空调水系统变流量节能控制
空调、供热水系统泵的节能

空调、供热水系统泵的节能1、序言《民用建筑节能设计标准》规定,供热系统中循环水泵的电功耗一般应控制在单位建筑面积0.35~0.45W/m2的范围内,实际上约为0.5~0.6 W/m2,甚至高达0.6~0.9 W /m2.供热空调泵系统存在设计电功率容量偏大,运行耗电量较高的问题,而泵的电耗在空调供热系统能耗中占的比重也较大,设计泵电功率容量大要求增大发电容量,增大峰谷差;运行耗电量大意味着发电煤耗的增大和污染物排放量的增大;容量增大使初投资加大,运行电耗增大使耗电费增多,两者都提高了空调供热运行成本,加大了热(冷)费用和用户的负担。
为此,必须了解空调供热泵容量和能耗增大的原因,探讨泵节能的方法,并从设计、设备和调速方法上提出改进的措施。
2、空调供热泵电耗大的原因分析2.1 设计泵功率大的原因从泵轴功率可知,影响泵功率的主要因素是流量V(m3/min),扬程H(m)和泵效率η(%)。
(1)设计热(冷)负荷偏高,造成热(冷)水流量偏大。
从可知,设计热(冷)负荷Q和供回水温差Δt是计算流量的主要依据。
(2)扬程选择过高,造成选用泵偏大供热系统设计时,二次网循环系统实际扬程一般约为150-300kPa,但水泵选型时,扬程值一般为400-600kPa,水泵电功率与扬程成正比关系,扬程偏高导致水泵电气容量增大。
(3)一些国产水泵属低效产品,新设计制造的泵或国外引进的泵,效率较高,一般效率提高10%-20%,电动机一般提高1%-5%.效率的提高往往是指其额定工作点的75%附近,但实际工况常常偏离高效率点,而实际运行效率还是较低。
长沙索拓电子技术有限公司——暖通自控第一站--索拓网!专注于解决中央空调自控和供热采暖自控方案2.2 泵运行耗电量大的原因从热(冷)水泵运行期耗电量可知,水泵轴功率和运行期延时小时数是影响泵运行耗电量大的主要原因,而泵的流量、扬程和运行效率又直接影响轴功率。
(1)大流量运行方式增大了泵的运行功率为了解决热网水平失调带来的用户冷热不均的问题,许多供热系统采用了"大流量、小温差"的运行方式。
变流量空调水系统的控制研究

张 晖 ( 南通 航 运职 业技 术 学院机 电 系, 江苏 南通 2 6 1 ) 2 0 0
摘 要
在 研 究 了二 次 泵 变水 量 系统 中盘 管 的 特 性 的 基础 上 , 过 专 家 PD控 制 算 法 的仿 真 , 明 了该控 制 方案 的 可行 性 。 实 通 I 证
际 工程 验 证 了该 控 制 方 法 可 以在 二 次 泵 变 水 量 系统 的控 制 中应 用 , 取得 较好 的控 制效 果 , 有 较 大 的推 广价 值 。 并 具 关 键 词 : 调 水 系统 , 空 变流 量 , 管 , 家 P D 盘 专 l
由 于 负荷 侧 的各 供 冷 回路 需 求 的冷 量 不 尽 相 同 ,这 样 我 们 可 以
根 据各 供 冷 回路 冷 量 需 求 量 来 相 应 设 置 泵 的数 量 ,并 且 可 以各
回 路 变 频 运 行 , 样 对 于那 些 大 系 统 、 阻 力 、 负 荷 已 经 各 回 这 高 大
要体现在 以下三个方面 : ①根据 空调 房间负荷的变化 , 时准确 及
地 提 供 相 应 的 冷 量 或 热 量 。 尽 可 能 让 冷 热 源设 备 和冷 冻 水 泵 、 ② 冷 却 水 泵 在 高 效 率 下 工 作 , 大 限度 的节 约 动 力 能 源 。 保 障设 最 ⑧ 备 和 系统 的 安 全 运 行 。 水 量 划 分 , 调 水 系 统 可 分 为 定 水 量 和 按 空
《 业 控 制 计 算 机 } 0 2年 第 2 工 21 5卷 第 1 O期
变流量空调水系统的控制研究
Re e r h o h wa e y t m n r lo r b e lw rCo dio ig s a c n T e t rS se Co to fVa i l Fo Ai a n t nn i
