无失真传输系统

合集下载

无失真传输系统

无失真传输系统

解:(2)
2
x(t) 1
输入和输出 0
信号的波形
-1 y (t)
-2
0
π



显然,输出信号相对于输入信号产生了失真。t
输出信号的失真是由于系统的非线性相位而引起。
无失真传输系统
➢ 无失真传输系统的概念
y(t) K x(t td )
➢ 无失真传输系统的时域特性
h(t) K (t td )
主讲人:陈后金
电子信息工程学院
无失真传输系统
无失真传输系统的时域特性 无失真传输系统的频域特性
无失真传输系统
信号传输过程中引起失真的原因: 非线性失真(产生新的频率成分) 线性失真(不产生新的频率成分) 幅度失真、相位失真
在实际应用中对失真问题的研究有两类: 信号传输失真尽可能小(高保真系统)
无失真传输系统
➢ 无失真传输系统的幅度响应和相位响应
| H ( j) | K
|H(j)|
() td
✓ 无失真传输系统应满足两个条件:
() td
※ 系统的幅度响应|H(j)|在整个频率范围内为常数K,
意味着系统的带宽为无穷大;
※ 系统的相位响应() 与成线性关系。
例 已知某连续LTI系统的频率响应为H ( j) 1 j 1 j
sin(t π / 2) sin(3t 0.7952π)
例 已知某连续LTI系统的频率响应为H ( j) 1 j 1 j
(1) 求系统的幅度响应|H(j)|和相位响应(),
并判断系统是否为无失真传输系统。 (2) 当输入为x(t)=sint+sin3t (t) 时,求系统的稳态响应。
(1) 求系统的幅度响应|H(j)|和相位响应(),

无失真传输系统

无失真传输系统

信号与系统实验报告2、信号与系统实验箱一台。

3、系统频域与复域分析模块一【实验原理】 1、一般情况下,系统的响应波形和激励波形不相同,信号在传输过程中将产生失真。

线性系统引起的信号失真有两方面因素造成,一是系统对信号中各频率分量幅度产生不同程度的衰减,使响应各频率分量的相对幅度产生变化,引起幅度失真。

另一是系统对各频率分量产生的相移不与频率成正比,使响应的各频率分量在时间轴上的相对位置产生变化,引起相位失真。

线性系统的幅度失真与相位失真都不产生新的频率分量。

而对于非线性系统则由于其非线性特性对于所传输信号产生非线性失真,非线性失真可能产生新的频率分量。

所谓无失真是指响应信号与激励信号相比,只是大小与出现的时间不同,而无波形上的变化。

设激励信号为 e(t),响应信号为 r(t),无失真传输的条件r(t)=Ke(t-t)(1)式中 K 是一常数,t 为滞后时间。

满足此条件时, r(t)波形是 e(t) 波形经t 时间的滞后,虽然,幅度方面有系数 K 倍的变化,但波形形状不变。

2、对实现无失真传输,对系统函数 H ( j ω) 应提出怎样的要求设 r(t )与 e (t ) 的傅立叶变换式分别为 R( jω)与 E(jω)。

借助傅立叶变换的延时定理,从式(1)可以写出R(jω)=KE(jω)e^-jωt 。

(2)此外还有 R(jω)=H(jω)E(jω)(3) 所以,为满足无失真传输应有H(jω)=Ke^-jωt (4)(4)式就是对于系统的频率响应特性提出的无失真传输条件。

欲使信号在通过线性系统时不产生任何失真,必须在信号的全部频带内,要求系统频率响应的幅度特性是一常数,相位特性是一通过原点的直线。

实验三 无失真传输系统

实验三 无失真传输系统

若:
R1C1 R2C2
则:
H
R2 R2 R1

实验内容
1 、 FJ3: 500Hz 左右, UPP5V 方波信号,接入 J26 , CH1 : J27,CH2:J28,观察信号是否失真,即信号的形状是 否发生了变化,如果发生了变化,可以调节电位器“失 真调节”,可调节到输出与输入信号的形状一致,只是 信号的幅度发生了变化 2、改变信号源,重复上述的操作,观察信号的失真和 非失真的情况 3、测绘失真条件下的输入、输出信号(至少三种) 测绘无失真条件下的输入、输出信号(至少三种)
R2 Uo R2 C 2 S 1 H (S ) 1 1 R1 R2 Ui 1 / R1 SC1 1 / R2 SC2 R1C1 S 1 R2 C 2 S 1 1 1 / R2 SC2 而S j H ( j ) R2 1 jR2 C 2 R1 R2 1 jR1C1 1 jR2 C 2
实验报告要求

