海南省昌江民族中学七年级(下)第三次月考数学试卷

合集下载

七年级下学期数学第三次月考试题卷(含答案)

七年级下学期数学第三次月考试题卷(含答案)

七年级下学期数学第三次月考试题卷满分:150分 考试用时:120分钟范围:第五章《相交线与平行线》~第八章《二元一次方程组》 班级 姓名 得分一、选择题(本大题共12小题,每小题4分,共48.0分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目答案标号涂黑、涂满)1. 如图,直线a ,b 相交于点O ,如果∠1+∠2=60°,那么∠3是( )A. 150°B. 120°C. 60°D. 30°2. 实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是( )A. a >bB. −a <bC. a >−bD. −a >b3. 在平面直角坐标系中,点M(−1,3),先向右平移2个单位,再向下平移4个单位,得到的点的坐标为( )A. (−3,−1)B. (−3,7)C. (1,−1)D. (1,7)4. 我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x 只,兔有y 只,则根据题意,下列方程组中正确的是( )A. {x +y =352x +4y =94B. {x +y =354x +2y =94C. {2x +y =35x +4y =94D. {x +4y =352x +y =945. 下列各式中是二元一次方程的是( ) A. 3x 2−2y =7 B. 2x +y =5 C. 1x +2=3y D. x −3=4y 26. 在平面直角坐标系中,点A(1,0),B(3,2),将线段AB 平移后得到线段CD ,若点A的对应点C(2,−1),则点B 的对应点D 的坐标为( )A. (4,1)B. (5,3)C. (5,1)D. (2,0)7. 9的平方根是( )A. 3B. ±3C. −3D. 98. 如图,经过直线a 外一点O 的4条直线中,与直线a 相交的直线至少有( )A. 4条B. 3条C. 2条D. 1条9. 下列说法正确的个数有( )①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④若a//b ,b//c ,则a//c .A. 1个B. 2个C. 3个D. 4个10. 已知√a −1+|b +2|=0,则√(a +b)2的值为( )A. 0B. 2019C. −1D. 111. 课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(−2,0)表示,小军的位置用(0,1)表示,那么你的位置可以表示成( )A. (2,3)B. (4,5)C. (3,2)D. (2,1)12. 甲、乙两位同学在解关于x 、y 的方程组{2x +ay =1bx −y =2时,甲同学看错a 得到方程组的解为{x =3y =4,乙同学看错b 得到方程组的解为{x =2y =−3,则x +y 的值为( )A. 0B. 14C. 34D. 54二、填空题(本大题共4小题,共16.0分)13. 打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元.打折之后,买500件A 商品和500件B 商品用了9600元,比不打折少花 元。