空调水系统的节能要点

空调水系统的节能要点
哈尔滨工业大学热泵空调技术研究所 马最良 * 倪龙 唐青松
摘 要 空调水系统是空调系统中的重要组成部分, 其运行电耗十分可观。本文从空调水
系统的水力平衡、空调变水量系统和空调冷冻水系统大温差设 计等三 个方面 , 详 细介绍 了空调水 系统的节能要点。
关键词 空调水系统 节能 水力平衡 变水量 大温差
* 马最良, 1940 年 7 月生, 教 授, 博士生导师 地址: 哈尔滨工业大学二校 区市政环境工程学院 2434#
12 二 OO 八年十月
特别策划
SPECIAL PLANNING
此可见, 空调系统中各部分都离不开管路 系统, 管路系统庞大而复杂, 是空调系统中 的重要组成部分, 它主要指冷冻水系统、冷 却水系统、凝结水系统和热媒系统( 如蒸汽 系统和热水系统) 。这些系统不仅需要较大 的管路和设备投资, 而且需要消耗较大的 水泵输送能量。管路系统设计的合理与否 将直接影响到空调系统是否能正常运行与 经济运行问题。为此, 本文将着重介绍空调 水系统的节能设计要点。
a ir- conditioning. The powe r cons umption of a ir- conditioning wa te r s ys te ms is ve ry impre s s ive . The ke y points to e ne rgy s a ving of a ir- conditioning wa te r s ys te ms we re a na lyze d in de ta il, including the hydra ulic ba la nce , va ria ble flow wa te r s ys te m a nd la rge te mpe ra ture diffe re nce s de s ign s tra te gie s of a ir- conditioning wa te r s ys te ms .
中央空调系统变流量节能技术及实现方法

摘 要 : 中央 空 调 系统 变 流量 控 制 节能 设 备 分 成 4个 主要 的 智 能控 制设 备 , 成 各 自的 功 能 。对 中 央 空 调 冷 冻 水 系统 、 将 完 冷
TANG u M O a W AN a g, 1 J n, S n, Li n L ANG u — h n ZH1Yo g Ch n s e g, n
Ab t a t:Thi a rd s rbe e h d t a i d s t e e r a ng de c fv ra l l sr c s p pe e c i sam t o h tdvie h ne gy s vi vie o a ib efow o r nt an i e l e c ntoli o 4 m i nt li nt g c ntold vie . wih e c vc ror i t un ton T h c m pe e o r he foz n w a e yse . t o lng w a e o r e cs t a h de ie pe f m ng is f c i . e o lt c ntoloft r e trs tm he c o i tr
行 和 综 合性 能优 化 。 l l l — … 。叠 一
关键词 : 中央 空 调 变 频 调速 控 制 节 能 l l
一 ■
—
The Var a e Fl i bl ow nt o c Co r lTe hni que f r En g av ng ofCe t alA i ndiini yse nd Is I plm e t i n o er y S i n r r Co to ng S t m a t m e n ato
