第二次稀释:第一次所得溶液3ul 2um1×Dilution buffer 147ul第二次所得溶液 150ul 0.04um1.微珠固定PCR产物将生物素标记的PCR 产物固定到链霉亲和素包被的琼脂糖微珠(Streptavidin Sepharose High Performance,GE Healthcare)上。

1.1 轻摇包被链霉亲和素的琼脂糖微珠,直至获得均质溶液。

1.2 在一个试管中混合链霉亲和素包被的琼脂糖微珠总量(2 μl / 样品)(新的琼脂糖微珠浓度比原来的提高了一倍,只需加1ul)与结合缓冲液(40 μl / 样品)。

添加高纯度水至80 μl / 孔的总体积—包括第1.4 步中添加的PCR产物,纯水量取决于所用PCR 产物的量。

例如:如果使用15 μl PCR 产物、2 μl 微珠和40 μl 结合缓冲液,则必须添加23 μl 高纯度水。

1.3 将第1.2 步中制备的溶液添加至24 孔PCR 孔板或联排管中。

1.4 根据孔板设置,添加5–20 μl 优化好的生物素标记的PCR 产物至PCR 孔板(或联排管)的每个孔槽。

(注意:每个孔槽的总体积应当是80 μl。

)1.5 使用孔板条盖密封PCR 孔板(或联排管)。

确保孔槽之间没有泄漏。

1.6 使用振荡混合器(1400 rpm)不断振荡PCR 孔板(或联排管)至少5–10 分钟。

(注意:微珠沉淀快速,因此停止震荡后必须在一分钟内立即使用,即立刻捕获琼脂糖微珠。

)2. 真空工作站准备工作2.1 准备以下试剂:(1)大约50ml乙醇(70%);(2)大约40ml变性溶液;(3)大约50ml 1×洗涤缓冲液;(4)大约50ml超纯水;(5)大约70ml超纯水。