用坐标纸绘制实验失真条件下的输入、 输出信号,及无失真条件下的输入、输 出信号
实验三
无失真传输系统
实验目的

1、了解无失真传输的概念 2、了解无失真传输的条件
实验仪器

信号与系统实验箱 50MHZ虚拟示波器 计算机
实验原理


无失真是指响应信号与激励信号相比,只是大小与出现的时间 不同,而无波形上的变化。设激励信号为e(t),响应信号为r(t),无 失真传输的条件是 幅频特性 相频特性

信号与系统复件 §5.3 无失真传输

信号与系统复件 §5.3 无失真传输

r () e () h ()
R(j ) R(j ) ejr ( )
线性系统引起的信号失真由两方面的因素造成 ●幅度失真:各频率分量幅度产生不同程度的衰减; ●相位失真:各频率分量产生的相移不与频率成正比, 使响应的各频率分量在时间轴上的相对位置产生变化。
幅度失真
总结
系统的无失真传输条件 时 域 : h(t) K (t t0 ) 频域: H() Ke jt0
即 H ( j ) K , ( ) t0
K和t0均 为 实 常 数
所以 R(j ) KE(j )e jt0 所以 H (j ) R(j ) Kejt0
E(j )
H j
K
O

全通

t0

:
H (j )

K
t0
O

线性相位
●幅度为与频率无关的常数K,系统的通频带为无限宽。 ●相位特性与 成正比,是一条过原点的负斜率直线。
§5.3 无失真传输
主要内容
失真 无失真传输条件 相位特性为什么与频率成正比关系?
重点 无失真传输条件
难点 相位特性为什么与频率成正比关系?
一.失真
信号经系统传输,要受到系统函数 H 的加权,输出
波形发生了变化,与输入波形不同,则产生失真。
e(t) 2
0

失真分类:
u0 (t )
2
R
e(t)
解:系统函数为
+
R1
R2
u(t)
1H 1F
-
H ( j)
U ( j)

(R2
1
jC
)
(R1

无失真传输

无失真传输

ϕ(ω) = −ωt0
ω
−ω 0 t
3.对无失真传输的要求物理解释 3.对无失真传输的要求物理解释
由于系统函数的幅度 H( jω) 为常数K,响应中 为常数K 各频率分量幅度的相对大小将与激励信号的情况 一样,因而没有幅度失真。要保证没有相位失真, 一样,因而没有幅度失真。要保证没有相位失真, 必须使响应中各频率分量与激励中各对应分量滞 后同样的时间, 后同样的时间,这一要求反映到相位特性是一条 通过原点的直线。下面举例说明 通过原点的直线。
线性系统引起的信号失真的原因: 线性系统引起的信号失真的原因: 各频率分量幅度产生不同程度的衰减---幅度失真 各频率分量幅度产生不同程度的衰减---幅度失真 --各频率分量产生的相移不与频率成正比, 各频率分量产生的相移不与频率成正比,响应的各频率 分量在时间轴上的相对位置产生变化--分量在时间轴上的相对位置产生变化--- 相位失真
§ 5.3 无失真传输
• 主要内容
•失真 失真 •无失真传输 无失真传输 •系统失真传输的应用 系统失真传输的应用
• 重点:无失真传输的条件 重点: • 难点:系统传输函数的设计 难点:
一、失真
r(t) = e(t)*h(t)
R( jω) = E( jω)H( jω)
e(t)
h(t) r(t)
E( jω) H( jω) R( jω)
例如
sint sin2t sint + sin2t
入 输
O
t
O
t
O
t
sin(t − 2)
sin(2t − 3)
sin(t − 2) + sin(2t − 3)
出 输
O
t
O
t