空调水系统变流量节能控制

空调水系统变流量节能控制前言近年来,环境保护和能源消耗已成为全球重要的议题,各行各业都在积极采取节能减排的措施。
空调系统作为大型建筑物的重要能耗设备之一,已经成为节能减排的重点关注对象。
通过对空调水系统变流量节能控制的研究,可以有效降低能耗,减少环境影响。
空调水系统空调水系统是指空调主机、冷却塔、水泵、水箱、水管及阀门等构成的闭合水路系统。
它通过水作为热载体,将室内的热量通过主机传入水中,然后经过水泵推动水流到冷却塔中降低温度,最后再次流回主机,循环往复。
空调水系统的水循环流量大小对热交换器的散热效率和整个系统的能耗有很大的影响。
变流量节能控制传统的空调水系统通常采用恒流量水泵来控制系统的水流量,这种方案的问题是没有考虑系统的实际工况,将增加许多不必要的能耗。
而变流量配水泵采用变频器对水泵电机的转速进行调节,根据系统的实际负荷情况来调节水的流量,可以实现最大程度的节能。
通过控制水泵的输出功率和水流量,将能耗控制在最低水平,达到节能的效果。
节能效果空调水系统采用变流量配水泵后,能够实现节能效果的显著提升。
根据实际的环境条件和设备情况,采用变流量节能控制技术后,系统能耗可以减少20%以上,同时系统的维护成本也随之降低。
除了能够节约能源,这种节能控制技术还能够降低系统的污染排放量,一定程度上减少环境污染的影响。
空调水系统变流量节能控制技术是一种有效降低能耗、减少环境影响的技术。
它通过控制水泵的流量大小,使得系统能源利用率得到最大化的提升,因而节能效果显著。
在实践中,各行各业应当积极采用此类技术,为环境保护和能源消耗做出自己的贡献。
空调水系统变流量节能控制

图中的Δ H 是为保持末端环路压力 、流量稳定而设定的压
暖通空调 HV &AC 专题研讨 ·7 ·
降值 。从图 1 可以看出 ,当 1 台冷水机组满负荷运行时 ,要
求的水泵工作点为 B′点 , QB′= 300 m3/ h , HB′= 19 m 。由 于 QB > QB′,水泵需通过变频器改变转速和流量 。
时间频数 0. 1 0. 1 4. 9 19. 5 31. 6 20. 8 11. 9 7. 6 2. 3 0. 9 0. 3
累计时间 0. 1 0. 2 5. 1 24. 6 56. 2 77 88. 9 96. 5 98. 8 99. 7 100
频数
根据实测在夏季该宾馆空调最大负荷为 2 162 kW。 该工程配置有 2 台制冷量为 1 758 kW 的直燃机 ,夏季空调 最大冷负荷仅为设备容量的 62 %。
比例变化 ,在蒸发器内是不会发生冻结的 。 3. 2 变流量对水侧放热的影响
水 侧 放 热 系 数αw 与 水 流 速ω的 0 . 8 次 方 成 正 比 , 即 αw ∝ ω0. 8 。
在额定工况下
Q0 = αw0 FΔt
(1)
式中 Q0 ———在额定工况下水侧放热量 , W ;
αw0 ———在 额 定 工 况 下 水 侧 的 表 面 传 热 系 数 ,
本上 则 明 确 指 出 , 冷 水 允 许 的 流 量 调 节 范 围 为 50 %~ 120 % ,冷却水允许的流量调节范围是 20 %~100 %。
综上所述 ,对冷水机组的冷水系统进行变流量运行是 完全可能的 ,不会对冷水机组的安全运行产生影响 。文献 [ 5 ]也提出了同样的观点 。出于安全的考虑 ,流量的调节范 围可控制在 70 %(或 60 %) ~100 %之间 。如样本上给出了 流量调节范围则可按样本规定进行 。
7664790_上海某办公楼变流量变水温冷/热水空调系统节能性案例分析
引言对于商业建筑而言,中央空调系统能耗约占建筑总能耗的40%,实现中央空调的节能对于响应国家节能降耗的目标有非常现实的意义。
中小型的商业建筑的空调系统主要包括三大类型设备,风冷热泵主机,水泵和室内风盘/新风机。
