遗传学知识点归纳(整理)
遗传学的知识点

遗传学的知识点遗传学是生物学的一个重要分支,研究生物个体间遗传信息的传递和变化规律。
它涉及到基因、DNA、染色体等多个方面的知识点。
本文将以这些知识点为基础,介绍遗传学的相关内容。
一、基因的概念和结构基因是生物体内控制遗传信息传递和表达的基本单位。
它由DNA分子组成,位于染色体上。
基因的结构包括启动子、编码区和终止子等部分。
启动子是基因的起始位置,编码区是基因的主要部分,包含了编码蛋白质所需的信息,而终止子则是基因的结束位置。
二、DNA的结构和功能DNA是遗传物质的载体,它是由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳞状嘧啶)组成的双螺旋结构。
DNA的功能主要包括遗传信息的传递和复制。
在细胞分裂过程中,DNA会复制自身,并将遗传信息传递给下一代细胞。
三、染色体的结构和遗传规律染色体是细胞内DNA的组织形式,它包含了许多基因。
人类细胞中有23对染色体,其中一对是性染色体。
染色体的结构分为染色质和着丝粒两部分。
遗传学的研究发现,染色体遵循着孟德尔的遗传规律,即显性和隐性基因的遗传。
四、遗传变异和突变遗传变异是指在基因或染色体水平上的遗传信息的改变。
它包括基因突变、染色体结构变异和染色体数目变异等。
基因突变是指基因序列发生改变,包括点突变、插入突变和缺失突变等。
染色体结构变异是指染色体的部分区域发生改变,如倒位、易位等。
染色体数目变异是指染色体数目发生改变,如三体综合征等。
五、遗传性疾病的研究遗传学的一个重要应用领域是研究遗传性疾病。
遗传性疾病是由基因突变引起的疾病,如先天性心脏病、遗传性癌症等。
通过遗传学的研究,可以了解疾病的遗传方式、致病基因和相关的遗传机制,为疾病的预防和治疗提供依据。
六、遗传工程和转基因技术遗传工程是利用遗传学的原理和方法对生物体进行基因改造的技术。
其中,转基因技术是一种常用的遗传工程方法,它将外源基因导入到目标生物体中,使其具有特定的性状或功能。
转基因技术在农业、医学和工业等领域有着广泛的应用。
遗传学基础知识点整理

遗传学基础知识点整理遗传学是研究生物遗传和变异规律的科学,它对于理解生命的奥秘、生物的进化以及人类的健康等方面都具有极其重要的意义。
以下是一些遗传学的基础知识点:一、遗传物质遗传物质是指生物体细胞内携带遗传信息的物质,目前已知的遗传物质主要是 DNA(脱氧核糖核酸)。
DNA 是由两条反向平行的核苷酸链通过碱基互补配对形成双螺旋结构。
DNA 中的碱基有四种,分别是腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。
A 与 T 配对,G 与 C 配对,这种碱基互补配对原则保证了 DNA 复制和遗传信息传递的准确性。
除了 DNA,在某些病毒中,遗传物质是 RNA(核糖核酸)。
RNA一般为单链结构,其碱基组成与 DNA 略有不同,用尿嘧啶(U)代替了胸腺嘧啶(T)。
二、基因基因是具有遗传效应的 DNA 片段,它是控制生物性状的基本遗传单位。
基因通过指导蛋白质的合成来表达其遗传信息。
基因的表达包括转录和翻译两个过程。
转录是指以 DNA 的一条链为模板,合成 RNA 的过程。
翻译则是在核糖体上,以 mRNA(信使 RNA)为模板,按照密码子的规则合成多肽链,最终形成蛋白质。
基因具有突变性,突变可以是点突变(单个碱基的改变)、插入或缺失突变等。
基因突变可能导致生物性状的改变,有些突变是有害的,可能导致疾病;而有些突变则可能是中性的或有益的,为生物的进化提供了原材料。
三、染色体染色体是细胞核中能被碱性染料染成深色的物质,它由 DNA 和蛋白质组成。
在细胞分裂过程中,染色体的形态和结构会发生明显的变化。
在有丝分裂中,染色体复制后平均分配到两个子细胞中,保证了细胞遗传物质的稳定性和遗传信息的传递。
