MATLAB仿真实现经典谱估计(采用周期图法)

合集下载

随机信号及其自相关函数和功率谱密度的MATLAB实现(1)

随机信号及其自相关函数和功率谱密度的MATLAB实现(1)

随机信号分析专业:电子信息工程班级:电子111姓名:***学号:**********指导老师:***随机信号及其自相关函数和功率谱密度的MATLAB实现引言:现代信号分析中,对于常见的具有各态历经的平稳随机信号,不可能用清楚的数学关系式来描述,但可以利用给定的N个样本数据估计一个平稳随机信号的功率谱密度叫做功率谱估计(PSD)。

它是数字信号处理的重要研究内容之一。

功率谱估计可以分为经典功率谱估计(非参数估计)和现代功率谱估计(参数估计)。

通过实验仿真可以直观地看出以下特性:(1)功率谱估计中的相关函数法和周期图法所得到的结果是一致的,其特点是离散性大,曲线粗糙,方差较大,但是分辨率较高。

(2)平均周期图法和平滑平均周期图法的收敛性较好,曲线平滑,估计的结果方差较小,但是功率谱主瓣较宽,分辨率低。

这是由于对随机序列的分段处理引起了长度有限所带来的Gibbs现象而造成的。

(3)平滑平均周期图法与平均周期图法相比,谱估值比较平滑,但是分辨率较差。

其原因是给每一段序列用适当的窗口函数加权后,在得到平滑的估计结果的同时,使功率谱的主瓣变宽,因此分辨率有所下降。

摘要:功率谱估计(PSD)的功率谱,来讲都是重要的,是数字信号处理的重要研究内容之一。

功率谱估计可以分为经典谱估计(非参数估计)和现代谱估计(参数估计)。

前者的主要方法有BTPSD 估计法和周期图法;后者的主要方法有最大熵谱分析法(AR 模型法)、Pisarenko 谐波分解法、Prony 提取极点法、其Prony 谱线分解法以及Capon 最大似然法。

中周期图法和AR 模型法是用得较多且最具代表性的方法。

Matlab 是目前极为流行的工程数学分析软件,在它的SignalProcessingToolbox 中也对这两个方法提供了相应的工具函数,这为我们进行工程设计分析、理论学习提供了相当便捷的途径。

关键词:随机信号 自相关系数 功率谱密度实验原理:随机信号X(t)是一个随时间变化的随机变量,将X (t )离散化,即以Ts 对X (t )进行等间隔抽样,得到随机序列X(nTs),简化为X(n)。

功率谱估计案例 matlab

功率谱估计案例 matlab

功率谱估计案例 matlab在MATLAB中进行功率谱估计有许多不同的方法和工具。

其中,常用的方法包括周期图法(periodogram method)、Welch方法、Bartlett方法、Blackman-Tukey方法、自回归模型(autoregressive model)和傅里叶变换法等。

这些方法可以用于估计信号的功率谱密度,进而分析信号的频谱特性。

以周期图法为例,MATLAB提供了periodogram函数来实现功率谱估计。

用户可以直接输入信号数据并指定采样频率,函数将返回频率和对应的功率谱估计结果。

使用periodogram函数可以轻松地对信号进行功率谱分析,并可视化频谱特性。

另外,MATLAB还提供了pwelch函数来实现Welch方法,该方法可以对信号进行分段处理并计算每个段的功率谱估计,最后将结果进行平均以得到最终的功率谱密度估计。

这种方法可以降低估计的方差,更适用于非平稳信号的功率谱分析。

除了内置函数外,MATLAB还提供了丰富的工具箱,如信号处理工具箱(Signal Processing Toolbox)和控制系统工具箱(Control System Toolbox),这些工具箱中包含了更多高级的功率谱估计方法和工具,用户可以根据具体需求选择合适的方法进行功率谱分析。

在实际应用中,用户还可以结合MATLAB中的数据处理和可视化功能,对功率谱估计结果进行进一步分析和展示。

通过MATLAB强大的编程功能,用户可以灵活地定制功率谱估计的流程,并将分析结果以图表或报告的形式输出,从而更好地理解信号的频谱特性。

综上所述,MATLAB提供了丰富的功率谱估计方法和工具,用户可以根据具体需求选择合适的方法进行功率谱分析,并结合MATLAB 的数据处理和可视化功能进行全面的信号频谱特性分析。

matlab中welch法谱估计

matlab中welch法谱估计

Matlab中的Welch法谱估计内容提要:1. 简介Welch法谱估计的原理和应用2. Matlab中实现Welch法谱估计的步骤3. 使用Welch法谱估计进行信号分析的示例4. Welch法谱估计的优缺点及改进方法5. 总结与展望1. 简介Welch法谱估计的原理和应用Welch法是一种常用的信号谱估计方法,其基本原理是将信号分段并计算每个子段的功率谱密度估计,然后将这些估计平均得到最终的谱估计结果。