七年级第二学期 第三次月考检测数学试题

七年级第二学期 第三次月考检测数学试题

七年级第二学期 第三次月考检测数学试题一、选择题1.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m+n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1 B .m =-1,n =1C .14m ,n 33==- D .14,33m n =-=2.已知方程组31331x y mx y m +=+⎧⎨+=-⎩的解满足0x y +>,则m 取值范围是( )A .m >1B .m <-1C .m >-1D .m <13.若方程6kx ﹣2y=8有一组解32x y =-⎧⎨=⎩,则k 的值等于(( )A .23-B .23C .16-D .164.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ). A .5352x y x y +=⎧⎨+=⎩B .5253x y x y +=⎧⎨+=⎩C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩5.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( ) A .30008%11%300010%x y x y +=⎧⎨+=⨯⎩B .30008%11%3000(110%)x y x y +=⎧⎨+=+⎩C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩D .30008%11%10%x y x y +=⎧⎨+=⎩6.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为( ).A .7384x y x y -=⎧⎨+=⎩B .7384x yx y +=⎧⎨-=⎩C .8374x y x y -=⎧⎨+=⎩D .8374x yx y +=⎧⎨-=⎩7.已知方程组32453x y ax y -=⎧⎨+=⎩的解x 与y 互为相反数,则a 等于( )A .3B .﹣3C .﹣15D .15 8.已知10a b +=,6a b -=,则22a b -的值是( )A .12B .60C .60-D .12-9.现有如图(1)的小长方形纸片若干块,已知小长方形的长为a,宽为b.用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm,则图(3)中阴影部分面积与整个图形的面积之比为()A.15B.16C.17D.1810.某校开展社团活动,参加活动的同学要分组活动,若每组7人,则余3人;若每组8人,则少5人;求课外活动小组的人数x和分成的组数y,可列方程组为( )A.7385y xy x=-⎧⎨=+⎩B.7385y xy x=+⎧⎨+=⎩C.7385x yx y+=⎧⎨-=⎩D.7385y xy x=+⎧⎨=+⎩二、填空题11.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.12.某公园的门票价格如表:购票人数1~5051~100100以上门票价格13元/人11元/人9元/人现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b(a≥b).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a=_____;b=_____.13.已知21xy=⎧⎨=⎩,是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则m+3n的平方根为______.14.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.15.蜂蜜具有消食、润肺、安神、美颜之功效,是天然的健康保健佳品.秋天即将来临时,雪宝山土特产公司抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,该公司得到的总利润率为_____. 16.解三元一次方程组时,先消去z ,得二元一次方程组,再消去y ,得一元一次方程2x =3,解得x =,从而得y =_____,z =____.17.从﹣2,﹣1,0,1,2,3这六个数中,任取一个数作为a 的值,恰好使得关于x 、y的二元一次方程组2x y ax y -=⎧⎨+=⎩有整数解,且方程ax 2+ax+1=0有实数根的概率是_____.18.两位同学在解方程组时,甲同学正确地解出,乙同学因把c 写错而解得,则a=_____,b=_____,c=_____.19.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (241)=_________,F (635)=___________ ;(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:()()F s k F t =,当F (s )+F (t )=18时,则k 的最大值是___. 20.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km .三、解答题21.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由. 22.[阅读材料]善于思考的小明在解方程组253(1)4115(2)x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法:解:将方程(2)变形:4105x y y ++=,即()2255(3)x y y ++=,把方程(1)代入(3)得:235y ⨯+=, 所以1y =-,将1y =-代入(1)得4x =, 所以原方程组的解为41x y =⎧⎨=-⎩.[解决问题](1)模仿小明的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩,(2)已知x ,y 满足方程组2222321250425x xy y x xy y ⎧-+=⎨++=⎩,求224x y +的值. 23. 学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个.某商店有两种优惠活动,如图所示.请根据以上信息,购进A 种魔方多少个时,两种活动费用相同?24.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载) 车型甲 乙 丙 汽车运载量(吨/辆) 5 8 10 汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送)25.a取何值时(a为整数),方程组2420x ayx y+=⎧⎨-=⎩的解是正整数,并求这个方程组的解.26.(1)阅读下列材料并填空:对于二元一次方程组4354{336x yx y+=+=,我们可以将x,y的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x ay b==,用数表可表示为10)01ab(.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x yx y+=+=的过程.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据二元一次方程的概念列出关于m、n的方程组,解之即可.【详解】∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴22111m nm n--=⎧⎨++=⎩即23m nm n-=⎧⎨+=⎩,解得:11mn=⎧⎨=-⎩,故选:A.【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.2.C解析:C【分析】直接把两个方程相加,得到12mx y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】解:31331x y m x y m +=+⎧⎨+=-⎩,直接把两个方程相加,得: 4422x y m +=+,∴12mx y ++=, ∵0x y +>, ∴102m+>, ∴1m >-; 故选:C. 【点睛】本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12mx y ++=,然后进行解题. 3.A解析:A 【分析】根据方程的解满足方程,课的关于k 的方程,根据解方程,可得答案. 【详解】 解:由题意,得 6×(-3)k-2×2=8,解得k=-23, 故选A . 【点睛】本题考查了二元一次方程,利用方程的解满足方程得出关于的k 方程是解题关键.4.A解析:A 【分析】根据大小桶所盛酒的数量列方程组即可. 【详解】∵5个大桶加上1个小桶可以盛酒3斛, ∴5x+y=3,∵1个大桶加上5个小桶可以盛酒2斛, ∴x+5y=2,∴得到方程组5352x y x y +=⎧⎨+=⎩,故选:A. 【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.5.A解析:A 【分析】根据定量可以找到两个等量关系:现在初中在校人数+现在小学在校人数=3000;一年后初中在校增加的人数加一年后小学在校增加的人数=一年后全校学生增加的人数,列出方程即可解答 【详解】设这所学校现初中在校生x 人,小学在校生y 人, 则30008%11%300010%x y x y +=⎧⎨+=⨯⎩故选A 【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程6.C解析:C 【分析】设人数有x 人,鸡的价钱是y 钱,依据题意列方程组,即可完成求解. 【详解】设人数有x 人,鸡的价钱是y 钱 依据题意得:8374x yx y -=⎧⎨+=⎩即8374x y x y -=⎧⎨+=⎩故选:C . 【点睛】本题考查了二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.7.C解析:C 【分析】x 与y 互为相反数,得y=-x ,带入到方程组32453x y ax y -=⎧⎨+=⎩消去y ,得到关于x 、a 的二元一次方程组即可. 【详解】由x 与y 互为相反数,得y=-x ,代入方程组32453x y ax y -=⎧⎨+=⎩,得32453x x a x x +=⎧⎨-=⎩,解得:315x a =-⎧⎨=-⎩,故选:C . 【点睛】本题主要考查二元一次方程组的解,一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.8.B解析:B 【分析】先利用加减消元法解方程组106a b a b +=⎧⎨-=⎩可得a 、b 的值,再代入求值即可得.【详解】由题意得:106a b a b +=⎧⎨-=⎩,解得82a b =⎧⎨=⎩,则22222864460a b -==-=-, 故选:B . 【点睛】本题考查了解二元一次方程组、有理数的乘方和减法运算,掌握方程组的解法是解题关键.9.B解析:B 【分析】观察图③可知3个小长方形的宽与1个小长方形的长的和等于大长方形的宽,小长方形的4个长等于小长方形的3个长与3个宽的和,可列出关于a ,b 的方程组,解方程组得出a ,b 的值;利用a ,b 的值分别求得阴影部分面积与整个图形的面积,即可求得影部分面积与整个图形的面积之比. 【详解】解:根据题意、结合图形可得:330433a b a a b+=⎧⎨=+⎩, 解得:155a b =⎧⎨=⎩,∴阴影部分面积223()310300=-=⨯=a b , 整个图形的面积304304151800=⨯=⨯⨯=a , ∴阴影部分面积与整个图形的面积之比300118006==, 故选B . 【点睛】本题考查了二元一次方程组的应用,理解题意并利用大长方形的长与宽和小长方形的关系建立二元一次方程组是解题的关键.10.A解析:A 【解析】分析:根据题意确定等量关系为:若每组7人,则余3人;若每组8人,则少5人,列方程组求解即可. 详解:根据题意可得:7385y x y x =-⎧⎨=+⎩.故选:A.点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是确定问题的等量关系.二、填空题11.【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于解析:【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于a ,b ,c 方程组,根据a ,b ,c 均为正整数,求解即可. 【详解】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得()()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩,即25217251942a b cb c++=⎧⎨+=⎩,其整数解为42372521231225a nb nc n=-⎧⎪=-⎨⎪=-⎩(其中n为整数),又∵a,b,c均是正整数,易得n=1.所以546 abc=⎧⎪=⎨⎪=⎩.∴150a+60b+40c=150×5+60×4+40×6=1230.故答案为:1230.另解:由上9b+c=42,得知b=1,2,3,4.列举符合题意的解即可.【点睛】本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a,b,c,均为正整数.12.40【分析】根据题中a、b的求知范围,可得a+b的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】解:∵ ,,∴1≤b≤50,51<a≤100,若a+解析:40【分析】根据题中a、b的求知范围,可得a+b的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】解:∵12903991313=,129031171111=,∴1≤b≤50,51<a≤100,若a+b≤100时,由题意可得:13111290 11()990b aa b+=⎧⎨+=⎩,∴60150ab=-⎧⎨=⎩(不合题意舍去),若a+b>100时,由题意可得13111290 9(990b aa b+=⎧⎨+=⎩),∴7040 ab=⎧⎨=⎩,故可70,40.