对于通常的中央空调系统来说,这三个设备采用独立控制的方法:主机提供固定出水温度的供水(一般夏季为7℃,冬季为45℃);水泵采用定速输送,一旦供水量超过需求,压差式旁通阀会逐步开启降低室内供水量;风盘通过温控器调节室内温度,以满足室内控温的要求;虽然该方法简单,但并不节能。
因为每个设备的运行工况变化将直接影响其它设备的能耗变化,三者是相互关联的。
因此,需要将整个空调系统集中管控方能实现系统的节能和室内舒适性控制的需求。
空调系统一般按照满负荷工况设计以,但其长年工作于部分负荷状态,在评价系统能耗,必须充分考虑系统运行于部分负荷的能耗状况。
如图一所示为不同的环境温度下所统计的负荷占比和运行时间占比。
由此可见,系统只有少部分时间运行满负荷。
因此提高系统部分负荷下的能效对整个空调系统的节能更具现实意义。
如图一所示为该办公楼的制冷负荷分布情况。
图一办公楼制冷季能耗分布室内空调系统负荷主要由两个方面构成,室内基本负荷和新风负荷。
基本上,新风负荷占到整个空调负荷的30%左右。
而空调系统的能耗主要由三个部分构成,空调主机能耗,水泵能耗和风盘(新风机)能耗;W 系统=W 主机+W 水泵+W 风盘(1)其中,W 系统为空调系统总能耗;上海某办公楼变流量变水温冷/热水空调系统节能性案例分析系统运行状况分析系统缺乏统一管理,主机和水泵无法根据风盘的需求响应,运行效率低下。
室外主机并联运行,存在混水问题,主机相互竞争无法运行。
水泵始终运行于工频,部分负荷时水泵的效率低下。
主机提供固定温度供水,过渡季节造成过冷或过热,既浪费能源又影响舒适性。
采用定风量新风,经常提供超量新风,系统排风冷量无法回收,造成较大的浪费分散的管理造成浪费,例如会议室在无人时,空调仍然开着。
空调冷冻水一次泵变流量系统的节能与控制
空调冷冻水一次泵变流量系统的节能与控制【摘要】文章简单介绍了一次泵变流量系统,对一次泵变流量系统的能耗做出了分析,提出了空调冷冻水一次泵变流量系统的节能与控制方法。
【关键词】:空调;冷冻水系统;节能引言建筑物中央空调系统的冷冻水一次泵,传统上都采用固定转速水泵。
空调水的变一次流量控制系统(VPF:Variable-Primary-Flow,也称为:冷冻水一次泵变频调速控制系统)是近年才开始出现的先进控制方案。
配置变频调速冷冻水泵,可以对冷冻水流量进行调节,达到精细化控制的目标。
虽然在负荷侧都是变水量控制,但变频调速的一次侧控制和传统固定转速的一次泵系统不同,它比传统方式控制要求高得多。
要求楼宇自控系统的工程服务者设计合理的变一次流量控制解决方案,提供满足要求的控制功能。
本文结合某大型建筑的变一次流量控制工程方案,对这种解决方案进行讨论。
1一次泵变流量系统的特点一次泵变流量系统(VPF)的定义概述如下,当末端空调负荷变化时,电动二通阀调节开度,改变冷冻水量,此时采用一定的控制措施,变频水泵和冷冻机组的水流量都随负荷的改变而改变,在旁通管上增设了旁通控制阀,以维持运行冷冻机的最小流量,如下图所示。
图1和二次泵变流量系统相比,最显著的一个特点是少了一组定速泵。
另外在旁通管上多了一个控制阀,当系统水量小于单台冷冻机最小允许流量时,旁通阎打开,旁通一部分水量使冷冻机运行在最小允许流量之上。
最小流量由流量计或压差传感器测得。
系统末端仍然安装二通调节阀,水泵的转速由系统最远端压差的变化控制或供回水温差控制。
冷冻机和水泵的台数不必一一对应,它们的台数变化和启停也分别独立控制。
VPF系统可以改变整个系统中的循环水量,既包括流经蒸发器的冷冻水流量,和冷却盘管中的冷冻水流量。
VPF不仅仅节省了二次泵变流量系统中低效率的一次定流速泵,而且省去了管线,接头及其工程费用,电力设备等,机房空间的需求也随之降低,这些都可观的节省初投资。
中央空调水循环系统变频节能控制
