(完整版)第三章(多元线性回归模型)3-1答案

合集下载

第三章(多元线性回归模型)3-2答案

第三章(多元线性回归模型)3-2答案

3.2 多元线性回归模型的估计一、判断题1.满足基本假设条件下,样本容量略大于解释变量个数时,可以得到各参数的唯一确定的 估计值,但参数估计结果的可靠性得不到保证 ( T )二 、单项选择题1、线性回归模型的参数估计量ˆβ是随机向量Y 的函数,即1ˆ()X X X Y β-''=。

ˆβ是 (A )A 、随机向量B 、非随机向量C 、确定性向量D 、常量2.已知含有截距项的四元线性回归模型估计的残差平方和为∑=800e 2i ,样本容量为25,则其随机误差项i u 的方差的普通最小二乘估计为 (A )。

A 、40B 、32C 、38.095D 、36.364 三 、多项选择题1、对于二元样本回归模型12233ˆˆˆˆi i i iY X X e βββ=+++,下列各式成立的有(ABC ) A 、0e i =∑ B 、0X e i 2i =∑C 、0X e i 3i =∑D 、0Y e i i =∑E 、0X X i3i 2=∑四、计算题1、某地区通过一个样本容量为722的调查数据得到劳动力受教育年数的一个回归方程为10.360.0940.1310.210i i i i edu sibs medu fedu =-++ R 2=0.214式中,edu 为劳动力受教育年数,sibs 为劳动力家庭中兄弟姐妹的个数,medu 与fedu 分别为母亲与父亲受到教育的年数。

问(1)sibs 是否具有预期的影响?为什么?若medu 与fedu 保持不变,为了使预测的受教育水平减少一年,需要sibs 增加多少?(2)请对medu 的系数给予适当的解释。

(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数均为12年,另一个的父母受教育的年数均为16年,则两人受教育的年数预期相差多少年?解:(1)预期sibs 对劳动者受教育的年数有影响。

因此在收入及支出预算约束一定的条件下,子女越多的家庭,每个孩子接受教育的时间会越短。

多元线性回归模型习题与答案

多元线性回归模型习题与答案

第三章多元线性回归模型习题与答案1、极大似然估计法的基本思想2、多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?3、以企业研发支出(R&D)占销售额的比重为被解释变量(Y),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个有32容量的样本企业的估计结果如下:099 .0)046.0()22.0()37.1(05.0)log(32.0472.022 1=++ =RX XY其中括号中为系数估计值的标准差。

(1)解释log(X1)的系数。

如果X1增加10%,估计Y会变化多少个百分点?这在经济上是一个很大的影响吗?(2)针对R&D强度随销售额的增加而提高这一备择假设,检验它不虽X1而变化的假设。

分别在5%和10%的显著性水平上进行这个检验。

(3)利润占销售额的比重X2对R&D强度Y是否在统计上有显著的影响?4、1960-1982年美国对子鸡的需求。

为了研究美国每人的子鸡消费量,我们提供如下的数据:表1 1960-1982年子鸡的消费情况年份Y X2 X3 X4 X5 X61960 27.8 397.5 42.2 50.7 78.3 65.8 1961 29.9 413.3 38.1 52.0 79.2 66.9 1962 29.8 439.2 40.3 54.0 79.2 67.8 1963 30.8 459.7 39.5 55.3 79.2 69.6 1964 31.2 92.9 37.3 54.7 77.4 68.7 1965 33.3 528.6 38.1 63.7 80.2 73.6 1966 35.6 560.3 39.3 69.8 80.4 76.3 1967 36.4 624.6 37.8 65.9 83.9 77.2 1968 36.7 666.4 38.4 64.5 85.5 78.1 1969 38.4 717.8 40.1 70.0 93.7 84.7 1970 40.4 768.2 38.6 73.2 106.1 93.3 1971 40.3 843.3 39.8 67.8 104.8 89.7 1972 41.8 911.6 39.7 79.1 114.0 100.7 1973 40.4 931.1 52.1 85.4 124.1 113.5 1974 40.7 1021.5 48.9 94.2 127.6 115.3 1975 40.1 1165.9 58.3 123.5 142.9 136.7 1976 42.7 1349.6 57.9 129.9 143.6 139.2 1977 44.1 1449.4 56.5 117.6 139.2 132.0 1978 46.7 1575.5 63.7 130.9 165.5 132.1 1979 50.6 1759.1 61.6 129.8 203.3 154.4 1980 350.1 1994.2 58.9 128.0 219.6 174.91981 51.7 2258.1 66.4 141.0 221.6 180.8 198252.92478.770.4168.2232.6189.4资料来源:Y 数据来自城市数据库;X 数据来自美国农业部。