【点睛】本题主要考查二元一次方程组的应用,根据题意找到等量关系式是解题的关键.13.±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把21xy=⎧⎨=⎩代入方程组得:2821m nn m+=⎧⎨-=⎩①②,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.14.5【分析】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2解析:5【分析】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2分列出代数式,即可求出答案.【详解】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,由题意可得:5x+15y+40z=10(x﹣3)+20(y﹣2)+30(z﹣1)①,z=y﹣7 ②;由①得:x+y﹣2z=20 ③,将②代入③得:x+y﹣2(y﹣7)=20,解得:x﹣y=6,即原来一等奖比二等奖平均分多6分,∵调整后一等奖平均分降低3分,二等奖平均分降低2分,∴(x﹣3)﹣(y﹣2)=(x﹣y)﹣1=6﹣1=5(分),即调整后一等奖比二等奖平均分数多5分,故答案为:5.【点睛】本题考查了三元一次方程组的应用.找出等量关系并列出方程是解答本题的关键.15.19%【分析】设甲种蜂蜜每瓶x元,乙种蜂蜜每瓶y元,丙种蜂蜜每瓶z元,首先根据题中所给的两种情况分别列式求出4z=3y+6x①和z=3x②,然后可得y=2x,最后列式求售出的甲、乙、丙蜂蜜瓶数之解析:19%【分析】设甲种蜂蜜每瓶x元,乙种蜂蜜每瓶y元,丙种蜂蜜每瓶z元,首先根据题中所给的两种情况分别列式求出4z=3y+6x①和z=3x②,然后可得y=2x,最后列式求售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时获得的总利润即可.【详解】解:设甲种蜂蜜每瓶x元,乙种蜂蜜每瓶y元,丙种蜂蜜每瓶z元,当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,设甲种蜂蜜卖出a瓶,则:10%320%30%22%3ax ay azax ay az,整理得:4z=3y+6x①,当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,设丙种蜂蜜卖出b瓶,则:310%220%30%20%32bx by bzbx by bz,整理得:z=3x②,由①②可得:y=2x,∴当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,设丙种蜂蜜卖出c瓶,则该公司得到的总利润率为:510%620%30%0.5 1.20.30.5 2.40.9100%19%56565123cx cy cz x y z x x x cx cy czx y z x x x , 故答案为:19%.【点睛】本题考查了三元一次方程组的应用,利用利润、成本与利润率之间的关系列式计算是解题的关键. 16.76, 56.【解析】【分析】逐项代入求值即可解题.【详解】解:将x =32代入x+3y=5得,y=76,将x =32,y=76代入x+2y-z=3得z=56,∴y=76, 解析:, .【解析】【分析】逐项代入求值即可解题.【详解】解:将x =代入x+3y=5得,y=,将x =,y=代入得z=, ∴y=, z=.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉代入求值的方法是解题关键. 17.【分析】从6个数中找到使得关于x 、y 的二元一次方程组有整数解,且方程ax2+ax+1=0有实数根的a 的个数后利用概率公式求解即可.【详解】解:能使得使得关于x 、y 的二元一次方程组有整数解的解析:16【分析】从6个数中找到使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的个数后利用概率公式求解即可.【详解】解:能使得使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解的a 的值有﹣2,0,2共3个数.当a =0时,方程ax 2+ax +1=0无实数根,∴a ≠0.∵方程ax 2+ax +1=0有实数根,∴b 2﹣4ac =a 2﹣4a ≥0且a ≠0,解得:a <0或a ≥4,∴使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根的a 的值只有﹣2,共1个,∴P (使得关于x 、y 的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax +1=0有实数根)=16. 故答案为16. 【点睛】本题考查了概率公式的应用,二元一次方程组的解以及根的判别式.用到的知识点为:概率=所求情况数与总情况数之比. 18.﹣2 ﹣2 ﹣2【解析】分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=解析:﹣2 ﹣2 ﹣2【解析】分析:先把代入得 ,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案. 解答:解:把代入, 得,解得,c=-2. 再把代入ax+by=-2, 得,解得: , 所以a=-2,b=-2,c=-2.故答案为-2,-2,-2.点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.19.14【解析】分析: (1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18解析:14 54【解析】分析:(1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=()()F sF t中,找出最大值即可.详解::(1)F(241)=(421+142+214)÷111=7;F(635)=(365+536+653)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴16xy=⎧⎨=⎩或25xy=⎧⎨=⎩或34xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩或61xy=⎧⎨=⎩.∵s是“相异数”,∴x≠2,x≠3.∴y≠1,y≠5.∴16xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩,∴()()612F sF t⎧=⎪⎨=⎪⎩或()()99F sF t⎧=⎪⎨=⎪⎩或()()108F sF t⎧=⎪⎨=⎪⎩,∴k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,∴k 的最大值为54. 点睛: 本题考查了二元一次方程的应用,解题的关键是:(1)根据F (n )的定义式,求出F (241)、F (635)的值;(2)根据s=100x+32、t=150+y 结合F (s )+F (t )=18,找出关于x 、y 的二元一次方程.20.3750【解析】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为,安装在后轮的轮胎每行驶1km 的磨损量为.又设一对新轮胎交换位置前走了xkm ,交换位置后走了ykm .分别以解析:3750【解析】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了xkm ,交换位置后走了ykm .分别以一个轮胎的总磨损量为等量关系列方程,有+=50003000+=50003000kx ky k ky kx k ⎧⎪⎪⎨⎪⎪⎩,两式相加,得()()250003000k x y k x y k +++=,则x+y=21150003000+=3750(千米). 故答案为:3750. 点睛:本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.三、解答题21.(1)A 的单价30元,B 的单价15元(2)购买A 奖品8个,购买B 奖品22个,花费最少【分析】(1)设A 的单价为x 元,B 的单价为y 元,根据题意列出方程组3212054210x y x y +=⎧⎨+=⎩,即可求解;(2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元,根据题意得到由题意可知,1(30)3z z ≥-,3015(30)45015W z z z =+-=+,根据一次函数的性质,即可求解;【详解】 解:(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得3212054210x y x y +=⎧⎨+=⎩, 3015x y =⎧∴⎨=⎩, ∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元, 由题意可知,1(30)3z z ≥-, 152z ∴≥, 3015(30)45015W z z z =+-=+,当=8z 时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少;【点睛】本题考查二元一次方程组的应用,一次函数的应用;能够根据条件列出方程组,将最优方案转化为一次函数性质解题是关键.22.(1)原方程组的解为32x y =⎧⎨=⎩;(2)22420x y += 【分析】(1)根据题意,利用整体的思想进行解方程组,即可得到答案;(2)根据题意,利用整体的思想进行解方程组,即可得到答案.【详解】解:()13259419x y x y -=⎧⎨-=⎩①② 将方程②变形得:()332219x y y -+=③把方程①代入③得:35219y ⨯+=,所以2,y =将2y =代入①得3x =,所以原方程组的解为32x y =⎧⎨=⎩;()22222321250425x xy y x xy y ⎧-+=⎨++=⎩①②, 把方程①变形,得到223(4)550x xy y xy ++-=③,然后把②代入③,得325550xy ⨯-=,∴5xy =,∴22425520x y +=-=;【点睛】本题考查了方程组的“整体代入”的解法.整体代入法,就是变形组中的一个方程,使该方程左边变形为另一个方程的左边的倍数加一个未知数的形式,整体代入,求出一个未知数,再代入求出另一个未知数.23.(1)A 种魔方的单价为20元/个,B 种魔方的单价为15元/个;(2)购进A 种魔方45个时,两种活动费用相同.【解析】【分析】(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据“购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进A 种魔方m 个(0<m ≤50),则购进B 种魔方(100-m )个,根据图片描述列出两种活动方案需花费的总价格,使得两种价格相等求得m .【详解】解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意,得 2613034x y x y +=⎧⎨=⎩解此方程组,得2015x y =⎧⎨=⎩答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个,则购进B 种魔方(100-m)个,根据题意,得0.8×20m +0.4×15(100-m)=20m +15(100-m -m),解此方程,得m =45.答:购进A 种魔方45个时,两种活动费用相同.【点睛】本题考查了二元一次方程组的应用、解题的关键是找准等量关系,列出关于x 、y 的二元一次方程组.24.(1)甲8辆,乙10辆;(2)甲2辆,乙10辆,丙3辆 或 甲4辆,乙5辆,丙6辆.【解析】【分析】(1)设需甲车x辆,乙车y辆列出方程组即可.(2)设甲车有a辆,乙车有b辆,则丙车有(15-a-b)辆,列出等式.【详解】(1)设需要甲种车型x辆,乙种车型y辆,根据题意得:解得:.答:需要甲种车型8辆,乙种车型10辆.(2)设甲车有a辆,乙车有b辆,则丙车有(15-a-b)辆,由题意得:5a+8b+10(15-a-b)=120,化简得5a+2b=30,即a=6-b,∵a、b、15-a-b均为正整数,∴b只能等于5或10,当b=5时,a=4,15-a-b=6,当b=10时,a=2,15-a-b=3∴甲车2辆,乙车10辆,丙车3辆或甲4辆,乙5辆,丙6辆.【点睛】本题考查二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出方程即可求解.利用整体思想和未知数的实际意义通过筛选法可得到未知数的具体解,这种方法要掌握.25.当a=0时,21xy=⎧⎨=⎩;当a=-2时,42xy=⎧⎨=⎩;当a=-3时,84xy=⎧⎨=⎩【分析】先把a当作已知求出x、y的值,再根据方程组有正整数解,得到关于a的一元一次不等式组,求出m的取值范围,再找出符合条件的正整数a的值即可.【详解】解:方程组2420 x ayx y+=⎧⎨-=⎩解得:8444 xaya⎧=⎪⎪+⎨⎪=⎪+⎩∵方程组的解是正数,∴a>-4,∵方程组的解是正整数,a>-4,∴a=-3,-2,0,它的所有正整数解为:84xy=⎧⎨=⎩,42xy=⎧⎨=⎩,21xy=⎧⎨=⎩.【点睛】本题考查的是解二元一次方程组及解二元一次不等式组,解答此题的关键是先把m当作已知表示出x、y的值,再根据方程组有正整数解得出关于m的不等式组,求出m的正整数解即可.26.(1)6,10;(2)2 xy=⎧⎨=⎩。