( ’ Mu iiaDein d eerhn tue xin nc l s a R sac Istt, a p gn i
X ' 7 0 6 , hn) in 10 8 C ia a
【 b t c] nrycnu t n o wa rss m co /sfra A sr tE eg o smp o f t yt acnl o a i e e t
I v re f rheW a e S se o Ce ta n etro t tr y tm f n rl Ai- nd to i g r Co i n n i
Xio—i a l
冷 冻水 泵 、 却塔 和 风机 盘 管 等 空调 末端 设 备 , 图 冷 如
1 所示 。空调水 系统 是 一个 复杂 的系统 , 部件 之 间 各 是相 互联 系 、 互 影 响的 。 相
C n es n o v ri o
图 1空调水 系统流程简介
1 1冷水机 组 及其 工作 原理 . 当天然 的冷 源 不 能满 足 空 调需 要 时 ,便 采 用 人
通 过 采 用变 频 器 , 据 空 调Байду номын сангаас 端 的需 要 , 根据 根 可
工 制冷 的方式 。主要有 以下几种 :
环境温度 自动选择制热 、 制冷和 除湿运转方式, 使居
低 能 耗状 态 下 以较 小 的温 差 波 动 , 调节 冷媒 水 泵 、 冷 却 水 泵 的工 作频 率 ,改变 系 统 中 的冷媒 水 量和 冷 却
所 以, 对空调水 系统进行节能研究具有 重要 意义。实践证 明 ,
运用变频控制技术的 变频 空调 , 以实现快速 、 能和舒适控 可 节
sg i cn . ee lh a d p at e so a e a piain o inf a t r sa' n r ci h wst tt p l t f i c c h h c o
中央空调变流量节能控制系统设计
T e De i n o ra l l w e g — a i g Co t o y t m h sg fVa i b e F o En r y—s vn n r lS se f r t e Ce ta r Co d t n n o h n r lAi n i o i g i
作 为控制 内核 , 并结合模糊控制和 PD算法的总体设计方案和实现 的主要功能。 I 控制 系统性 能稳 定, 有较 强的抗 干
扰 能力 , 能够满足 变流量装置 的需求. 关键词 : 中央空调; 变流量 ; 能控制 节
中 图分 类 号 :U 8 T 3 文 献标 志码 : A 文 章 编 号 :09—08 (0 1O 03 O 10 15 2 1 )6— 0 2一 3
l y rui ss m i a f c v n r f w h da l yt ne et eeeg —sv gmesr,w i ol duth u el do nrl i o c e s f i y ai aue hc cudajs tef xt t a f e t l n h l oh o c a a’
c n i o .T e a t l ic se h o t lv ra l o n r —s vn e s t e t larc n i o i g v r be o dt n i h r ce d s u s st e c nr a ib e f w e e g i o l y a i g i a h c n a i o d t n n a a l d wi r i i
a i n e fr n e a iiy o e c n r ls se i to g.I c n s t f o ltl he n e fv ra l lu q i . nt —i tree c b lt ft o to y tm ss n h r t a ai yc mpe ey t e d o a ib e—f x e u p s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空调水系统变流量节能控制