(完整版)多元线性回归模型习题及答案

(完整版)多元线性回归模型习题及答案

多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( D )A. 0.8603B. 0.8389C. 0.8655D.0.8327 2.下列样本模型中,哪一个模型通常是无效的(B ) A.iC (消费)=500+0.8iI (收入)B. di Q (商品需求)=10+0.8i I (收入)+0.9i P (价格) C. si Q (商品供给)=20+0.75i P (价格)D. iY (产出量)=0.650.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t ty b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( C )A.)30(05.0t B.)28(025.0t C.)27(025.0t D.)28,1(025.0F4.模型tt t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)7. 调整的判定系数 与多重判定系数之间有如下关系( D )A.2211n R R n k -=-- B. 22111n R R n k -=---C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=----8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。

庞皓《计量经济学》(第4版)章节题库-第3章 多元线性回归模型【圣才出品】

庞皓《计量经济学》(第4版)章节题库-第3章 多元线性回归模型【圣才出品】

2
2
而 1-α 的置信度下 Y0 的置信区间为:
Yˆ0 t ˆ
1
X0
X
X
1
X
0
Y0
Yˆ0
t
ˆ
1
X0
X
X
1
X
0
2
2
6.多元回归模型中的解释变量个数为 k,那么回归方程显著性检验的 F 统计量的第一 自由度为 n-k-1,第二自由度为 k。( )
【答案】× 【解析】多元回归模型中的解释变量个数为 k,那么回归方程显著性检验的 F 统计量 的第一自由度为 k,第二自由度为 n-k-1。
2 / 22
圣才电子书
十万种考研考证电子书、题库视频学习平


【解析】在变量显著性检验中,针对某变量 Xj(j=1,2,…,k)设计的原假设与备
择假设为 H0:βj=0,H1:βj≠0。给定显著性水平 α 之后,可根据|t|>tα/2(n-k-1)
(或|t|≤tα/2(n-k-1))来决定拒绝(或接受)原假设 H0,从而判定对应的解释变量是
三、简答题 1.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和 有效性的过程中,哪些基本假设起了作用? 答:(1)针对普通最小二乘法,多元线性回归模型的基本假设主要有以下三大类: ①关于模型设定的基本假设: 假定回归模型的设定是正确的,即模型的变量和函数形式均为正确的。 ②关于随机扰动项的基本假设: 假定随机扰动项满足条件零均值、条件同方差、条件序列不相关性以及服从正态分布。
2.调整的多重可决系数 Error!2 与多重可决系数 R2 的关系为( )。 A.Error!2=R2(n-1)/(n-k-1) B.Error!2=1-R2(n-1)/(n-k-1) C.Error!2=1-(1+R2)(n-1)/(n-k-1) D.Error!2=1-(1-R2)(n-1)/(n-k-1) 【答案】D 【解析】在样本容量一定的情况下,增加解释变量必定使得自由度减少,为了剔除变 量个数对拟合优度的影响,调整的多重可决系数是将残差平方和与总离差平方和处以各自

多元线性回归模型(习题与解答)

多元线性回归模型(习题与解答)

多元线性回归模型(习题与解答)第三章多元线性回归模型一、习题(一)基本知识类题型3-1.解释下列概念:1)多元线性回归2)虚变量3)正规方程组4)无偏性5)一致性6)参数估计量的置信区间7)被解释变量预测值的置信区间8)受约束回归9)无约束回归10)参数稳定性检验3-2.观察下列方程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是?1)i i i X Yεββ++=3102)i i i X Yεββ++=log103)i i i X Yεββ++=log log104)i i i X Yεβββ++=)(2105)i ii X Yεββ+=106)i i i X Yεββ+−+=)1(1107)i i i i X X Yεβββ+++=10221103-3.多元线性回归模型与一元线性回归模型有哪些区别?3-4.为什么说最小二乘估计量是最优的线性无偏估计量?多元线性回归最小二乘估计的正规方程组,能解出唯一的参数估计的条件是什么?3-5.多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?3-6.请说明区间估计的含义。