在减数分裂中,染色体进行特殊的分裂过程,产生配子(精子和卵子),使得配子中的染色体数目减半,当雌雄配子结合形成受精卵时,染色体数目又恢复到正常水平,保证了物种遗传物质的相对稳定和遗传多样性。
人类体细胞中有 46 条染色体,包括 22 对常染色体和 1 对性染色体(XX 为女性,XY 为男性)。
遗传学知识点

遗传学知识点遗传学是研究遗传现象和遗传规律的科学领域,它研究的对象是生物的遗传信息的传递和变异。
本文将介绍一些常见的遗传学知识点,帮助读者更好地理解遗传学的基本原理和应用。
一、遗传物质遗传物质是指决定个体遗传特征的物质,包括DNA和RNA。
DNA 是双螺旋结构的分子,在细胞中起着存储、复制和传递遗传信息的作用。
RNA是由DNA转录而成的单链分子,参与蛋白质的合成。
二、基因基因是指位于染色体上的遗传信息的基本单位。
它决定了一个个体的遗传特征。
人类基因由核苷酸序列组成,它们按照一定顺序排列,编码了蛋白质的合成。
基因的突变和重组是遗传变异的基础。
三、遗传规律遗传规律是指遗传现象中存在的一些普遍规律。
其中最著名的是孟德尔的遗传规律,它包括显性和隐性遗传、基因分离和基因自由组合两个方面。
孟德尔的遗传规律为后来的遗传学发展奠定了基础。
四、遗传性状遗传性状是个体所具备的遗传特征,包括形态、生理、行为等方面的特征。
遗传性状可以通过基因的表达来确定,例如眼睛的颜色、血型等。
有些遗传性状是显性的,即只需一个显性基因即可表达;而有些是隐性的,需要两个隐性基因才能表达。
五、遗传病遗传病是由于基因突变引起的疾病。
遗传病可以分为常染色体遗传和性染色体遗传两类。
常染色体遗传包括显性遗传、隐性遗传和连锁遗传等,而性染色体遗传则包括X连锁和Y连锁遗传。
六、基因工程基因工程是指利用遗传学知识进行人为的基因操作。
它可以用于治疗遗传病、改良农作物、开发新药等方面。
基因工程的应用是遗传学在实践中的重要体现,有着广阔的前景。
七、进化与遗传进化是物种适应环境变化而产生的变异和适应的过程。
遗传是进化的基础,通过遗传物质的传递和变异,物种才能不断适应环境。
遗传学研究了进化的遗传基础和遗传机制。
综上所述,遗传学是一门重要的科学领域,它研究的是生物遗传信息的传递和变异。
遗传学的知识有助于我们理解个体遗传特征的形成原理和遗传病的发生机制。
同时,基因工程等应用也为人类的生活带来了许多福祉。
大一遗传学知识点汇总

大一遗传学知识点汇总遗传学是研究遗传规律和遗传现象的科学,它在生物学领域中占据重要地位。
下面将对大一遗传学的一些重要知识点进行汇总。
一、基本概念1. 遗传学的定义:研究性状在遗传上的规律传递和遗传变异的科学。
2. 基因:遗传物质的基本单位,携带着遗传信息。
3. 染色体:细胞中储存基因的结构,人体细胞中有46条染色体。
4. 纯合和杂合:个体基因型中是否存在相同的等位基因决定了其纯合或杂合状态。
二、遗传规律1. 孟德尔遗传定律:包括单因素遗传定律、二因素遗传定律和多因素遗传定律。
2. 基因型和表型:基因型决定了个体的表型,表型结果受到基因型和环境的共同影响。
3. 显性和隐性:显性基因表现在个体的表型上,而隐性基因只有在纯合状态下才会表现出来。
三、遗传变异1. 突变:某个或某些基因发生突然而明显的变化,引起遗传物质的改变。
2. 染色体畸变:由于染色体异常引起的遗传变异,如染色体缺失、重复、倒位等。
3. 基因重组:染色体上的互换和基因间的重组,使得基因搭配产生新的组合。
四、遗传疾病1. 单基因遗传病:由单一基因突变引起的遗传疾病,如先天性遗传性失明、脊髓性肌萎缩症等。
2. 多因素遗传病:由多个基因和环境因素共同作用引起的遗传疾病,如糖尿病、高血压等。
3. 染色体异常病:由于染色体畸变引起的遗传疾病,如唐氏综合征、克氏综合征等。
五、遗传工程和基因编辑1. PCR技术:聚合酶链式反应,用于扩增DNA片段。