摘要:本文简单介绍了当前空调系统设计中的节能措施,分析了中央空调运行原理,结合自身实践,提出了中央空调变流量节能控制系统设计的方法。
关键词:中央空调;节能;设计
前言
中央空调是现代建筑的主要耗能设施,传统的中央空调系统长期运行在定流量的状态,不能随着实际的要求来供冷。
造成了相当大的浪费,定流量已经不能满足实际的需要。
随着科学技术的发展,变流量技术在中央空调得到了应用。
通过分析中央空调系统的结构和运行原理,结合变流量的工作原理。
提出中央空调变流量智能控制系统。
从而说明变流量在中央空调系统中的应用是高效节能的,有很好的应用前景。
1当前空调系统设计中的节能措施
1.1 采用楼宇设备自动控制技术对空调末端装置进行控制
在智能建筑中通常采用楼宇设备自控系统,对中央空调系统末端的新风机、回风机、变风量风机、风机盘管等装置进行状态监视和使用的“精细化”控制,以实现节能的目的。
它通过DDC(直接数字控制器)控制器,将检测的相关量值进行PID(比例、积分、微分)运算,实现对上述设备的PID控制,达到一定的节能效果。
这种对空调末端设备的控制可节能10%-15%,因为不能实现对空调制冷站及空调水系统的智能控制,因此,节能效果不显著。
这种节能控制技术的典型代表产品和生产厂商有:
(1)美国霍尼韦尔公司EXCEL 5000楼宇设备自控系统;
(2)美国Johnson公司的楼宇自动化系统;
(3)德国西门子公司S600顶峰系统等。
空调末端设备的控制采用楼宇自动化系统(BAS),这些设备的主要特性均实现了对空调末端设备的节能自动控制,并为动态变流量空调节能控制系统的运行创造了更为良好的外部条件。
1.2 采用通用变频器对中央空调系统中的水泵和风机进行控制
为降低中央空调系统的能源浪费,宜采用通用变频器来控制空调系统的水泵和风机,通过对供、回水压差或温差的采集,对水泵和风机进行PID调节,以达到节能效果。
这种控制方法通常可以节约水泵和风机等电机拖动系统的电能约20%,最高可达30%。
这种节能控制技术的生产厂商和典型代表产品有:
(1)美国AB(Allen Bradley)公司,代表产品有通用变频器1336PLUSII系列产品;
(2)法国施耐德电气(SchneiderElectric)公司,代表产品有Ahivar 38系列异步电动机变频器;
(3)德国西门子(SIEMENS)公司,代表产品有通用变频器MICROMASTER440系列产品。
2中央空调运行原理
中央空调系统是由一连串的流体机械和热交换器组合而成,主要包括制冷系统、冷却水循环系统、冷冻水循环系统、风机盘管系统和冷却水塔系统,(如图1所示)。
在系统中,热量的传递是通过流体物质来完成的,其中在制冷系统中一般用溴化锂,而冷却水系统和冷冻水系统都是以水作为传输介质。
制冷主机根据压缩、膨胀(或浓缩、蒸发)的放、吸热原理,通过消耗电能(或热能)来完成室内外高位和低位热能的转移,即通过冷冻水系统向室内空调末端设备提供冷源,同时通过冷却水系统把产生的热量带到冷却塔风扇冷却并被排到室外。
空调末端设备以风作为介质,通过再次冷热交换,最终通过风机盘管把冷量释放到需要空调的房间中,起到温度调节作用。
3变流量在中央空调系统中的应用
从中央空调的运行和节能原理很明显地看出,整个系统对大厦的供冷(热)都是通过流体物质来传输的,也就是说,流体物质是系统能量传输的载体,其中主要的载体是水(分别是冷却水和冷冻水),但从广义上来说,系统的节能应该把制冷机组的流体物质也列为变流量控制的对象。
变流量的工作原理是在保证系统安全稳定运行的前提下,实时响应系统末端负荷变化,按照末端温度的要求,动态改变空调管道中的水流量,空调的末端要多少就给多少,不会造成浪费;同时根据制冷主机的制冷变化或天气等其他原因引起的温度变化,实时跟踪空调主机发热量的变化,动态改变冷却水管道的水流量,提高空调主机的热交换效率,控制空调主机的COP值,使其处于较佳状态。