Welch法的特点是兼具周期图法和传统平均法的优点,能够有效地降低估计的方差,提高谱估计的准确性。

在实际应用中,Welch法常被用于对非平稳信号的频谱分析和频域特征提取。

2. Matlab中实现Welch法谱估计的步骤在Matlab中,使用Welch法进行谱估计非常方便。

以下是基本的步骤:(1) 将需要进行谱估计的信号分成若干相互重叠的子段。

(2) 对每个子段进行傅立叶变换,得到子段的功率谱密度估计。

(3) 平均所有子段的功率谱密度估计,得到最终的谱估计结果。

具体代码实现如下:```读取信号数据data = load('signal_data.mat');x = data.signal;设置子段长度和重叠部分长度segment_length = 256;overlap_length = 128;计算子段数量num_segments = fix((length(x) - overlap_length) / (segment_length - overlap_length));初始化谱估计结果psd = zeros(segment_length, 1);计算每个子段的功率谱密度估计for i = 1:num_segmentsstart_index = (i-1) * (segment_length - overlap_length) + 1; end_index = start_index + segment_length - 1;segment = x(start_index:end_index);psd = psd + abs(fft(segment)).^2;end平均所有子段的功率谱密度估计psd = psd / num_segments;绘制谱估计结果f = 0:1/segment_length:1-1/segment_length;plot(f, 10*log10(psd));xlabel('Frequency');ylabel('Power/frequency (dB/Hz)');title('Power Spectral Density Estimation using Welch method'); ```在上述实现中,我们首先加载了信号数据,然后设定了子段长度和重叠部分长度。

功率谱估计的MATLAB实现

功率谱估计的MATLAB实现

实验功率谱估计实验目的:1、掌握最大熵谱估计的基本原理。

2、了解最终预测误差(FPE)准则。

3、掌握周期图谱估计的基本原理。

4、掌握传统谱估计中直接法与间接法之间的关系。

5、复习快速傅里叶变换与离散傅里叶变换之间关系。

实验内容:1、设两正弦信号的归一化频率分别为0.175和0.20,用最大熵法编程计算信噪比S/N=30dB、N=32点时该信号的最大熵谱估计结果。

2、用周期图法编程计算上述信号的谱估计结果。

程序示例:1、最大熵谱估计clc;N=32;SNR=30;fs=1;t=1:N;t=t/fs;y=sin(2*pi*0.175*t)+sin(2*pi*0.20*t);x = awgn(y,SNR);M=1;P(M)=0;Rx(M)=0;for n=1:NP(M)=P(M)+(abs(x(n)))^2;ef(1,n)=x(n);eb(1,n)=x(n);endP(M)=P(M)/N;Rx(M)=P(M);M=2;A=0;D=0;for n=M:NA=A+ef(M-1,n)*eb(M-1,n-1);D=D+(abs(ef(M-1,n)))^2+(abs(eb(M-1,n-1)))^2; endxishu=-2*A/D;a(M-1,M-1)=-2*A/D;P(M)=P(M-1)*(1-(abs(xishu))^2);FPE(M-1)=P(M)*(N+M)/(N-M);TH=FPE(M-1);for n=M:Nef(M,n)=ef(M-1,n)+xishu*eb(M-1,n-1);eb(M,n)=eb(M-1,n-1)+xishu*ef(M-1,n);endM=M+1;A=0;D=0;for n=M:NA=A+ef(M-1,n)*eb(M-1,n-1);D=D+(abs(ef(M-1,n)))^2+(abs(eb(M-1,n-1)))^2;endxishu=-2*A/D;a(M-1,M-1)=-2*A/D;P(M)=P(M-1)*(1-(abs(xishu))^2);FPE(M-1)=P(M)*(N+M)/(N-M);for m=1:M-2a(M-1,m)=a(M-2,m)+xishu*a(M-2,M-1-m);endwhile FPE(M-1)<THTH=FPE(M-1);for n=M:Nef(M,n)=ef(M-1,n)+xishu*eb(M-1,n-1);eb(M,n)=eb(M-1,n-1)+xishu*ef(M-1,n);endM=M+1;A=0;D=0;for n=M:NA=A+ef(M-1,n)*eb(M-1,n-1);D=D+(abs(ef(M-1,n)))^2+(abs(eb(M-1,n-1)))^2;endxishu=-2*A/D;a(M-1,M-1)=-2*A/D;P(M)=P(M-1)*(1-(abs(xishu))^2);FPE(M-1)=P(M)*(N+M)/(N-M);for m=1:M-2a(M-1,m)=a(M-2,m)+xishu*a(M-2,M-1-m);endendT=1/fs;sum1=0;f=0.01:0.01:0.5;for m=1:M-1;sum1=sum1+a(M-1,m)*exp(-j*2*pi*m*f*T);ends1=(abs(1+sum1)).^2;s=P(M)*T./s1;plot(f,10*log10(s),'k');xlabel('f/fs');ylabel('功率谱/dB');2、周期图谱估计clc;clear;N=32;SNR=30;fs=1;t=1:N;t=t/fs;y=sin(2*pi*0.175*t)+sin(2*pi*0.20*t);x = awgn(y,SNR);sum1=0;f=0.05:0.01:0.5;for m=1:Nsum1=sum1+x(m)*exp(-j*2*pi*m*f);ends=(abs(sum1)).^2/N;plot(f,10*log10(s),'k');xlabel('f/fs');ylabel('功率谱/dB');实验结果:1、最大熵法估计结果:2、周期图法估计结果:。