七年级下学期第三次月考数学试题

七年级下学期第三次月考数学试题

七年级下学期第三次月考数学试题(时间:120分钟,分数:150分)1、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( ) (A )带①去 (B )带②去 (C )带③去 (D )带①和②去2、①角;②线段;③等腰三角形;④扇形;⑤三角形; ⑥正方形;⑦平行四边形;⑧圆;⑨五边形,上述图形中,是轴对称图形的有( )个A.5个;B.6个;C. 7个 ;D.8个 3、小明照镜子的时候,发现T 恤上的英文单词 在镜子中呈现“_____________”的样子,A 、B 、C 、D 、 4、三角形中至少有一个角大于或等于( )A 45°B 55°C 60°D 65° 5、如果直角三角形的一个锐角是另一个锐角的4倍,那么这个直角三角形中一个锐角的度数是( )A 9°B 18°C 27°D 36° 6、判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等; 其中能判定这两个三角形全等的条件是( )A ①和②B ①和④C ②和③D ③和④ 7、如图,是汽车行驶速度(千米/时) 和时间(分)的关系图, (1)汽车行驶时间为40分钟; (2)AB 表示汽车匀速行驶; (3)在第30分钟时,汽车的速度是90(4)第40分钟时,汽车停下来了. 上述说法其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个8、如图,若输入x的值为-5,则输出的结果y为()A、―6B、5C、5D、69、一个篮球从小军手中抛向空中,从出手到篮球落地前的整个过程中,速度随时间变化的图像下图哪一个可以大致刻画()10、某校举行趣味运动会,甲、乙两名学生同时从A地到B地,甲先骑自行车到B地后跑步回A地,乙先跑步到B地再骑自行车回到A地(骑自行车的速度快于跑步的速度)最后两人恰好同时回到A地。

七年级下学期第三次月考数学试题(编辑后)

七年级下学期第三次月考数学试题(编辑后)

七年级下学期月考数学试题一、选择题(每小题3分,共36分)1、下列计算正确的是()A. a2+a3=a6B. 5a2—2a2 = 3a2C. a0= 1D. 2— 1 = —22、若某三角形的两边长分别是3和4,则下列长度的线段能作为其第三条边的是()A. 1B. 5C. 7D. 93、已知一粒米的质量是0.000021千克,这个数字用科学计数法表示为()A 21×10—4千克B 2.1×10—6千克C 2.1×10—5千克D 2.1×10—4千克4、一个多边形的内角和等于外角和,它是()A 四边形B五边形 C 六边形D八边形5、如果▏x—2y + 1 ▏+ ▏2x—y—5 ▏=0,则x+y = ()A 4B 5C 6D 76、已知多项式2x2+by+c分解因式为2(x—3)(x+1),则b,c的值为()A b=3,c=—1B b= —6,c= 2C b= —6,c= —4D b= —4,c= —67、如图已知∠ACB=90°,∠1=∠B ∠2=∠A ,则下列说法错误的是()A.∠A与∠B不互为余角B.∠1与∠2互为余角C.∠2与∠B互为余角 D.∠1与∠A互为余角8、下列四个图形中,∠1=∠2一定成立的是()(A) (B) (C) (D)9、若4x²–Mxy + 9y²是两数和的平方,则M的值是()A 36B ±36C 12D ±1210、如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠1=60°,则∠3的度数是()A 500B 600C 700D 80011、下列说法正确的是()A半圆是弧,弧也是半圆 B 过圆心的线段是圆的直径C 经过圆内任意一个定点只能做一条直径D 直径是同一个圆中最长的弦ab)(3212、下列说法中,①三角形内角中最多有一个钝角 ②三角形的一条中线将三角形分成面积相等的两部分③从n 边形的一个顶点可以引出n-3条对角线④六边形对角线有7条,正确的个数的( )个 A 4 B 3 C 2 D 1 二 填空题(每小题3分,共18分)13、如图,在△ABC 中,∠B=47°,三角形的外角∠DAC 和 ∠ACF 的平分线交于点E ,则∠AEC=_________14、分解因式 ab³— 4ab=___________15、如图所示,∠A+∠B+∠C+∠D+∠E+∠F 的度数是_____________2001 16、 × 1.52002× (-1)2009 =___________17、如图所示,分别以n 边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为____________个平方单位。

七年级下学期第三次月考数学试卷(附带答案)

七年级下学期第三次月考数学试卷(附带答案)

七年级下学期第三次月考数学试卷(附带答案) 一.单选题。

(每小题4分,共48分)1.化简(﹣x3)2的结果是()A.﹣x6B.﹣x5C.x6D.x52.下列运算正确的是()A.x3•x2=x6B.3a3+2a2=5a5C.(m2n)3=m6n3D.x8÷x4=x23.一个数是0.0 000 007,这个数用科学记数法表示为()A.7×10﹣7B.7×10﹣6C.0.7×10﹣6D.0.7×10﹣74.下列说法正确的是()A.两点之间,直线最短B.过一点有一条直线平行于已知直线C.和已知直线垂直的直线有且只有一条D.在平面内过一点有且只有一条直线垂直于已知直线5.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°6.如图,下列能判定DE∥AC的是()A.∠EDC=∠EFCB.∠AFE=∠ACDC.∠3=∠4D.∠1=∠2(第6题图)(第12题图)7.下列不能用平方差公式进行计算的是()A.(m-n)(m+n)B.(﹣x-y)(x+y)C.(2x+y)(y-2x)D.(a+b-c)(a-b+c)8.若(a m b n)2=a8b6,则m2-2n的值是()A.10B.52C.20D.329.下列计算中,正确的是()A.﹣a(3a2+1)=﹣3a3+aB.(a+b)2=a2+b2C.(2a -3)(﹣2a -3)=9-4a 2D.(2a -b )2=4a 2-2ab+b 2 10.若3x =15,3y =5,则3x -y =( )A.5B.3C.15D.1011.若4x 2+mx+1是一个完全平方式,则m 的值是( ) A.4 B.8 C.±4 D.±812.通过下图面积的计算,验证一个恒等式,此等式是( )A.a 2-b 2=(a+b )(a -b )B.(a -b )2+4ab=(a+b )2C.(a -b )2=a 2-2ab+b 2D.(a+b )2=a 2+2ab+b 2 二.填空题。

七下第三次月考数学试卷1

七下第三次月考数学试卷1

七下第三次月考数学试卷1一、选择题(共10小题;共50分)1. 平面直角坐标系内轴,,点的坐标为,则点的坐标为A. B.或 D. 或2. 甲看乙的方向是北偏东,则乙看甲的方向是A. 南偏东B. 南偏东C. 南偏西D. 南偏西3. 已知二元一次方程,则A. 任何一对有理数都是它的解B. 只有一个解C. 只有两个解D. 有无数个解4. 解二元一次方程组的基本思想是A. 代入法B. 加减法C. 消元,化二元为一元D. 由一个未知数的值求另一个未知数的值5. 下列方程组中是二元一次方程组的是A. B. C. D.6. 雅西高速公路于年月日正式通车,西昌到成都全长千米,一辆小汽车和一辆客车同时从西昌、成都两地相向开出,经过小时相遇,相遇时,小汽车比客车多行驶千米,设小汽车和客车的平均速度分别为千米/小时和千米/小时,则下列方程组正确的是A. B.C. D.7. 下列各式中,是一元一次不等式的是A. B. C. D.8. 不等式的解集是A. B. C. D.9. 元旦节日期间,百货商场为了促销,对某种商品按标价的折出售,仍获利元,若商品的标价为元,那么它的成本为A. 元B. 元C. 元D. 元10. 小明准备用元钱买笔和笔记本,已知每支笔元,每本笔记本元,他买了本笔记本后,其余的钱用来买笔,那么他最多可以买A. 支笔B. 支笔C. 支笔D. 支笔二、填空题(共6小题;共30分)11. 将先向左平移个单位,再向下平移个单位得点.12. 已知,则.13. 若是二元一次方程,则.14. 解方程组用法解较简便.15. 关于的不等式的解集如图所示,则的值是.16. 若那么代数式.三、解答题(共9小题;共117分)17. 如图所示,求出,,,,,,点的坐标.18. 解方程组或不等式组(1)(2)19. 解不等式,并把解集在数轴上表示出来.20. 解三元一次方程组21. 式子的值不大于的值,求的取值范围.22. 已知是方程组的解,求和的值.23. 已知,求的值.24. 定义新运算:对于任意实数,,都有,等式右边是通常的加法,减法及乘法运算.比如:.(1)求的值;(2)若的值小于,求的取值范围,并在数轴上表示出来.25. 一家商店进行装修,若请甲、乙两个装修组同时施工,天可以完成,需付两组费用共元;若先请甲组单独做天,再请乙组单独做天可以完成,需付费用元.问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需天,乙单独完成需天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利元,你认为如何安排施工更有利于商店?请你帮助商店决策[可用(1)(2)问的条件及结论].答案第一部分1. C2. D3. D4. C5. C6. D7. C8. A9. A 【解析】设它的成本是元,由题意得:,解得:.10. C第二部分11. ,12.13.14. 加减消元【解析】解不等式,得.由数轴可知:,,.16.第三部分17. 由图中坐标系可知各点的坐标为:,,,,,,.18. (1)化简得解得(2)解不等式,得解不等式,得不等式组的解集为.19. 去分母,得去括号,得移项、合并同类项,得系数化为,得原不等式的解集为.在数轴上表示为:20.得:与联立得:得:解得:把代入得:解得:把,代入得:解得:21. .22. 将代入方程组得:解得:,.23.整理得解得代入.24. (1),.(2),,的值小于,,解得,在数轴上表示为:25. (1)甲组工作一天商店应付元,乙组工作一天商店付元.由题意得解得答:甲、乙两组工作一天,商店各应付元和元.(2)单独请甲组需要的费用:元.单独请乙组需要的费用:元.答:单独请乙组需要的费用少.(3)请两组同时装修,理由如下:甲单独做,需费用元,少赢利元,相当于损失元;乙单独做,需费用元,少赢利元,相当于损失元;甲乙合作,需费用元,少赢利元,相当于损失元;,甲乙合作损失费用最少.答:甲乙合作施工更有利于商店.。