焦磷酸测序原理

焦磷酸测序原理

焦磷酸测序原理焦磷酸测序是一种常用的测序技术,通过测序仪器对DNA序列进行快速而准确的测定。

它是一种基于合成DNA链延伸的原理,可以在短时间内测定DNA序列。

焦磷酸测序的原理是利用DNA合成过程中的焦磷酸(dideoxynucleotide)来终止链延伸的反应。

焦磷酸是一种具有缺少3'-羟基的核苷酸,它会被DNA多聚酶插入到正在合成的DNA链中,但一旦焦磷酸被插入,DNA链延伸就会停止。

这样,每次加入一个不同的焦磷酸,就可以得到具有不同长度的DNA片段。

焦磷酸测序的步骤如下:1. DNA模板制备:首先,需要从待测DNA样本中提取出目标DNA片段。

这可以通过PCR(聚合酶链反应)或其他方法来进行。

然后,将目标DNA片段加入到一个含有多聚酶和引物的反应混合物中。

2. DNA合成:在反应混合物中,加入四种不同的焦磷酸(ddATP、ddCTP、ddGTP和ddTTP),以及四种普通的核苷酸(dATP、dCTP、dGTP和dTTP)。

这样,当DNA链延伸到某个位置时,如果接下来要插入的是焦磷酸,链延伸就会终止。

3. 前序列扩增:在DNA合成过程中,每次加入的焦磷酸是不同的,因此会得到不同长度的DNA片段。

然后,将反应混合物分离成不同长度的DNA片段。

4. DNA片段分离:将反应混合物中的DNA片段进行电泳分离,根据片段大小的不同,可以得到一个DNA片段长度的分布图。

5. 数据分析:通过测序仪器对DNA片段进行测定,得到每个片段的长度信息。

根据这些信息,可以推导出DNA序列。

焦磷酸测序的优点是速度快、准确性高、适用于多种类型的样品。

它被广泛应用于基因组学、遗传学、生物医学研究等领域。

然而,焦磷酸测序也存在一些限制,例如不能测定长片段的DNA,且在测序过程中容易产生误差。

焦磷酸测序是一种基于合成DNA链延伸的原理,通过插入焦磷酸来终止链延伸的反应,从而快速而准确地测定DNA序列。

它在基因组学和生物医学研究中具有重要的应用价值,为我们深入了解DNA序列提供了有效的工具。

焦磷酸测序名词解释

焦磷酸测序名词解释

焦磷酸测序名词解释焦磷酸测序(Pyrosequencing)是一种基因测序技术,它可以快速、高效地测定 DNA 序列。

焦磷酸测序的原理是通过对 DNA 序列进行扩增,并对扩增产物进行测序,最终得到 DNA 序列信息。

焦磷酸测序主要应用于基因组学、遗传学、转录组学等领域,可以用于基因表达谱分析、基因突变检测、基因调控机制研究等。

相比其他基因测序技术,焦磷酸测序具有很多优势,如测序成本低、速度快、精度高等。

但是,焦磷酸测序也存在一些缺陷,如测序长度有限、难以测序复杂基因结构等。

尽管焦磷酸测序技术已经发展了多年,但它仍在不断演进和改进。

未来,焦磷酸测序技术将继续发展,并在更多领域得到应用。

1. 什么是焦磷酸测序焦磷酸测序(Pyrosequencing)是一种基因测序技术,它可以快速、高效地测定 DNA 序列。

焦磷酸测序的工作原理是通过扩增 DNA 序列,并对扩增产物进行测序,最终得到DNA 序列信息。

具体来说,焦磷酸测序技术利用了聚苯乙烯四氢呋喃(ATP)合成酶的特性,可以通过检测 ATP 合成过程中的光谱变化来确定 DNA 序列。

焦磷酸测序技术最初由来自瑞典斯德哥尔摩大学的科学家们开发,并于 1998 年由瑞典Pyrosequencing AB 公司商业化。

自此,焦磷酸测序技术就成为了一种广泛应用于基因组学、遗传学、转录组学等领域的技术手段。

2. 焦磷酸测序的原理焦磷酸测序(Pyrosequencing)是一种基因测序技术,它可以快速、高效地测定 DNA序列。

焦磷酸测序的工作原理是通过扩增 DNA 序列,并对扩增产物进行测序,最终得到DNA 序列信息。

焦磷酸测序的工作流程如下:1. 先将 DNA 样本进行扩增,得到扩增产物。

2. 然后将扩增产物与一种叫做反转录酶的蛋白质混合,使其能够将 DNA 序列转录成RNA 序列。

3. 将转录后的 RNA 序列与一种叫做聚苯乙烯四氢呋喃(ATP)合成酶的蛋白质混合,使其能够将 RNA 序列通过合成 ATP 来反应出 DNA 序列信息。

焦磷酸测序技术流程

焦磷酸测序技术流程

焦磷酸测序技术流程英文回答:Phosphorylation sequencing, also known as pyrophosphate sequencing or pyrosequencing, is a DNA sequencing technique that utilizes the detection of pyrophosphate release during DNA synthesis. It is a highly sensitive and accurate method for sequencing DNA and has been widely used in various research fields, including genomics, transcriptomics, and epigenomics.The process of phosphorylation sequencing involves several steps. First, the DNA sample is fragmented into smaller pieces, typically ranging from 100 to 500 base pairs. These fragments are then mixed with specific primers that bind to the DNA template. The primers are designed to initiate DNA synthesis.Next, the DNA fragments are subjected to a series of enzymatic reactions. DNA polymerase, along with otherenzymes and reagents, is added to the reaction mixture. As DNA synthesis occurs, pyrophosphate molecules are released. These pyrophosphate molecules are then converted into ATP (adenosine triphosphate) by the enzyme ATP sulfurylase.The ATP produced in the reaction is further utilized by luciferase, an enzyme that catalyzes the conversion of ATP to light. The light emitted is proportional to the amount of ATP generated, which in turn reflects the number of pyrophosphate molecules released during DNA synthesis. This light signal is detected by a detector and recorded as a peak in the sequencing trace.Based on the peaks observed in the sequencing trace, the sequence of the DNA template can be determined. The intensity and timing of the peaks provide information about the order of nucleotides in the DNA sequence. By analyzing the sequencing trace, the sequence of the DNA template can be reconstructed.Phosphorylation sequencing offers several advantages over other sequencing methods. It is a relatively fast andcost-effective technique, making it suitable for high-throughput sequencing projects. Additionally, it does not require the use of labeled nucleotides, as the pyrophosphate release itself serves as the detection signal. This eliminates the need for complex labeling and detection procedures.中文回答:焦磷酸测序技术,也称为焦磷酸测序或火花测序,是一种利用DNA合成过程中焦磷酸释放的检测来进行DNA测序的技术。