简述无失真传输的系统函数的理想条件

简述无失真传输的系统函数的理想条件

简述无失真传输的系统函数的理想条件在通信系统中,信号的传输可能会受到噪声、失真等因素的影响,从而影响信号的质量。

为了保证信号的传输质量,需要使用无失真传输的系统函数。

无失真传输的系统函数是一种可以保证信号在传输过程中不会发生失真的系统函数。

理想条件下的无失真传输的系统函数应该具备以下几个方面的特点:1. 平稳性:无失真传输的系统函数应该是平稳的,即在整个传输过程中,系统的特性保持不变。

平稳性可以保证信号的频率分量在传输过程中不会发生变化。

2. 线性性:无失真传输的系统函数应该是线性的,即当输入信号的幅度发生变化时,输出信号的幅度也会随之发生相应的变化。

线性性可以保证信号在传输过程中不会发生失真。

3. 因果性:无失真传输的系统函数应该是因果的,即当输入信号的幅度发生变化时,输出信号的幅度也会随之发生相应的变化。

因果性可以保证信号在传输过程中不会出现“超前”或“滞后”的现象。

4. 稳定性:无失真传输的系统函数应该是稳定的,即当输入信号的幅度发生变化时,输出信号的幅度也会随之发生相应的变化。

稳定性可以保证信号在传输过程中不会出现“爆炸性增长”的现象。

5. 通带和阻带特性:无失真传输的系统函数应该具备一定的通带和阻带特性,即可以在一定的频率范围内传输信号,而在其他频率范围内则会被阻断。

通带和阻带特性可以保证信号在传输过程中不会受到外界的干扰。

无失真传输的系统函数是一种可以保证信号在传输过程中不会发生失真的系统函数。

理想条件下的无失真传输的系统函数应该具备平稳性、线性性、因果性、稳定性和通带和阻带特性等方面的特点。

只有具备这些特点的系统函数才能够有效地保证信号的传输质量,从而提高通信系统的可靠性和性能。

无失真传输

无失真传输
通过无失真系统后, 其响应为:
y(t) KE1 sin( 1t 1) KE2 sin( 21t 2 )
KE1
sin 1 (t
1 1
)
KE2 21 (t
2 21
)
KE1 sin 1 (t t0 ) KE2 21 (t t0 )
为保证不产生失真, 要求 : 1 1
2 21
t0
即() t0
X
二.无失真传输条件
第 3

已知系统h(t) H(j)若, 激励为 f t 响应为 yt
那么y(t) Kf (t t0 )时不失真
幅度可以比例增加 波形形状不变
可以有时移
f t
yt
h(t)
因为 y(t) Kf (t t0 )
Y ( j) KF( j)ejt0
f t
yt
所以 H ( j) Y ( j) Kejt0
不失真系统的冲激响应是冲激函数
H ( j) Ke jt0 h(t) K (t t0 )
X
相位特性为什么与频率成正比关系?
第 5

H(j ) Kejt0 K t t0 ht
只有相位与频率成正比,方能保证各谐波有相同的延
迟时间,在延迟后各次谐波叠加方能不失真。
例如激励f t E1 sin 1t E2 sin 21t
第 1 页
第七节 信号的无失真传输
•失真 •无失真传输条件
X
一.失真
第 2

信号经LTI系统传输,要受到频域响应 Hj的 加权,
输出波形可能发生变化,如与输入波形不同,则产生失
真。
周期信号: Yn Fn H ( jnw1)
非周期信号:Y ( jw) F ( jw)H ( jw)