(二)基本证明与问答类题型3-7.什么是正规方程组?分别用非矩阵形式和矩阵形式写出模型:i ki k i i i u x x x y+++++=ββββL22110,n i,,2,1L =的正规方程组,及其推导过程。

3-8.对于多元线性回归模型,证明:(1)∑=0i e(2)0)ˆˆˆ(ˆ110=+++=∑∑iki k i i i e x x e yβββL3-9.为什么从计量经济学模型得到的预测值不是一个确定的值?预测值的置信区间和置信度的含义是什么?在相同的置信度下如何才能缩小置信区间?为什么?3-10.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否有等价的作用?3-11.设有模型:u x x y+++=22110βββ,试在下列条件下:(1)121=+ββ(2)21ββ=分别求出1β和2β的最小二乘估计量。

应用回归分析,第3章课后习题参考答案

应用回归分析,第3章课后习题参考答案

第3章 多元线性回归思考与练习参考答案3.2 讨论样本容量n 与自变量个数p 的关系,它们对模型的参数估计有何影响?答:在多元线性回归模型中,样本容量n 与自变量个数p 的关系是:n>>p 。

如果n<=p 对模型的参数估计会带来很严重的影响。

因为: 1. 在多元线性回归模型中,有p+1个待估参数β,所以样本容量的个数应该大于解释变量的个数,否则参数无法估计。

2. 解释变量X 是确定性变量,要求()1rank p n =+<X ,表明设计矩阵X 中的自变量列之间不相关,即矩阵X 是一个满秩矩阵。

若()1rank p <+X ,则解释变量之间线性相关,1()X X -'是奇异阵,则β的估计不稳定。

3.3证明随机误差项ε的方差σ2的无偏估计。

证明:22122222111112221111ˆ(),111()()(1)(1)()(1)1ˆ()()1n i i n n nnnii ii iiii i i i i i ni i SSE e e e n p n p n p E e D e h h n h n p E E e n p σσσσσσσ======='===------∴==-=-=-=--∴==--∑∑∑∑∑∑∑3.4 一个回归方程的复相关系数R=0.99,样本决定系数R 2=0.9801,我们能判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。

因为:1. 在样本容量较少,变量个数较大时,决定系数的值容易接近1,而此时可能F 检验或者关于回归系数的t 检验,所建立的回归方()1ˆ2--=p n SSE σ程都没能通过。

2. 样本决定系数和复相关系数接近于1只能说明Y 与自变量X1,X2,…,Xp 整体上的线性关系成立,而不能判断回归方程和每个自变量是显著的,还需进行F 检验和t 检验。

3. 在应用过程中发现,在样本容量一定的情况下,如果在模型中增加解释变量必定使得自由度减少,使得 R 2往往增大,因此增加解释变量(尤其是不显著的解释变量)个数引起的R 2的增大与拟合好坏无关。

第三章(多元线性回归模型)3-3答案(可编辑修改word版)

第三章(多元线性回归模型)3-3答案(可编辑修改word版)

ESS kRSS (n - k -1) n3.3 多元线性回归模型的检验一、判断题1、在线性回归模型中,为解释变量或者被解释变量重新选取单位(比如,元变换成千元), 会影响 t 统计量和 R 2 的数值。

( F )2、在多元线性回归中,t 检验和 F 检验缺一不可。

( T) 3、回归方程总体线性显著性检验的原假设是模型中所有的回归参数同时为零。

( F )4、多元线性回归中,可决系数 R 2 是评价模型拟合优度好坏的最佳标准。

(F )二 、单项选择1、在模型Y t = 0 + 1 X 1t + 2 X 2t + 3 X 3t + t 的回归分析结果中,有 F = 462.58 ,F 的p 值= 0.000000 ,则表明(C )A 、解释变量 X 2t 对Y t 的影响不显著B 、解释变量 X 1t 对Y t 的影响显著C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量 X 2t 和 X 1t 对Y t 的影响显著2、设k 为回归模型中的实解释变量的个数, n 为样本容量。