2. 基因工程:通过改变生物体的遗传物质来实现特定的目的,如基因克隆、重组DNA技术等。
3. 基因编辑:通过CRISPR-Cas9技术等手段对生物体的基因进行精确编辑。
六、人类遗传学1. 人类遗传特点:人类遗传物质与其他生物有许多共同之处,但也具有自己的特点。
2. 人类基因组计划:旨在解析出人类基因组的组成和功能,对人类遗传学的研究有重要影响。
3. 遗传咨询:通过遗传咨询师向个体提供有关遗传疾病风险和生育选择等方面的专业建议。
普通遗传学知识点总结

普通遗传学知识点总结1.遗传物质:遗传物质是指携带生物遗传信息的分子,主要包括DNA (脱氧核糖核酸)和RNA(核糖核酸)。
DNA是一个双螺旋结构,由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶)组成。
RNA与DNA类似,但是它是单链结构,胸腺嘧啶被尿嘧啶取代。
2.遗传信息的传递:遗传信息在细胞分裂和有性生殖中传递。
在细胞分裂中,DNA复制产生两个完全相同的子代DNA分子。
在有性生殖中,个体从两个亲本继承一半的染色体,所含的遗传信息也是相对一半。
3.染色体与基因:染色体是由DNA和蛋白质组成的结构,携带了遗传物质。
在人类中,一对染色体含有相同的遗传信息,其中一条来自母亲,另一条来自父亲。
染色体上的基因是决定个体特征的遗传单位。
4.突变:突变是指遗传物质的序列发生改变。
突变可以是点突变(单个碱基的变化),也可以是染色体水平的结构变异。
突变是遗传变异的基础,是进化的驱动因素。
5.隐性与显性遗传:当个体拥有两个相同的等位基因时,该性状呈现隐性遗传;如果拥有两个不同的等位基因,该性状呈现显性遗传。
一个显性基因能够覆盖一个隐性基因的表达。
6.孟德尔的遗传定律:孟德尔是遗传学的奠基人,他通过对豌豆的实验研究提出了遗传定律。
孟德尔的第一定律是说在纯合子(两个相同等位基因的个体)中,一个性状的表达会完全隐蔽掉另一个基因。
第二定律是说杂合子(两个不同等位基因的个体)的后代中,两个等位基因在一代中会以3:1的比例表现出来。
7.基因型与表现型:一个个体的基因型是指它所拥有的基因的组合,而表现型是指基因型在可观察性状上的表现。
8.遗传互作用:一个个体的性状不仅仅取决于它的基因型,还受到环境因素的影响。
遗传互作用是指基因型和环境之间相互影响的过程。
这种互作用可以影响表现型和遗传潜力。
9.基因组学:基因组学研究整个基因组的结构和功能,包括基因组中的基因数量和位置,以及基因的功能和表达方式。
基因组学的发展使得我们能够更好地理解生物的演化和遗传机制。
遗传学知识点总结

遗传学知识点总结一、遗传物质的结构与功能1. DNA的结构DNA是生物体内的遗传物质,是由脱氧核糖核酸(Deoxyribonucleic Acid)组成的长链分子。
DNA的结构包括磷酸基团、脱氧核糖糖分子和碱基,其中碱基包括腺嘌呤(Adenine)、鸟嘌呤(Guanine)、胸腺嘧啶(Thymine)和鸟嘧啶(Cytosine)。
2. DNA的功能DNA携带了生物体的遗传信息,其功能包括遗传信息的存储、复制、传递和表达。
DNA通过蛋白质合成过程中的转录和翻译来表达遗传信息,从而控制生物体的内部结构和功能。
3. RNA的结构与功能RNA是核糖核酸(Ribonucleic Acid)的缩写,其结构与DNA类似,但在碱基配对中胸腺嘧啶被尿嘧啶(Uracil)代替。
RNA主要包括mRNA、tRNA和rRNA等,具有遗传信息传递和调控蛋白质合成的功能。
二、遗传信息的传递与表达1. 遗传信息的传递遗传信息的传递是指生物体将DNA携带的遗传信息传递给下一代的过程,其中包括有丝分裂和减数分裂两种方式。
有丝分裂是体细胞的有丝分裂,其目的是细胞增殖;减数分裂是生殖细胞的有丝分裂,其目的是产生生殖细胞。