《信号与系统》教学课件 §4.3 无失真系统

《信号与系统》教学课件 §4.3 无失真系统

E1 sin 1t E2 cos2t
H ( ) H ( ) e j ( )
H (1)
E1
sin[1 (t
(1) )] 1
H
(2 )
E2
cos[2 (t
(2 2
) )]
正弦、余弦信号通过LTI系统的响应
系统失真分为幅度失真和相位失真。
• 当|H(ω1)| ≠|H(ω2)| 时,对于不同的频率分量产生了不 同的幅度加权,那么称之为幅度失真。
H()kejt0 由于H(ω)=|H(ω)| ejφ(ω),得到无失真传输系统的幅频和 相频特性分别为
H() k
() t0
X
r H H(t(() )1 )E si nh(t1 )te j1 tdt h (t)
三、无失真传输系统的频域表示
H ()
k
O
( )
O
t0
幅频特性为直线易于理解,为何相频特性也是一条直线呢?
t
下面我们通过描述系统特性的h(t) 及系统频响H(ω)来观 察无失真系统的特点。
X
r H(t() )E si nh(t1 )te j1 tdt h (t)
三、无失真传输系统的频域表示
就系统传输而言,当e(t)=δ(t)时,其单位冲激响应h(t)为 h(t)k(tt0)
即无失真线性系统的单位冲激响应也是冲激函数,相应 的傅里叶变换为
X
r H(t() )E si nh(t1 )te j1 tdt h (t)
二、无失真传输系统的时域表示
设系统的鼓励信号为e(t),经过无失真传输后,其输出信 号为r(t),那么r(t)和e(t)满足
rቤተ መጻሕፍቲ ባይዱt)ke(tt0)
其中k和t0均为常数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主讲人:陈后金
电子信息工程学院
无失真传输系统
无失真传输系统的时域特性 无失真传输系统的频域特性
无失真传输系统
信号传输过程中引起失真的原因:
非线性失真(产生新的频率成分)
线性失真(不产生新的频率成分) 幅度失真、相位失真 在实际应用中对失真问题的研究有两类: 信号传输失真尽可能小(高保真系统) 有意识地产生失真(预失真波形产生)
1 j 1 j
y(t ) H ( j1) sin[t (1)] H ( j3) sin[3t (3)]
sin(t π / 2) sin(3t 0.7952π)
例 已知某连续LTI系统的频率响应为H ( j )
(1) 求系统的幅度响应|H(j)|和相位响应(), 并判断系统是否为无失真传输系统。 (2) 当输入为x(t)=sint+sin3t (<t<) 时,求系统的稳态响应。
1 j 1 j
所以系统的幅度响应和相位响应分别为
H ( j) 1
() 2 arctan( )
系统的幅度响应|H(j)|为常数,但相位响应()不是的 线性函数,所以系统不是无失真传输系统。
例 已知某连续LTI系统的频率响应为H ( j )
(1) 求系统的幅度响应|H(j)|和相位响应(), 并判断系统是否为无失真传输系统。 (2) 当输入为x(t)=sint+sin3t (<t<) 时,求系统的稳态响应。 解:(2)
无失真传输系统
无失真传输系统的幅度响应和相位响应
|H(j)|
| H ( j ) | K

( ) td
无失真传输系统应满足两个条件:


( 整个频率范围内为常数K, 意味着系统的带宽为无穷大;
※ 系统的相位响应() 与成线性关系。
2
1 j 1 j
解:(2)
输入和输出 信号的波形
x(t) 1
0
-1
y (t)
-2
0
π
显然,输出信号相对于输入信号产生了失真。 输出信号的失真是由于系统的非线性相位而引起。
2π t


无失真传输系统
无失真传输系统的概念
y(t ) K x(t td )
无失真传输系统的时域特性
h(t ) K (t t d )
无失真传输系统的频域特性
H ( j ) Ke j td
无失真传输系统
谢 谢
本课程所引用的一些素材为主讲老师多年的教学积累,来
源于多种媒体及同事、同行、朋友的交流,难以一一注明出处, 特此说明并表示感谢!
例 已知某连续LTI系统的频率响应为 H ( j )
(1) 求系统的幅度响应|H(j)|和相位响应(), 并判断系统是否为无失真传输系统。 (2) 当输入为x(t)=sint+sin3t (<t<) 时,求系统的稳态响应。 解:(1) 因为 H ( j) 1 e j2arctan( )
无失真传输系统
若输入信号为x(t),则无失真传输系统的输出信号y(t)为
y(t ) K x(t td )
K为正常数,td是输入信号通过系统后的延迟时间。
无失真传输系统
无失真传输系统的时域特性
h(t ) K (t t d )
h(t) (K) t O td
无失真传输系统的冲激响应
相关文档
最新文档