matlab求功率谱

matlab求功率谱

matlab实现经典功率谱估计fft做出来是频谱,psd做出来是功率谱;功率谱丢失了频谱的相位信息;频谱不同的信号其功率谱是可能相同的;功率谱是幅度取模后平方,结果是个实数matlab中自功率谱密度直接用psd函数就可以求,按照matlab的说法,psd能实现Welch法估计,即相当于用改进的平均周期图法来求取随机信号的功率谱密度估计。

psd求出的结果应该更光滑吧。

1、直接法:直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。

Matlab代码示例:clear;Fs=1000; %采样频率n=0:1/Fs:1;%产生含有噪声的序列xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));window=boxcar(length(xn)); %矩形窗nfft=1024;[Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法plot(f,10*log10(Pxx));2、间接法:间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。

Matlab代码示例:clear;Fs=1000; %采样频率n=0:1/Fs:1;%产生含有噪声的序列xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));nfft=1024;cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数CXk=fft(cxn,nfft);Pxx=abs(CXk);index=0:round(nfft/2-1);k=index*Fs/nfft;plot_Pxx=10*log10(Pxx(index+1));plot(k,plot_Pxx);3、改进的直接法:对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。

[matlab实现经典功率谱估计]matlab功率谱估计

[matlab实现经典功率谱估计]matlab功率谱估计

[matlab实现经典功率谱估计]matlab功率谱估计1、直接法:直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。

Matlab代码示例:clear;Fs=1000; %采样频率n=0:1/Fs:1;%产生含有噪声的序列xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); window=boxcar(length(xn)); %矩形窗nfft=1024;[Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法plot(f,10*log10(Pxx));2、间接法:间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。

Matlab代码示例:clear;Fs=1000; %采样频率n=0:1/Fs:1;%产生含有噪声的序列xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024;cxn=xcorr(xn,”unbiased”); %计算序列的自相关函数CXk=fft(cxn,nfft);Pxx=abs(CXk);index=0:round(nfft/2-1);k=index*Fs/nfft;plot_Pxx=10*log10(Pxx(index+1));plot(k,plot_Pxx);3、改进的直接法:对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。

3.1、Bartlett法Bartlett平均周期图的方法是将N点的有限长序列x(n)分段求周期图再平均。

Matlab代码示例:clear;Fs=1000;n=0:1/Fs:1;xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n)); nfft=1024;window=boxcar(length(n)); %矩形窗noverlap=0; %数据无重叠p=0.9; %置信概率[Pxx,Pxxc]=psd(xn,nfft,Fs,window,noverlap,p);index=0:round(nfft/2-1);k=index*Fs/nfft;plot_Pxx=10*log10(Pxx(index+1));plot_Pxxc=10*log10(Pxxc(index+1));figure(1)plot(k,plot_Pxx);pause;figure(2)plot(k,[plot_Pxx plot_Pxx-plot_Pxxc plot_Pxx+plot_Pxxc]);3.2、Welch法Welch法对Bartlett法进行了两方面的修正,一是选择适当的窗函数w(n),并再周期图计算前直接加进去,加窗的优点是无论什么样的窗函数均可使谱估计非负。