2. 遗传信息的表达遗传信息的表达是指DNA携带的遗传信息通过转录和翻译的过程表达为蛋白质的过程。
蛋白质是生物体内大部分功能酶和结构蛋白的主要组成部分,控制着生物体的内部结构和功能。
三、遗传变异与突变1. 遗传变异遗传变异是指生物体在遗传信息传递和表达过程中发生的基因型、表现型及遗传频率的变化。
遗传变异是生物种群适应环境变化及进化的基础。
2. 突变突变是指生物体的DNA分子发生的永久性的基因突变,其结果是导致个体遗传信息的改变,从而影响表型的性状。
突变是造成遗传变异的重要原因之一。
四、遗传疾病1. 遗传疾病的分类遗传疾病是由单基因或多基因遗传缺陷引起的一类疾病,包括单基因遗传病、多基因遗传病、细胞遗传病和染色体遗传病等。
医学遗传知识点总结

医学遗传知识点总结一、基因和染色体1. 基因的概念基因是生物体内控制遗传的分子单位,它携带着遗传信息,决定了生物体的性状。
基因是DNA分子中的一段序列,通过编码蛋白质实现遗传信息的传递。
2. 染色体的概念染色体是细胞内的遗传物质的结构单位,它携带着基因,与遗传性状的表现密切相关。
在人类细胞中,有23对染色体,其中一对性染色体决定了个体的性别,其余22对为常染色体。
3. 基因突变基因突变是指基因序列发生变化的现象,它是遗传病发生的重要原因。
基因突变可以分为点突变、缺失突变、插入突变等多种类型,导致了基因功能的改变,进而影响了生物体的性状。
二、遗传病的类型及病因1. 单基因遗传病单基因遗传病是由单一基因突变所导致的疾病,其遗传规律符合孟德尔遗传定律。
常见的单基因遗传病包括:囊性纤维化、血友病、地中海贫血等。
这类遗传病的发生与家族史密切相关,患者的家庭成员易受到影响。
2. 多因素遗传病多因素遗传病是由多个基因和环境因素共同作用所导致的疾病。
这类遗传病的发病机制复杂,不仅受到遗传因素的影响,还受到环境因素的影响,如胎儿期的发育环境、饮食习惯、生活方式等。
例如,2型糖尿病、高血压、心脏病等都是多因素遗传病。
3. 染色体异常疾病染色体异常疾病是由染色体结构和数量的异常所导致的疾病,常见的有唐氏综合征、爱德华氏综合征、克莱因费尔特病等。
这类疾病通常伴随着严重的身体和智力发育异常,对患者的生活和生存造成了严重的影响。
三、医学遗传学的诊断方法1. 家族史调查家族史调查是对患者家庭成员的遗传信息进行收集和分析,可以帮助医生了解患者的遗传风险。
通过分析家族史,可以发现患者是否存在遗传性疾病,以及该疾病是否具有家族聚集性。
2. 分子遗传学诊断分子遗传学诊断是利用分子生物学技术对患者的基因进行检测,以发现基因突变引起的遗传病。
常见的分子遗传学诊断方法包括PCR技术、基因测序技术、DNA微阵列技术等,这些技术可以准确地检测出基因的突变信息。
遗传学知识点总结

普通遗传学知识点总结绪论什么是遗传,变异?遗传、变异与环境的关系?(1).遗传(heredity):生物亲子代间相似的现象。
(2).变异(variation):生物亲子代之间以及子代不同个体之间存在差异的现象。
遗传和变异的表现与环境不可分割,研究生物的遗传和变异,必须密切联系其所处的环境。
生物与环境的统一,这是生物科学中公认的基本原则。
因为任何生物都必须具有必要的环境,并从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。
遗传学诞生的时间,标志?1900年孟德尔遗传规律的重新发现标志着遗传学的建立和开始发展)第二章遗传的细胞学基础1.同源染色体和非同源染色体的概念?答:同源染色体:形态和结构相同的一对染色体;异源染色体:这一对染色体与另一对形态结构不同的染色体,互称为非同源染色体。
2.染色体和姐妹染色单体的概念,关系?染色体:在细胞分裂过程中,染色质便卷缩而呈现为一定数目和形态的染色体姐妹染色单体:有丝分裂中,由于染色质的复制而形成的物质3.染色质和染色体的关系?染色体和染色质实际上是同一物质在细胞分裂周期过程中所表现的不同形态。