则对回归模型进行总体显著性 检验( F 检验)时构造的 F 统计量为 (A )A 、 F =B 、 F =C 、 F =ESS RSSD 、 F = 1-RSS TSS3、在多元回归中,调整后的可决系数 R 2与可决系数 R 2 的关系为 ( A )A 、 R 2 < R 2 C 、 R 2= R 2B 、 R 2 > R 2D 、 R 2 与 R 2 的关系不能确定4、根据调整的可决系数 R 2 与 F 统计量的关系可知,当 R 2 = 1 时,有 (C ) A 、F=0B 、F=-1C 、F→+∞D 、F=-∞5、下面哪一表述是正确的 (D )1 nA 、线性回归模型Y i = 0 + 1 X i + i 的零均值假设是指∑i= 0i =1ESS (k -1)RSS (n - k )0 1 1i 2 2ik ki i B 、对模型Y i = 0 + 1 X 1i + 2 X 2i + i 进行方程显著性检验(即 F 检验),检验的零假 设是 H 0 : 0 = 1 = 2 = 0C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系5、对于Y i = ˆ +ˆ X +ˆ X+… +ˆ X + e ,如果原模型满足线性模型的基本假设则 在零假设 j = 0 下, 统计量 ˆj (B ) s (ˆj ) ( 其中 s (ˆj ) 是 j 的标准误差) 服从A 、t (n - k )B 、t (n - k -1)C 、 F (k -1, n - k )D 、 F (k , n - k -1)6、在由 n = 30 的一组样本估计的、包含 3 个解释变量的线性回归模型中,计算得多重可决系数为 0.8500,则调整后的多重可决系数为( D )A 、8603B 、 0.8389C 、0.8655D 、0.8327 7、可决系数 R 2=0.8,说明回归直线能解释被解释变量总变差的:( A )A 、 80%B 、 64%C 、 20%D 、 89%8、线性回归模型 y t= b 0 + b 1 x 1t + b 2 x 2t + ...... + b k x kt + u tH 0 : b t = 0(i = 0,1, 2,...k ) 时,所用的统计量服从(C )中,检验A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)三、多项选择题1、对模型满足所有假定条件的模型Y i = 0 + 1 X 1i + 2 X 2i + i 进行总体显著性检验,如 果检验结果总体线性关系显著,则很可能出现 ( BCD )A 、1 = 2 = 0 C 、1 ≠ 0,2 ≠ 0 E 、1= 0,2 = 0B 、1 ≠ 0,2 = 0 D 、1= 0,2 ≠ 02、设 k 为回归模型中的参数个数(包含截距项)则总体线性回归模型进行显著性检验时所用的 F 统计量可以表示为( BC )∑(Y ˆ - Y )2/(n - k )∑(Y ˆ - Y )2/(k - 1)A 、 ii 2 ( ) B 、 ii 2 ( ) ∑e i / k- 1 ∑e i/ n- k R 2 /(k - 1)C 、(1 - R 2 )/(n - k )(1 - R 2 )/(n - k )D 、R 2/(k - 1)R2/(n -k )E、(1 -R2)/(k -1)3、在多元回归分析中,调整的可决系数R2与可决系数R2之间(AD )A、R2<R2B、R2≥R2C、R2只可能大于零D、R2可能为负值E、R2不可能为负值四、简答题1.在多元线性回归分析中,为什么用修正的可决系数衡量估计模型对样本观测值的拟合优度?答:因为人们发现随着模型中解释变量的增多,多重可决系数R2的值往往会变大,从而增加了模型的解释功能。

(完整版)第三章(多元线性回归模型)3-3答案

(完整版)第三章(多元线性回归模型)3-3答案

3.3 多元线性回归模型的检验一、判断题1、在线性回归模型中,为解释变量或者被解释变量重新选取单位(比如,元变换成千元),会影响t 统计量和 2R 的数值。

( F )2、在多元线性回归中,t 检验和F 检验缺一不可。

( T )3、回归方程总体线性显著性检验的原假设是模型中所有的回归参数同时为零。

( F )4、多元线性回归中,可决系数2R 是评价模型拟合优度好坏的最佳标准。

( F )二 、单项选择1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明 ( C )A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。