简述焦磷酸测序技术的流程

简述焦磷酸测序技术的流程

简述焦磷酸测序技术的流程英文回答:The process of pyrophosphate sequencing, also known as pyrosequencing or 454 sequencing, involves several steps.It is a high-throughput DNA sequencing method that utilizes the detection of pyrophosphate released during DNA synthesis. Here is a brief overview of the pyrophosphate sequencing workflow:1. DNA Sample Preparation: The first step is to extract the DNA from the sample of interest. This can be done using various methods depending on the source of DNA. For example, if the DNA is from a blood sample, it can be extractedusing a commercial DNA extraction kit.2. DNA Fragmentation: The extracted DNA is then fragmented into smaller pieces. This can be achievedthrough mechanical shearing, enzymatic digestion, or sonication. The purpose of fragmentation is to obtainshorter DNA fragments that can be sequenced more easily.3. Adapter Ligation: Short DNA sequences called adapters are ligated to the fragmented DNA. Adapters contain specific sequences that allow for attachment to the sequencing platform and facilitate the amplification of DNA fragments.4. Emulsion PCR: The adapter-ligated DNA fragments are then amplified using emulsion polymerase chain reaction (PCR). This process involves the encapsulation ofindividual DNA fragments in water-in-oil emulsion droplets, each containing a single DNA fragment and the necessary reagents for PCR amplification.5. DNA Sequencing: The emulsion PCR droplets containing the amplified DNA fragments are then transferred to a sequencing plate or flow cell. The DNA fragments are immobilized on a solid support and subjected to DNA synthesis. During DNA synthesis, the addition of each nucleotide triggers the release of pyrophosphate if it is incorporated into the growing DNA chain.6. Pyrophosphate Detection: The released pyrophosphate molecules are converted into visible light signals through a series of enzymatic reactions. These light signals are captured by a detector and recorded as a sequence of peaks, representing the order of nucleotides incorporated during DNA synthesis.7. Data Analysis: The recorded sequence of peaks is then analyzed using bioinformatics tools and software. The sequence data is aligned to a reference genome or assembled de novo to generate a consensus sequence.8. Result Interpretation: The final step involves interpreting the sequence data to identify genetic variations, mutations, or other relevant information. This can be done by comparing the obtained sequence with known reference sequences or by searching for specific genetic markers.中文回答:焦磷酸测序技术的流程包括以下几个步骤。