4.不同类型细胞的染色体/染色单体数目?(根尖、叶、性细胞,分裂不同时期(前期、中期)的染色体数目的动态变化?)答:有丝分裂:间期前期中期后期末期染色体数目: 2n 2n 2n 4n 2nDNA分子数: 2n-4n 4n 4n 4n 2n染色单体数目:0-4n 4n 4n 0 0减数分裂:*母细胞初级*母细胞次级*母细胞 *细胞染色体数目: 2n 2n n(2n) nDNA分子数: 2n-4n 4n 2n n染色单体数目: 0-4n 4n 2(0) 05.有丝分裂和减数分裂的特点?遗传学意义?在减数分裂过程中发生的重要遗传学事件(交换、交叉,同源染色体分离,姐妹染色单体分裂?基因分离?)特点:细胞进行有丝分裂具有周期性。
即连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止,为一个细胞周期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传学教学大纲讲稿要点第一章绪论关键词:遗传学 Genetics遗传 heredity变异 variation一.遗传学的研究特点1. 在生物的个体,细胞,和基因层次上研究遗传信息的结构,传递和表达。
2. 遗传信息的传递包括世代的传递和个体间的传递。
3. 通过个体杂交和人工的方式研究基因的功能。
“遗传学”定义遗传学是研究生物的遗传与变异规律的一门生物学分支科学。
遗传学是研究基因结构,信息传递,表达和调控的一门生物学分支科学遗传 heredity生物性状或信息世代传递的现象。
同一物种只能繁育出同种的生物同一家族的生物在性状上有类同现象变异variation生物性状在世代传递过程中出现的差异现象。
生物的子代与亲代存在差别。
生物的子代之间存在差别。
遗传与变异的关系遗传与变异是生物生存与进化的基本因素。
遗传维持了生命的延续。
没有遗传就没有生命的存在,没有遗传就没有相对稳定的物种。
变异使得生物物种推陈出新,层出不穷。
没有变异,就没有物种的形成,没有变异,就没有物种的进化,遗传与变异相辅相成,共同作用,使得生物生生不息,造就了形形色色的生物界。
二. 遗传学的发展历史1865年Mendel发现遗传学基本定律。
建立了颗粒式遗传的机制。
1910年Morgan建立基因在染色体上的关系。
1944年Avery证明DNA是遗传物质。
1951年Watson和Crick的DNA构型。
1961年Crick遗传密码的发现。
1975年以后的基因工程的发展。
三. 遗传学的研究分支1. 从遗传学研究的内容划分进化遗传学研究生物进化过程中遗传学机制与作用的遗传学分支科学生物进化的机制突变和选择有害突变淘汰和保留有利突变保留与丢失中立突变 DNA多态性发育遗传学研究基因的时间,空间,剂量的表达在生物发育中的作用分支遗传学。
特征:基因的对细胞周期分裂和分化的作用。
应用重点干细胞的基因作用。
转基因动物克隆动物免疫遗传学研究基因在免疫系统中的作用的遗传学分支。
重点不是研究免疫应答的过程,而是研究基因在抗体和抗原形成和改变中的作用。
2. 从遗传学研究的层次划分群体遗传学研究基因频率的改变的遗传学分支。
群体遗传学基因结构和基因率的改变例题群体中存在一个隐性有害基因,基因频率是万分之一。
如果实行优生政策,不准该个体结婚或生育。
基因率降低到十万分之一时,需要多少代?细胞遗传学研究生物在细胞水平的遗传结构和功能的遗传学分支学科。
重点:染色体结构合数目的变化与生物表型的关系。
进展:细胞表面抗原的形成和改变,细胞信号传导过程中基因的作用。
目前的实验:细胞表达系统。
例如:无籽西瓜的染色体组成.普通西瓜 2n=22诱变成功的4倍体作母本 X 2倍体父本杂交,获得3倍体西瓜,在形成生殖细胞时,不能正常减数分裂,所以成为无籽西瓜。
分子遗传学研究生物基因组结构和功能的遗传学分支学科。