则对回归模型进行总体显著性 检验(F 检验)时构造的F 统计量为 ( A )A 、1)ESS k F RSS n k =--B 、(1)()ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、在多元回归中,调整后的可决系数2R 与可决系数2R 的关系为 ( A ) A 、22R R < B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定4、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞5、下面哪一表述是正确的 ( D ) A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假 设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系5、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 (B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --6、在由的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重可决系数为0.8500,则调整后的多重可决系数为( D )A 、8603B 、 0.8389C 、0.8655D 、0.83277、可决系数R 2=0.8,说明回归直线能解释被解释变量总变差的:( A )A 、 80%B 、 64%C 、 20%D 、 89%8、线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)三、多项选择题1、对模型满足所有假定条件的模型01122i i i i Y X X βββμ=+++进行总体显著性检验,如果检验结果总体线性关系显著,则很可能出现 ( BCD )A 、120ββ==B 、120,0ββ≠=C 、120,0ββ≠≠D 、120,0ββ=≠E 、120,0ββ==2、设k 为回归模型中的参数个数(包含截距项)则总体线性回归模型进行显著性检验时所 用的F 统计量可以表示为 ( BC )A 、()()()∑∑---1k e k n Y Y 2i 2i i //ˆ B 、()()()∑∑---k n e 1k Y Y 2i2ii //ˆ C 、()()()k n R 11k R 22---// D 、()()()1k R k n R 122---// 30n =E 、()()()1k R 1k n R 22---// 3、在多元回归分析中,调整的可决系数2R 与可决系数2R 之间 ( AD )A 、22R R <B 、22R R ≥C 、2R 只可能大于零D 、2R 可能为负值E 、2R 不可能为负值四、简答题1.在多元线性回归分析中,为什么用修正的可决系数衡量估计模型对样本观测值的拟合优度?答:因为人们发现随着模型中解释变量的增多,多重可决系数2R 的值往往会变大,从而增加了模型的解释功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1 多元线性回归模型及古典假定
一、判断题
1. 在实际应用中,一元回归几乎没什么用,因为因变量的行为不可能仅有一个解释变量来解释。

(T )
2. 一元线性回归模型与多元线性回归模型的基本假定是相同的。

(F )
二 、单项选择题
1.在二元线性回归模型i i i i u X X Y +++=22110βββ中,1β表示( A )。

A .当X2不变时,X1每变动一个单位Y 的平均变动。

B .当X1不变时,X2每变动一个单位Y 的平均变动。

C .当X1和X2都保持不变时,Y 的平均变动。

D .当X1和X2都变动一个单位时,Y 的平均变动。

2.如果两个经济变量X 与Y 间的关系近似地表现为当X 发生一个绝对量变动(ΔX ) 时, Y 有一个固定地相对量(ΔY/Y )变动,则适宜配合的回归模型是( B )。

A .i i 21i u X Y ++=ββ
B .i i 21i u X Y ++=ββln
C .i i
21i u X 1
Y ++=ββ D .i i 21i u X Y ++=ln ln ββ
3.在多元线性回归模型中对样本容量的基本要求是(k 为解释变量个数):( C )。

A. n ≥k+1 B .n<k+1
C. n ≥30 或n ≥3(k+1)
D. n ≥30
4、模型i i 21i u X Y ++=ln ln ββ中 ,2β的实际含义是( B )。

A. X 关于Y 的弹性
B. Y 关于X 的弹性
C. X 关于Y 的边际倾向
D. Y 关于X 的边际倾向
三、多项选择题
1.下列哪些非线性模型可以通过变量替换转化为线性模型( ABC )
A. i 2
i 10i u X Y ++=ββ
B. i i
10i u X 1
Y ++=ββ
C. i i 10i u X Y ++=ln ln ββ
D. i i 2
10i u X Y ++=ββ
E. i i 10i u X Y ++=ββ
四、简答题
1.多元线性回归模型与一元线性回归模型有哪些区别?
答:多元线性回归模型与一元线性回归模型的区别表现在如下几个方面:一是解释变量的个数不同;二是模型的经典假设不同,多元线性回归模型比一元线性回归模型多了个“解释变量之间不存在线性相关关系”的假定;三是多元线性回归模型的参数估计式的表达更为复杂。

相关文档
最新文档