焦磷酸测序技术流程

焦磷酸测序技术流程

焦磷酸测序技术流程Next-generation sequencing (NGS) has revolutionized the field of genomics, enabling researchers to sequence DNA at an unprecedented scale and speed. Among the various NGS techniques, pyrosequencing, also known as 454 sequencing or the 454 pyrosequencing method, has emerged as a powerful tool for DNA sequencing. In this article, we will delveinto the workflow of pyrosequencing, highlighting its key steps and providing a comprehensive understanding of this technique.Pyrosequencing begins with the preparation of a DNA library, which involves fragmenting the DNA into smaller pieces and attaching specific adapters to the ends of the fragments. These adapters serve as priming sites for subsequent amplification and sequencing reactions. Once the library is prepared, it is loaded onto a picotiter plate, which contains millions of tiny wells, each capable of accommodating a single DNA fragment.The next step in the pyrosequencing workflow is the emulsion PCR (polymerase chain reaction). Emulsion PCR is a method that allows for the amplification of individual DNA fragments within the wells of the picotiter plate. The DNA fragments, along with specific primers and PCR reagents, are encapsulated in water-in-oil emulsion droplets. These droplets serve as microreactors, each containing a single DNA fragment and all the necessary components for PCR amplification. By subjecting the emulsion to thermal cycling, multiple rounds of PCR amplification occur, resulting in the generation of clonal DNA clusters.Following emulsion PCR, the picotiter plate is loaded onto a sequencing instrument, such as the Roche 454 Genome Sequencer. The sequencing instrument utilizes a series of enzymatic reactions to generate light signals that correspond to the order of nucleotides in the DNA template. The sequencing process begins by introducing a single type of nucleotide (A, T, C, or G) into the reaction mixture. If the introduced nucleotide is complementary to the next nucleotide in the DNA template, a pyrophosphate molecule is released, which in turn generates a light signal. The lightsignal is detected by a CCD camera, and the nucleotide incorporation event is recorded as a peak in a pyrogram.After the detection of the nucleotide incorporation event, the enzyme responsible for generating the light signal is inactivated, and the signal is recorded. The released pyrophosphate is then enzymatically converted into ATP, which is subsequently degraded by a luciferase enzyme. The degradation of ATP generates a light signal that is proportional to the number of incorporated nucleotides. This process is repeated for each of the four nucleotides, allowing for the sequential determination of the DNA sequence.Once the sequencing run is complete, the raw data generated by the instrument is processed and analyzed using bioinformatics tools. This involves base calling, which converts the light signals into nucleotide sequences, and quality control, which assesses the reliability of the generated sequences. The resulting sequences can then be aligned to a reference genome or assembled de novo to reconstruct the original DNA sequence.In summary, pyrosequencing is a powerful and versatile DNA sequencing technique that allows for the rapid and accurate determination of DNA sequences. Its workflow encompasses steps such as DNA library preparation, emulsion PCR, nucleotide incorporation detection, and data analysis. With its high throughput and ability to generate long reads, pyrosequencing has found applications in various fields, including genomics, transcriptomics, and metagenomics, contributing to our understanding of the genetic basis of life.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焦磷酸测序步骤
一、实验操作
(一)甲基化检测
亚硫酸氢盐转化
1. bisulfite Mix+800μL Rnase free water,窝旋5min/60℃加热窝旋混匀(配置好的bisulfite Mix勿放置冰上)
2. 配置buffer反应液,室温混匀:DNA Solution (1μg)+RNAfree water 共20μl+
bisulfite Mix 85μl+DNA protect buffer 5μl,(配置好的体系为140μl,不方便上PCR仪,最好分为两管70μl)
3. 上PCR仪,95℃5min→60℃25min→95℃5min→60℃85min→95℃5min→60℃175min
→20℃20min,热循环结束,将PCR product转入Spin-column,加入560 Buffer BL。

(当DNA微量时,需要加入carrier RNA,其加强DNA与column膜的结合;当DNA 量>100ng,则不需要加入carrier RNA)混匀,12,000rpm,1min,废弃液。

4. 清洗Bisulfite DNA convertion
1)加入500μl buffer BW,12,000rpm,1min,废弃液。

2)加入500μl buffer BD,室温放置15min(加入buffer BD快速盖盖子,避免出现白色沉淀)
3)加入500μl buffer BW,12,000rpm,1min,废弃液。

4)加入500μl buffer BW,12,000rpm,1min,废弃液。

5) 12,000rpm,1min,废弃液。

6) 56℃5min(蒸发残余液体)
7) 20μl Buffer EB溶解,12,000rpm,1min(-20℃,可保存3年)
PCR扩增目的片段
回收的PCR product 1:5稀释→取2μl→PCR→准备焦磷酸测序
焦磷酸测序
1.在PCR板中,准备微珠预混液配制(每管)
1)Beads:3μl,Binding Buffer,40μl,模版:20μl,dd Water:补足80μl。

2)震荡20min(如果准备工作没做好,可延长震荡时间)
2.焦磷酸测序样品准备
1)清洗探头2-3次,最后一次将探头竖直举起,抽出残余水分,将70%乙醇、变性液、洗液倒入相应的位置
位置不同)
2
3)在酶标版中,准备预混液(每管):Aneal Buffer:40μl,Sprinmer(100pmol):0.2μl 4)探头吸附微珠预混液:探头放置70%乙醇,看到液体从关中出来,探头竖直举起;探头放置变性液,看到液体从管中出来,探头竖直举起;探头放置洗液,看到液体从管中出来,探头竖直举起直至水抽干;将探头对准酶标版,关闭真空,停留3s后,探头置入酶标版,轻轻晃动探头;将酶标版80℃2min,室温直至手感不热,放入仪器;5)打开CpG software,可提前设置软件,RUN。

相关文档
最新文档