基因工程生物制药分子生物学技术3. 从遗传学研究的对象划分微生物遗传学以微生物为研究对象的遗传学分支。
重点研究病毒,细菌,真菌的基因结构,基因功能。
基因工程的载体,受体等人类遗传学研究人类遗传和变异规律的分支科学。
人类性状的遗传分析遗传病的分布和发生机理遗传病的诊断基因治疗遗传学疾病人类3千多种,涉及上万个基因。
染色体疾病基因突变疾病,线粒体疾病,孟德尔遗传病,多基因遗传病.1930年色盲基因第一个定位,1974年kappa轻链缺乏症基因第一个克隆。
目前已定位孟德尔遗传病基因1600多,克隆了其中的940多种肿瘤抑制基因(antioncogene)Rb del 13q14 27个exon, 12 个intron视网膜母细胞瘤克隆的概念与类型四.克隆1.Clone源于希腊文klon,嫩枝的意思,是指从树上取下嫩枝,栽在地上以成另一棵树。
是细胞、植物、动物或人的精确的遗传复制。
名词,一群具有相同基因型的微生物。
2.哺乳动物细胞克隆技术,又称哺乳动物的核移植或无性繁殖技术;它是通过特殊的人工手段(显微操作,电融合等)对哺乳动物特定发育阶段的核供体(胚胎分裂球或体细胞核),及相应的核受体(去核的受精卵或成熟的卵母细胞)不经过有性繁殖过程,进行体外重构并通过重构胚的胚胎移植,从而达到扩繁同基因型哺乳动物种群的目的。
3.克隆技术存在的问题动物克隆技术虽然取得了一定的进展,但该技术目前还很不完善。
存活率低是当今核移植技术的最大缺陷。
克隆羊的端粒较同年羊短。
可能会减少寿命。
基因组印记现象在哺乳动物的发育中普遍存在,基因组印记与动物克隆技术的成功及不足有何关系值得深入研究。
核移植过程中产生的个体突变频率高。
第二章基因的概念和结构第一节孟德尔遗传分析关键词:显性 dominant 隐性 recessive基因型 genotype 表型 phenotype分离定律 law of segragation自由组合定律 law of independent assortment复等位基因(multiple gene)顺反子(cistron)超基因(super gene)假基因 (pseudo gene)可动基因( mobile gene)染色体外基因复等位基因(multiple gene)连锁(linkage)交换(crossing over)重组(recombination)•插入序列 inserted sequence,IS•转座子 transposon,Tn一.分离定律实验: P : 红花 X 白花基因型 CC cc配子 C cF1代红花基因型 Cc配子 C,cF2代红花白花基因型 CC,Cc cc比例 3 : 1分离定律:杂合体的一对等位基因在形成配子时互相不影响地分到雌雄配子中去的规律。
基础概念杂合体(heterozygote):基因座上两个不同的等位基因的个体。
纯合体(homozygote) :基因座上两个相同的等位基因的个体。
回交(back cross) :杂交的子一代与亲代的交配形式。
测交(test cross) :杂合个体与纯合隐性个体的交配形式。
性状(character):生物的形态,结构,生理功能过程的特征。
显性(dominant) :杂合子生物表现出来的性状隐性(recessive) :杂合子生物被掩盖的性状。
等位基因(allile):同源染色体上相对位置上的决定同种性状的基因。
表型(phenotype):生物个体形成的性状表现。
基因型(genotype) :生物个体的基因组成孟德尔假设1.遗传性状由遗传因子决定。
2.遗传因子是成对存在得。
3.生殖细胞中具有成对因子中的一个。
4.每对因子分别来自雌雄亲代的生殖细胞。
5.形成生殖细胞时,成对因子相互分离。
6.生殖细胞的结合是随机的。
7.遗传因子有显隐性之分。
孟德尔分离比实现的条件1.杂合体的两种配子在形成配子时数目是相等的。