七年级下第三次月考数学试卷(有答案)

七年级下第三次月考数学试卷(有答案)

七年级下第三次月考数学试卷(有答案) 七年级下第三次月考数学试卷(附答案)一、选择题(每小题3分,共计30分)1.若a>b,则下列不等式一定成立的是()A.a-b<0 B.a-b>0 C.1-a<1-b D.-1+a<-1+b2.给出下列四个命题,其中真命题的个数为()①坐标平面内的点可以用有序数对来表示;②若a>0,b不大于0,则P(-a,b)在第三象限内;③在x轴上的点,其纵坐标都为0;④当m≠0时,点P(m²,-m)在第四象限内。

A.1 B.2 C.3 D.43.如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,则图中与∠AGE相等的角()A.2个 B.3个 C.4个 D.5个4.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<-1 B.a<1 C.a>-1 D.a>15.立方根等于它本身的有()A.-1,0,1 B.-1,1 C.0,-1,1 D.16.某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间住宿情况是不满也不空。

若旅行团的人数为偶数,求旅行团共有多少人()A.27 B.28 C.29 D.307.点到直线的距离是指这点到这条直线的()A.垂线段 B.垂线 C.垂线的长度 D.垂线段的长度8.XXX用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么XXX最多能买笔的数目为()A.14 B.13 C.12 D.119.某校七(2)班42名同学为“希望工程”捐款,共捐款320元,捐款情况如下表:捐款数(元) | 6 | 8 |人数 | x | y |表格中捐款6元和8元的人数不小心被墨水污染已看不清楚。

若设捐款6元的有x名同学,捐款8元的有y名同学,根据题意,可得方程组6x+8y=320x+y=42A.B.C.D.10.点M(a,a-1)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、认真填一填(每题3分,共24分)11.√2的平方根为2/√2=√2.12.关于x的不等式2x-a≤-3的解集如图所示,则a的值是3.13.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于80°。