基于Welch算法的经典功率谱估计的Matlab分析

基于Welch算法的经典功率谱估计的Matlab分析

基于Welch算法的经典功率谱估计的Matlab分析作者:伊鑫曲爱华来源:《现代电子技术》2010年第03期摘要:从经典功率谱估计周期图法原理入手,从理论上分析了其存在的局限性,借助Welch算法对其进行修正。

依靠Matlab强大的数值分析和信号处理能力,进行实验仿真,比较不同的窗函数,不同的数据长度对Welch法谱估计质量的影响,并分析了造成这些影响的原因。

关键词:功率谱估计;周期图法;Welch算法;Matlab中图分类号:TP911 文献标识码:A文章编号:1004-373X(2010)03-007-03Matlab Simulation Analysis of Power Spectrum Estimation Based on Welch MethodYI Xin,QU Aihua(Naval Command College,Nanjing,211800,China)Abstract:The paper mainly introduces the principles of Periodogram method of classical PSD estimation,analyzes the deficiency of Periodogram method in theory,and makes use of Welch to amend Perodogram method.By the use of simulation in Matlab,the impacts of different window function and different lenghth of data on estimation quality of Welch are discussed and the reasons of the impacts are analyzed.Keywords:power spectrum estimation;periodogram method;Welch method;Matlab0 引言随机信号在时间上是无限的,在样本上是无穷多,因此随机信号的能量是无限的,它应是功率信号。

基于MATLAB的谱估计实现毕业设计论文

基于MATLAB的谱估计实现毕业设计论文

毕业论文声明本人郑重声明:1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。

除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。

对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。

本人完全意识到本声明的法律结果由本人承担。

2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。

本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。

3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。

4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。

论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。

论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。

对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。

学位论文作者(签名):年月关于毕业论文使用授权的声明本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。

本人完全了解大学有关保存,使用毕业论文的规定。

同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。

本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。

如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。

本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。

本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)了解周期图法(直接法)估计功率谱的缺陷。
三、实验原理
把随机信号 的N点观察数据 视为一能量有限信号,直接取得 傅里叶变换,得 ,然后再取其幅值的平方,并除以N,作为对 真实的功率谱 的估计。即为:
四、涉及实验的相关情况介绍(包含使用软件或实验设备等情况)
一台安装MATLAB软件的电脑
五、实验记录(程序、相关的图形、相关数据记录及分析)
axis([0 0.3 -2 2]);
grid on;wiFra bibliotekdow = boxcar( length( xn) ) ;%矩形窗
nfft = 512;
[Pxx f]= periodogram( xn,window,nfft,Fs) ;%直接法
subplot(312)
plot( f,10* log10( Pxx) ) ;
%采用直接法(周期图法)估计功率谱;
clear
Fs = 1000;%采样频率
n = 0:1 /Fs: .3;%产生含有噪声的序列
xn = cos(200*pi*n)+0.1*randn(size(n));
subplot(311);%输出随机信号xn;
plot(n,xn);xlabel('时间');ylabel('幅度');title('输入信号x(n)');
plot( f,10*log10( Pxx) ) ;
title('直接法经典谱估计,1024点');
xlabel('频率(Hz)');
ylabel('功率谱密度');
grid on;
六、实验总结
从上图我们可以得到这样的结论:在增加数据长度N时,就会使互不相关的点数增加,提高谱曲线的分辨力,但是加剧谱曲线 的起伏。经典功率谱估计不是一致估计,这是周期图法(直接法)的一个严重的缺点。
title('直接法经典谱估计,512点');
xlabel('频率(Hz)');
ylabel('功率谱密度');
grid on;
window = boxcar( length( xn) );
nfft = 1024;
[Pxx,f]= periodogram( xn,window,nfft,Fs) ;
subplot(313) ;
数字信号处理课程实验报告
实验指导教师:黄启宏
实验名称
MATLAB仿真实现经典谱估计(采用周期图法)
专业、班级
电子与通信工程
姓名
张帅
实验地点
仿古楼301
实验日期
2013.11.17
一、实验内容
采用周期图法(直接法)实现经典谱估计。
二、实验目的
(1)掌握周期图法(直接法)估计出功率谱的步骤和方法;
(2)在实验的过程中找到影响经典谱估计的因素;
相关文档
最新文档