变流量系统的控制是从改变能量传输的大小和提供舒适稳定的环境温度出发,最终的目的是要实现系统的节能;而控制的手段是通过控制水量的变化,来达到控制的目的。
冷却水泵、冷冻水泵与制冷机组是主要的耗能设备,自然它们就是控制的对象,而温度是控制的主要参数,从而来调节水流量的变化。
变频器是水泵电动机的关键执行部件,变频器频率的变化最终决定着水流量的变化,也导致了能量传输的变化,最终实现节能。
4中央空调变流量节能控制系统设计
4.1 动态变流量控制原理
当空调负荷发生变化时,通过采集一组参数值经模糊运算(如图2所示),及时调节冷水机组、各水泵和冷却塔风机的运行工作参数,从而改变冷水机组工作状态、冷冻(温)水和冷却水流量,改变冷却塔风机的风量,确保冷水机组始终工作在效率最佳状态,使供回水温度始终处于设定值,从而使主机始终处于高转换效率的最佳运行工况。
动态变流量控制的核心是变流量控制器,在控制器中建立了知识库、模糊控制模型和模糊运算规则,形成智能模糊控制。
通过采集影响冷水机组运行的各种参数,经模糊运算,得出相应的控制参数,这些控制参数被送到冷水机组、冷冻(温)水控制子系统、冷却水控制子系统、冷却塔风机控制子系统。
这些子系统根据控制参数的变化,利用现代变频控制技术,改变空调系统循环水的流量和温度,以保证整个系统在满负荷和部分负荷情况下,均处于最佳工作状态,从而最终达到综合节能的目的。
4.2动态变流量节能控制方法
4.2.1变流量冷却水泵系统
当末端空调负荷减少时,反映到冷水机组将出现冷却水出水温度降低的现向,温度传感器检测出这种变化趋势后,模糊控制系统将自动降低冷却水泵的工作频率,降低冷却水进水流量,提高冷却水出水温度,并使进、出水温差控制在最佳设定值上,维持冷水机组的高效率运行。
4.2.2一次泵变流量系统
当末端空调负荷变小时,末端空调设备前的两通阀将会关闭或减小,负荷侧回路管路的阻力增大,冷冻水供、回水温差将出现减小,供回水管的压差将出现增高的趋势。
水温传感器及水流压差器检测出这种趋势后,模糊控制系统将自动降低冷冻水泵的工作频率,减少冷冻水流量,并使供回水温差及供回水压差控制在最佳设定值上,维持冷水机组的高效率运行。
4.2.3二次泵变流量设计
二次泵变流量系统分为一级泵变流量系统和二级泵变流量系统。
其控制原理及效果与一次泵变流量大致相同(在这里不再一一赘述)。
而一级泵系统负责确保冷水机组的安全运行,一级泵系统的旁通管路一般设计为直通管,管径按一台冷水机组额定流量设计。
一次泵变流量系统跟踪二级泵环路的流量变化,并保证一级泵环路的流量大于二级泵环路的流量,使旁通冷冻水管保持从供水管流向回水总管。
当旁通管的流量超出设定值的范围时,变流量控制器将模糊PID调节一级泵的工作频率,使旁通管的流量返回设定值。
结束语
随着自动控制技术、信息技术、变频调速技术、计算机技术以及特别是软件工程技术的发展和应用性产品的成熟,在中央空调系统中以变流量运行方式替代传统的定流量运行方式已经成为一个必然的趋势,它在实际的应用中,确实起到了很好的节能作用。
与定流量相比较,变流量不仅仅体现了节能的效果,同时也实现了全自动控制的中央空调系统,还可以克服定流量带来的一系列弊病,提高设备的运行效率和延长设备运行寿命等,提供更加舒适和谐的生活和工作环境。
参考文献:
[1] 何雪冰,刘宪英.中央空调节能有关问题的研讨[J].重庆建筑大学学报,1999.
[2] 蔡增基,龙天渝.流体力学泵与风机[M].4版.北京:中国建筑工业出版社,1999,
[3] 陈晓峰.中央空调变流量节能运行控制系统的研究和实现[D].重庆:重庆大学,2006.
[4] 孙一坚.空调水系统变流量节能控制[J】.暖通空调。
2001(6).。