七年级数学第二学期第三次月考测试卷含解析

七年级数学第二学期第三次月考测试卷含解析

七年级数学第二学期第三次月考测试卷含解析一、选择题1.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( )A .449x y y x y x -=+⎧⎨-=+⎩B .449x y y x y x -=+⎧⎨-=-⎩C .449x y y x y x -=-⎧⎨-=+⎩D .449x y y x y x -=-⎧⎨-=-⎩2.三元一次方程5x y z ++=的正整数解有( )A .2组B .4组C .6组D .8组3.已知甲乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各余400元,若设甲的年收入为x 元,年支出为y 元,可列出方程组为( )A .4002740034x y x y -=⎧⎪⎨+=⎪⎩ B .4003440027x y x y =+⎧⎪⎨-=⎪⎩ C .4002440037x y x y -=⎧⎪⎨-=⎪⎩ D .4003740024x y x y -=⎧⎪⎨-=⎪⎩ 4.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( )A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁5.已知关于x ,y 的方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则a ,b 的值分别为( ) A .2-,3B .2,3C .2-,3-D .2,3-6.规定”△”为有序实数对的运算,如果(a ,b)△(c ,d)=(ac+bd ,ad+bc).如果对任意实数a ,b 都有(a ,b)△(x ,y)=(a ,b),则(x ,y)为( ) A .(0,1) B .(1,0) C .(﹣1,0) D .(0,﹣1)7.某工厂有工人35人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓16个或螺母24个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?设生产螺栓的有x 人,生产螺母的有y 人,则可以列方程组( ) A .351624x y x y+=⎧⎨=⎩B .352416x y x y+=⎧⎨=⎩C .35 16224x y x y +=⎧⎨=⨯⎩ D .3521624x y x y +=⎧⎨⨯=⎩8.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是( )A.48xy=⎧⎨=⎩B.912xy=⎧⎨=⎩C.1520xy=⎧⎨=⎩D.9585xy⎧=⎪⎪⎨⎪=⎪⎩9.《九章算术》是我国东汉初年编订的一部数学经典著作在它的“方程”一章里,一次方程组是由算筹布置而成的《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2图中各行从左到右列出的算筹数分别表示未知数,x y的系数与相应的常数项把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2+327214x yx y=⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为( )A.2+164322x yx y=⎧⎨+=⎩B.2+164327x yx y=⎧⎨+=⎩C.2+114322x yx y=⎧⎨+=⎩D.2+114327x yx y=⎧⎨+=⎩10.有若干只鸡和兔关在一个笼子里,从上面数,有30个头,从下面数,有84条腿﹐问笼中各有几只鸡和兔?若设笼中有x只鸡,y只兔,则列出的方程组为()A.30284x yx y+=⎧⎨+=⎩B.302484x yx y+=⎧⎨+=⎩C.304284x yx y+=⎧⎨+=⎩D.30284x yx y+=⎧⎨+=⎩二、填空题11.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是_____.12.方程组251036238x y zx z⎧+-=⎪⎨⎪-=⎩__________________三元一次方程组(填“是”或“不是”).13.三位先生A、B、C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,先生B 比a多买7件商品.则先生C购买的商品数量是________.14.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天.15.若关于x,y的方程组322x yx y a+=⎧⎨-=-⎩的解是正整数,则整数a的值是_____.16.一人驾驶快船沿江顺流而下,迎面遇到一艘逆流而上的快艇.他问快艇驾驶员:“你后面有轮船开过吗”快艇驾驶员回答:“半小时前我超过一艘轮船”.快船继续航行了半小时,遇到了迎面而来的轮船.已知轮船静水速度是快船静水速度的2倍,那么快艇静水速度是快船的静水速度的____倍.17.已知三个方程构成的方程组230xy y x --=,350yz z y --=,520xz x z --=,恰有一组非零解x a =,y b =,z c =,则222a b c ++=________. 18.两位同学在解方程组时,甲同学正确地解出,乙同学因把c 写错而解得,则a=_____,b=_____,c=_____. 19.若是满足二元一次方程的非负整数,则的值为___________.20.有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.三、解答题21.某校规划在一块长AD 为18 m 、宽AB 为13 m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?22.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B .(1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.23.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图1,根据给出的“河图”的部分点图,可以得到:1515P++=⎧⎨++=⎩●●●●●●●●●●●●●●●●●●●●●●●●如图2,已知33⨯框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求x y,的值并在图3中填出剩余的数字.24.在平面直角坐标系中,如图1,将线段AB平移至线段CD,连接AC、BD.(1)已知A(﹣3,0)、B(﹣2,﹣2),点C在y轴的正半轴上,点D在第一象限内,且三角形ACO的面积是6,求点C、D的坐标;(2)如图2,在平面直角坐标系中,已知一定点M(1,0),两个动点E(a,2a+1)、F (b,﹣2b+3).①请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM,若存在,求出点E、F两点的坐标;若不存在,请说明理由;②当点E、F重合时,将该重合点记为点P,另当过点E、F的直线平行于x轴时,是否存在△PEF的面积为2?若存在,求出点E、F两点的坐标;若不存在,请说明理由.25.在平面直角坐标系中,O为坐标原点,点A的坐标为(a,a),点B的坐标(b,c),且a、b、c满足34624 a b ca b c+-=⎧⎨-+=-⎩.(1)若a没有平方根,判断点A在第几象限并说明理由.(2)连AB、OA、OB,若△OAB的面积大于5而小于8,求a的取值范围;(3)若两个动点M(2m,3m-5),N(n-1,-2n-3),请你探索是否存在以两个动点M、N为端点的线段MN∥AB,且MN=AB.若存在,求出M、N两点的坐标;若不存在,请说明理由. 26.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题设老师今年x岁,小红今年y岁,根据题意列出方程组解答即可.【详解】解:老师今年x岁,小红今年y岁,可得:449x y yx y x,故选:D.【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.2.C解析:C【分析】最小的正整数是1,当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1;当x=2时,y+z=3,y分别取1,2,此时z分别对应2,1;当x=3时,y+z=2,y分别取1,此时z分别对应1;依此类推,然后把个数加起来即可.【详解】解:当x=1时,y+z=4,y分别取1,2,,3,此时z分别对应3,2,1,有3组正整数解;当x=2时,y+z=3,y分别取1,2,此时z分别对应2,1,有2组正整数解;当x=3时,y+z=2,y分别取1,此时z分别对应1,有1组正整数解;所以正整数解的组数共:3+2+1=6(组).故选:C.【点睛】本题考查三元一次不定方程的解,解题关键是确定x、y、z的值,分类讨论.3.C解析:C 【分析】由甲、乙两人的年收入之比为3:2,年支出之比为7:4,得到乙的收入为23x ,乙的支出为47y ,根据题意找出等量关系,列出方程中选出正确选项即可. 【详解】设甲的年收入为x 元,年支出为y 元,∵甲、乙两人的年收入之比为3:2,年支出之比为7:4, ∴乙的收入为23x ,乙的支出为47y , 根据题意列出方程组得:4002440037x y x y -=⎧⎪⎨-=⎪⎩. 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,根据题意找出等量关系是解答本题的关键.4.A解析:A 【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解. 【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得:1025x y y x y x -=-⎧⎨-=-⎩即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=, ∴5x y -=,即甲比乙大5岁. 故选:A . 【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.5.B解析:B 【分析】将两个方程组中的3x-y=5与2x+3y=-4组合成新的方程组求出x 及y ,代入另两个方程得到关于a 与b 的方程组,解方程组求解即可. 【详解】由题意解方程组35234x y x y -=⎧⎨+=-⎩,解得12x y =⎧⎨=-⎩,将12x y =⎧⎨=-⎩代入4522ax by +=-及ax-by=8中,得到 4102228a b a b -=-⎧⎨+=⎩,解得23a b =⎧⎨=⎩, 故选:B. 【点睛】此题考查特殊法解方程组,由两个方程组的解相同,故将含有相同字母的方程重新组合进行求解,由此解决问题.6.B解析:B 【解析】 【分析】根据新定义运算法则列出方程ax +by =a ①,ay +bx =b ②,由①②解得关于x 、y 的方程组,解方程组即可. 【详解】由定义,知:(a ,b )△(x ,y )=(ax +by ,ay +bx )=(a ,b ),则ax +by =a ①,ay +bx =b ②由①+②,得:(a +b )x +(a +b )y =a +b . ∵a ,b 是任意实数,∴x +y =1③由①﹣②,得:(a ﹣b )x ﹣(a ﹣b )y =a ﹣b ,∴x ﹣y =1④ 由③④解得:x =1,y =0,∴(x ,y )为(1,0). 故选B . 【点睛】本题考查了二元一次方程组的解法.解答此题的关键是弄懂新定义运算的法则,根据法则列出方程组.7.D解析:D 【解析】 【分析】首先设x 人生产螺栓,y 人生产螺母刚好配套,利用工厂有工人35人,每人每天生产螺栓16个或螺母24个,进而得出等式求出答案. 【详解】设x 人生产螺栓,y 人生产螺母刚好配套,据题意可得,3521624x y x y +=⎧⎨⨯=⎩. 故选:D. 【点睛】此题主要考查了二元一次方程组的应用,根据题意正确得出等量关系是解题关键.8.D解析:D 【解析】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩, 对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,故选D .【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.9.D解析:D 【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式. 【详解】第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程组为:2114327x y x y +=⎧⎨+=⎩.故选D .【点睛】此题主要考查了由实际问题列二元一次方程组,关键是读懂图意,得到所给未知数的系数及相加结果.10.B解析:B 【分析】设这个笼中的鸡有x 只,兔有y 只,根据“从上面数,有30个头;从下面数,有84条腿”列出方程组即可. 【详解】解:若设笼中有x 只鸡,y 只兔,根据题意可得:302484x y x y +=⎧⎨+=⎩,故选:B . 【点睛】此题考查了二元一次方程组的应用;根据题意列出方程组是解决问题的关键.二、填空题 11.95 【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组,求解即可得,即这个两位数为95. 故答案为95. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知解析:95 【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组14101036x y x y y x +=⎧⎨+--=⎩,求解即可得95x y =⎧⎨=⎩,即这个两位数为95. 故答案为95. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知数,注意掌握二位数的表示方法.12.是 【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可.【详解】解:如果方程组中含有三解析:是【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可.【详解】解:如果方程组中含有三个未知数,每个方程中含有未知数的项的次数都是一,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组.所以251036238x y zx z⎧+-=⎪⎨⎪-=⎩是三元一次方程组;故填:是.【点睛】本题主要考查三元一次方程组的定义.13.7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y解析:7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x件商品,妻子买了y件商品.则有x2-y2=48,即(x十y)(x-y)=48.∵x、y都是正整数,且x+y与x-y有相同的奇偶性,又∵x+y>x-y,48=24×2=12×4=8×6,∴242x yx y+⎧⎨-⎩==或124x yx y+⎧⎨-⎩==或86x yx y+⎧⎨-⎩==.解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A买了13件商品,b买了4件.同时符合x-y=7的也只有一种,可知B买了8件,a买了1件.∴C买了7件,c买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.14.24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃解析:24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃y 天,列出方程,把关于a 、b 的代数式代入即可得解.【详解】解:设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据题意得:969620606030a b x a b x +⎧⎨+⎩== 解得:b=103x ,a=1600x , 当有70头牛吃时,设可以吃y 天,则 a+yb=70xy ,把b=103x ,a=1600x 代入得:y=24(天). 