2. 两种配子结合是随机的。
3.子二代基因型个体存活率是相等的。
4.显性是完全的。
二.孟德尔自由组合定律实验:黄,满 X 绿,皱基因型 YYRR yyrr配子 YR yrF1代黄满基因型 YyRr配子 YR Yr yR yrF2代黄满黄皱绿满绿皱基因型 Y_R_ Y_rr yyR_ yyrr表型比: 9 : 3 : 3 : 1孟德尔自由组合定律:两对非同源色体上的非等位基因在形成配子时,各自独立地分开和组合,形成四种基因型的配子。
在杂交时四种配子随机结合,形成四种表型,9种基因型的群体。
多对非等位基因分析例题:•AABBCC X aabbcc 子一代自交,子二代中,表型为A-B-C-的比例是多少?1.子一代自交,子二代中,基因型为AaBbCc的比例是多少?2.子一代自交,子二代中,杂合体的比例是多少?一个基因决定了一个性状。
一个性状并不一定由一个基因所决定。
事实上,很多性状由一系列基因所决定。
当考察性状的遗传方式时,是以在其它基因相同的条件下,仅仅列出了差别的基因。
例题一对表型正常的夫妇生有一个有病的孩子和一个表型正常的孩子。
1.再生一个是有病孩子的机会是多少。
2.如果表型正常儿子与一个另一个同样类型的表型正常女子结婚,生有病子女的机会是多少。
如果一个表型正常,等位基因是杂合的男子与一个纯合隐性基因的病女子结婚,生有5个孩子,其中无病子女的机会是多少,3病2正常的机会是多少。
孟德尔分离定律的普遍性适用于单基因遗传性状的分析例如:人类的白化病;RFLP (DNA限制性内切酶片段长度多态性。
)EcoR V 酶切人体基因组DNA,与苯丙氨酸羟化酶基因探针杂交,获得3Okb和25kb的两种类型,父母是正常表型,两个孩子一个是表型正常30kb/25kb杂合体一个是有病个体,25kb/25kb纯合体,推测,25kb可能与有病基因连锁。
孟德尔定律数据的统计处理适合度测验(goodness of fit)实验实际比数与理论比数适合的程度。
卡平方测验适合度孟德尔定律的适用范围•并显性:当一对等位基因杂合时,两个基因所控制的性状同时表达的现象。
•外显率-带有显性基因个体表现出所控制的性状的实际数与理论数之比。
第二节连锁遗传分析F1杂合子形成配子时,两对基因有保持亲代原来组合的倾向,并且这种倾向与显隐性无关。
摩尔根的试验摩尔根根据大量实验结果,提出连锁交换定律,即遗传的第三定律:处在同一染色体上的两个或两个以上基因遗传时,联合在一起的频率大于重新组合的频率连锁(linkage):同一亲本的基因趋向于联合交换(crossing over):同一亲本的基因相互分开,重新组合重组(recombination):由于同源染色体上的不同等位基因间的重新组合,产生不同于亲本的类型重组频率 recombination frequency, RF重组频率的计算:重组频率(RF):重组型数目/(亲本型数目+重组型数目)1%重组值为一个单位,称一个厘摩,记作1个CM。
基因在染色体上的距离以重组值为根据,画出的基因距离图称遗传学图(genetic map)。
三点测交(three point tess cross)关于连锁和交换的几个实例用RFLP做Arabidopsis遗传图:两个亲本分别用不同限制性内切酶做酶切,并分别用探针A(蓝色)和探针B(绿色)做Southern杂交。
若两种RFLP自由分离,F2代中亲本型和重组型出现频率相同(Case I);否则,若二者紧密连锁,重组型出现频率将大大小于亲本型出现频率(Case II)根据重组频率可以计算遗传标记RFLP间的图距。
应用连锁遗传分析做疾病的产前基因诊断β地中海贫血是一种常见的遗传疾病,重症型往往造成死亡。
可通过产前诊断预防患儿的出生。
利用几种限制酶对几个地中海贫血家系的患者及其父母进行RFLP分析。
根据所得结果,可选用特定的探针和限制性内切酶对胎儿做产前基因分析。