故答案为:24.【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,把握牛吃青草的同时草也在生长是解答此题的关键.15.2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】,①-②得:3y=5-a ,解析:2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】322x y x y a +⎧⎨--⎩=①=②, ①-②得:3y=5-a ,解得:y=53a -, 把y=53a -代入①得: x+53a -=3, 解得:x=+43a , ∵方程组的解为正整数,∴5-a 与a+4都要能被3整除,∴a=2或-1,故答案为2或-1.【点睛】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键. 16.5【解析】设水流速度是a ,快船的静水速度是x ,快艇的静水速度是y ,依题意可得轮船的静水速度为2x ,则:0.5(x+a )+(2x-a )=0.5(y-a ),解得:y=5x即快艇静水速度是快船的解析:5【解析】设水流速度是a ,快船的静水速度是x ,快艇的静水速度是y ,依题意可得轮船的静水速度为2x ,则:0.5(x+a )+(2x-a )=0.5(y-a ),解得:y=5x即快艇静水速度是快船的静水速度的5倍,故答案为:5.【点睛】本题考查了一次方程组的应用,找准等量关系是做本题的关键,借助图例可以帮助我们理解题意.题中虽然有三个未知数,但在计算过程中可以抵消一个.17.152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a2+b2+c2的值.解析:152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a 2+b 2+c 2的值.【详解】xy 2y 3x 0--=,yz 3z 5y 0--=,xz 5x 2z 0--=组成方程组得230350520xy y x yz z y xz x z --=⎧⎪--=⎨⎪--=⎩①②③, 由①得:x=23y y -④, 把④代入③整理得:-10y+6z=0,∴z=53y , 把z=53y 代入②得:253y -5y-5y=0, 解得:y 1=0 (舍去),y 2=6, ∴z=53×6=10, x=2663⨯-=4, 又∵x=a ,y=b ,z=c ,∴a 2+b 2+c 2=x 2+y 2+z 2=42+62+102=16+36+100=152,故答案为152.【点睛】本题考查了解三元方程组;解题的关键是通过建立三元方程组,再运用代入法进行消元求出方程组的解.18.﹣2 ﹣2 ﹣2【解析】分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=解析:﹣2 ﹣2 ﹣2【解析】分析:先把代入得,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案.解答:解:把代入,得,解得,c=-2.再把代入ax+by=-2,得,解得:,所以a=-2,b=-2,c=-2.故答案为-2,-2,-2.点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.19.0或6【解析】由2x+3y=12得y=12-2x3,因为x、y都是非负整数,所以x=0,y=4或x=3,y=2或x=6,y=0,所以xy为0或6.解析:0或6【解析】由2x+3y=12得y=,因为x、y都是非负整数,所以x=0,y=4或x=3,y=2或x=6,y=0,所以xy为0或6.20.100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,解析:100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x =85;②所购商品的标价大于90元,x ﹣20+x ﹣30=150,解得x =100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.三、解答题21.1【分析】利用AM:AN=8:9,设通道的宽为xm ,AM=8ym ,则AN=9ym ,进而利用AD 为18m ,AB 为13m ,得出等式求出即可.【详解】设通道的宽是xm ,AM =8ym.因为AM ∶AN =8∶9,所以AN =9ym.所以22418,1813.x y x y +=⎧⎨+=⎩解得1,2.3x y =⎧⎪⎨=⎪⎩答:通道的宽是1m.故答案为1.【点睛】本题考查了二元一次方程组的应用.22.(1)(6,0)A ,(0,1)B ,(4,1)C ;(2)见解析.【分析】(1)令26x y +=中的0y = ,求出相应的x 的值,即可得到A 的坐标,将方程40x y -=和方程26x y +=联立成方程组,解方程组即可得到C 的坐标,进而可得到B 的坐标;(2)分别利用梯形的面积公式表示出四边形MNAC 的面积与四边形MNOB 的面积,然后根据t 的范围,分情况讨论即可.【详解】(1)令0y =,则206x +⨯=,解得6x =,(6,0)A ∴.4026x y x y -=⎧⎨+=⎩ 解得41x y =⎧⎨=⎩(4,1)C ∴.//BC x 轴,∴点B 的纵坐标与点C 的纵坐标相同,(0,1)B ∴ ;(2)(6,0)A ,(0,1)B ,(4,1)C ,6,4OA BC ∴==.∵点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,, 1.5MC t ON t ∴==,4,6 1.5BM t NA t ∴=-=-, 11()(4 1.5)4822MNOB S BM ON OB t t t ∴=+⋅=⨯-+⨯=+四边形, 11()(6 1.5)41222MNAC S MC NA OB t t t =+⋅=⨯+-⨯=-+四边形. 当812t t +>-+时,即2t >时,MNOB MNAC S S >四边形四边形;当812t t +=-+时,即2t =时,MNOB MNAC S S =四边形四边形;当812t t +<-+时,即2t <时,MNOB MNAC S S <四边形四边形.【点睛】本题主要考查二元一次方程及方程组的应用,数形结合并分情况讨论是解题的关键.23.11x y =-⎧⎨=⎩,见解析. 【分析】根据题中的和为3先列出二元一次方程组,解出x,y 的值,之后再补全图3即可.【详解】解:根据题意,得2323243x y x y y ++=⎧⎨++=⎩①②解得:11x y =-⎧⎨=⎩填出剩余的数字如图所示:【点睛】本题是材料阅读题,注意正确阅读材料理解题意,列出方程组,求解之后即可顺利完成本题.24.(1)C的坐标为(0,4),点D的坐标为(1,2);(2)①点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在△PEF 的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E(,4)、F(﹣,4).【解析】【分析】(1)由点A和点C在y轴上确定出向右平移3个单位,再根据△ACD的面积求出向上平移的单位,然后写出点C、D的坐标即可.(2)①根据线段EF平行于线段OM且等于线段OM,得出2a+1=﹣2b+3,|a﹣b|=1,解答即可;②首先根据题意求出点P的坐标为(,2),设点E在F的左边,由EF∥x轴得出a+b=1,求出△PEF的面积=(b﹣a)×|2a+1﹣2|=2,得出(b﹣a)|2a﹣1|=4,当EF在点P 的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+b=1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)即可.【详解】解:(1)∵A(﹣3,0),点C在y轴的正半轴上,∴向右平移3个单位,设向上平移x个单位,∵S△ACO=OA×OC=6,∴×3x=6,解得:x=4,∴点C的坐标为(0,4),﹣2+3=1,﹣2+4=2,故点D的坐标为(1,2).(2)①存在;理由如下:∵线段EF平行于线段OM且等于线段OM,∴2a+1=﹣2b+3,|a﹣b|=1,解得:a=1,b=0或a=0,b=1,即点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在,理由如下:如图2所示:当点E、F重合时,,解得:,∴2a+1=2,∴点P的坐标为(,2),设点E在F的左边,∵EF∥x轴,∴2a+1=﹣2b+3,∴a+b=1,∵△PEF的面积=(b﹣a)×|2a+1﹣2|=2,即(b﹣a)|2a﹣1|=4,当EF在点P的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+=1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)得:E(﹣,0)、F(,0),或E(,4)、F(﹣,4);综上所述,存在△PEF的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E (,4)、F(﹣,4).【点睛】本题是三角形综合题目,考查了平移的性质、三角形面积公式、坐标与图形性质、方程组的解法、平行线的性质等知识;本题综合性强,根据题意得出方程组是解题的关键.25.(1)第三象限;(2)见解析;(3)见解析【解析】【分析】(1)根据平方根的意义得到a <0,然后根据各象限点的坐标点的特征可判断点A 在第三象限;(2)先利用方程组34624a b c a b c +-=⎧⎨-+=-⎩,用a 表示b 、c ,得b=2+a.c=a, 则B 点的坐标为(2+a ,a ),故AB //x 轴,AB=|2+a-a|=2,故11|y |2||||22OAB B S AB a a =⨯⨯=⨯⨯= 由若△OAB 的面积大于5而小于8,可得5||8a <<计算即可得a 的取值范围;(3)由AB //x 轴即MN ∥AB 可得MN ∥x 轴,则M 、N 的y 坐标,以及MN=AB =2,可得方程组解得m 、n 的值,即可得出结论;【详解】(1)∵a 没有平方根,∴a <0,∴点A 在第三象限;(2)解方程组34624a b c a b c +-=⎧⎨-+=-⎩用a 表示b 、c ,得2b a c a =+⎧⎨=⎩ ∵点B 坐标为(b ,c )∴点B 坐标为(2+a ,a )∵点A 的坐标为(a ,a )∴AB =|2+a-a|=2,AB 与x 轴平行 ∴11|y |2||||22OAB B S AB a a =⨯⨯=⨯⨯=∵△OAB 的面积大于5而小于8,∴5||8a <<解得:58a <<或85a -<<-(3) ∵AB ∥x 轴又∵MN ∥AB∴MN ∥x 轴∵M(2m, 3m-5) N(n-1, -2n-3), MN=AB=2 ∴3523122m n n m -=--⎧⎨--=⎩∴3523122m n n m -=--⎧⎨--=⎩ 3523122m n n m -=--⎧⎨--=-⎩∴47137m n ⎧=-⎪⎪⎨⎪=⎪⎩ 或4717m n ⎧=⎪⎪⎨⎪=⎪⎩∴847647,,7774M N ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭、 或823623,,7777M N ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭、 【点睛】本题考查了坐标与图形的性质,平方根,解三元一次方程组,三角形的面积,解不等式,审清题意,能灵活运用各个知识点之间的联系是解决的关键.26.(1)甲乙两种型号的挖掘机各需5台、3台;(2)应选择1辆甲型挖掘机和6辆乙型挖掘机,支付最少为820元【解析】分析:(1)设甲种型号的挖掘机需x 台、乙种型号的挖掘机需y 台.等量关系:甲、乙两种型号的挖掘机共8台;每小时挖掘土石方540m 3;(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解;然后分别计算支付租金,选择符合要求的租用方案.详解:(1)设甲种型号的挖掘机需x 台、乙种型号的挖掘机需y 台.依题意得:86080540x y x y +=⎧⎨+=⎩,解得: 53x y =⎧⎨=⎩. 答:甲、乙两种型号的挖掘机各需5台、3台;(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机.依题意得:60m +80n =540,化简得:3m +4n =27,∴m =9﹣43n ,∴方程的解为53m n =⎧⎨=⎩或16m n =⎧⎨=⎩. 当m =5,n =3时,支付租金:100×5+120×3=860元当m =1,n =6时,支付租金:100×1+120×6=820元.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量.点睛:本题考查了二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C.
D.
4.(3 分)如果点 P(5,y)在第四象限,则 y 的取值范围是(
A.y<0
B.y>0
C.y≤0
5.(3 分)下列数对中,是方程 2x﹣3y=6 的解是( )
A.
B.
C.
) D.y≥0
D.
6.(3 分)不等式
<1 的正整数解的个数有( )
A.2
B.3
C.4
D.5
7.(3 分)如图,△ABC 的三个顶点分别在直线 a、b 上,且 a∥b,若∠1=120°,∠2=
(2)
<1.
22.(8 分)某中学为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球 和篮球(每个足球的价格相同,每个篮球的价格相同),已知购买 3 个足球和 2 个篮球共 需 310 元;购买 2 个足球和 5 个篮球共需 500 元.求购买一个足球、一个篮球各需多少 元?
第3页(共5页)
海南省昌江民族中学七年级(下)第三次月考数学试卷
一、选择题:(本大题满分 42,每小题 3 分) 1.(3 分)﹣2 的倒数是( )
A.﹣2
B.2
C.﹣
D.
2.(3 分)不等式 x﹣2<0 的解集是( )
A.x>﹣2
B.x<﹣2
C.x>2
3.(3 分)如图所示几何体的主视图是( )
D.x<2
A.
B.
80°,则∠3 的度数是( )
A.40°
B.60°
C.80°
D.120°
8.(3 分)将点 A(2,1)向左平移 2 个单位长度得到点 A′,则点 A′的坐标是( )
第1页(共5页)
A.(2,3)
B.(2,﹣1)
C.(4,1)
D.(0,1)
9.(3 分)4 的算术平方根是( )
A.±2
B.±
C.
D.2
10.(3 分)式子
有意义的最小整数 x 是( )
A.1
B.2
C.3
D.0
11.(3 分)若关于 x 的方程 2x+a=﹣9 的解是 x=﹣2,则 a 的值为( )
A.2
B.﹣2
C.5
D.﹣5
12.(3 分)已知:直线 l1∥l2,一块含 30°角的直角三角板如图所示放置,∠1=25°,则
∠2 等于( )
A.30°
B.35°
C.40°
D.45°
13.(3 分)今年参观“5•18”海交会的总人数约为 489500 人,将数据 489500 用科学记数
法表示为( )
A.48.95×104
B.4.895×104
C.4.895×105
D.0.4895×106
14.(3 分)楠溪江某景点门票价格:成人票每张 70 元,儿童票每张 35 元.小明买 20 张门
第5页(共5页)
第4页(共5页)
海南省昌江民族中学七年级(下)第三次月考数学试卷
参考答案
一、选择题:(本大题满分 42,每小题 3 分)
1.C; 2.D; 3.B; 4.A; 5.C; 6.B; 7.A; 8.D; 9.D; 10.A; 11.D;
12.B; 13.C; 14.B;
二、填空题:(本大题满分 16 分,每小题 4 分)
(1)分别写出点 B、C 的坐标; (2)后的△A1B1C1,并写出点 A 的对应点 A1
的坐标; (3)将△A1B1C1 向下移 5 个单位长度,画出平移后的△A2B2C2,并写出点 A1 的对应点 A2
的坐标.
21.(10 分)解方程组或不等式: (1)
第2页(共5页)
18.(4 分)如图,已知 AB∥CD,BE 平分∠ABC,∠CDE=150°,则∠C=
°.
三、解答题:(本大题满分 62 分) 19.(10 分)(1)计算: ﹣3×(﹣2)2
(2)解不等式组:

20.(8 分)如图,在正方形网格中,△ABC 的三个顶点都在格点上,点 A 的坐标是(﹣2, 4),结合所给的平面直角坐标系,解答下列问题:
23.(12 分)如图,已知 AB⊥AC,且∠1+∠B=90°. (1)求证:∠BAC=∠1+∠B; (2)求证:AD∥BC; (3)若∠BAD=120°,求∠B 的度数. 24.(14 分)如图,已知 AB∥ED,CM⊥CN,且∠ECM=∠BCM. (1)求证:∠BMC=∠BCM; (2)求证:∠DCN= ∠BCD; (3)若∠DCN=30°,求∠B 的度数.
票共花了 1225 元,设其中有 x 张成人票,y 张儿童票,根据题意,下列方程组正确的是
()
A.
B.
C.
D.
二、填空题:(本大题满分 16 分,每小题 4 分)
15.(4 分)计算:﹣a﹣2a=

16.(4 分)方程 2x+4=0 的解是

17.(4 分)如图,请你填写一个适当的条件:
,使 DE∥AC.
15.﹣3a; 16.x=﹣2; 17.∠C=∠EDB; 18.120;
三、解答题:(本大题满分 62 分)
19.
; 20.
; 21.
; 22.
; 23.
; 24.

声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
日期:2019/1/25 16:36:34; 用户:qgjyus er10 508;邮箱:q gjyus er10508.219 57750;学号 :21985516
相关文档
最新文档