经典功率谱和Burg法的功率谱估计

合集下载

利用经典谱估计法估计信号的功率谱(随机信号)

利用经典谱估计法估计信号的功率谱(随机信号)

随机信号利用经典谱估计法估计信号的功率谱作业综述:给出一段信号“asd.wav”,利用经典谱估计法的原理,通过不同的谱估计方法,求出信号的功率谱密度函数。

采用MATLAB语言,利用MATLAB语言强大的数据处理和数据可视化能力,通过GUI的对话框模板,使操作更为简便!在一个GUI界面中,同时呈现出不同方法产生出的功率谱。

这里给出了几种不同的方法:BT法,周期图法,平均法以及Welch法。

把几种不同方法所得到的功率谱都呈现在一个界面中,便于对几种不同方法得到的功率谱作对比。

一.题目要求给出一段信号及采样率,利用经典谱估计法估计出信号的功率谱。

二.基本原理及方法经典谱估计的方法,实质上依赖于传统的傅里叶变换法。

它是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有BT法,周期图法,平均法以及Welch法。

1. BT法(Blackman-Tukey)● 理论基础:(1)随机序列的维纳-辛钦定理由于随机序列{X(n)}的自相关函数Rx(m)=E[X(n)X(n+m)]定义在离散点m 上,设取样间隔为,则可将随机序列的自相关函数用连续时间函数表示为等式两边取傅里叶变换,则随机序列的功率谱密度(2)谱估计BT法是先估计自相关函数Rx(m)(|m|=0,1,2…,N-1),然后再经过离散傅里叶变换求的功率谱密度的估值。

即其中可有式得到。

2. 周期图法● 理论基础:周期图法是根据各态历经随机过程功率谱的定义来进行谱估计的。

在前面我们已知,各态历经的连续随机过程的功率谱密度满足式中是连续随机过程第i个样本的截取函数的频谱。

对应在随机序列中则有由于随机序列中观测数据仅在的点上存在,则的N点离散傅里叶变换为:因此有随机信号的观测数据的功率谱估计值(称“周期图”)如下:由于上式中的离散傅里叶变换可以用快速傅里叶变换计算,因此就可以估计出功率谱。

3.平均法:● 理论基础:平均法可视为周期图法的改进。

周期图经过平均后会使它的方差减少,达到一致估计的目的,有一个定理:如果是不相关的随机变量,且都有个均值及其方差,则可以证明它们的算术平均的均值为。

功率谱计算[解说]

功率谱计算[解说]

功率谱计算功率谱估计在现代信号处理中是一个很重要的课题,涉及的问题很多。

在这里,结合matlab,我做一个粗略介绍。

功率谱估计可以分为经典谱估计方法与现代谱估计方法。

经典谱估计中最简单的就是周期图法,又分为直接法与间接法。

直接法先取N点数据的傅里叶变换(即频谱),然后取频谱与其共轭的乘积,就得到功率谱的估计;间接法先计算N点样本数据的自相关函数,然后取自相关函数的傅里叶变换,即得到功率谱的估计.都可以编程实现,很简单。

在matlab中,周期图法可以用函数periodogram实现。

但是周期图法估计出的功率谱不够精细,分辨率比较低。

因此需要对周期图法进行修正,可以将信号序列x(n)分为n个不相重叠的小段,分别用周期图法进行谱估计,然后将这n段数据估计的结果的平均值作为整段数据功率谱估计的结果。

还可以将信号序列x(n)重叠分段,分别计算功率谱,再计算平均值作为整段数据的功率谱估计。

这2种称为分段平均周期图法,一般后者比前者效果好。

加窗平均周期图法是对分段平均周期图法的改进,即在数据分段后,对每段数据加一个非矩形窗进行预处理,然后在按分段平均周期图法估计功率谱。

相对于分段平均周期图法,加窗平均周期图法可以减小频率泄漏,增加频峰的宽度。

welch法就是利用改进的平均周期图法估计估计随机信号的功率谱,它采用信号分段重叠,加窗,FFT等技术来计算功率谱。

与周期图法比较,welch法可以改善估计谱曲线的光滑性,大大提高谱估计的分辨率。

matlab中,welch法用函数psd实现。

调用格式如下:[Pxx,F] = PSD(X,NFFT,Fs,WINDOW,NOVERLAP)X:输入样本数据NFFT:FFT点数Fs:采样率WINDOW:窗类型NOVERLAP,重叠长度现代谱估计主要针对经典谱估计分辨率低和方差性不好提出的,可以极大的提高估计的分辨率和平滑性。

可以分为参数模型谱估计和非参数模型谱估计。

参数模型谱估计有AR模型,MA模型,ARMA模型等;非参数模型谱估计有最小方差法和MUSIC法等。

功率谱和功率谱密度计算公式

功率谱和功率谱密度计算公式

功率谱和功率谱密度计算公式
功率谱(Power Spectrum)
是描述随机信号或时间序列在不同频率下功率分布情况的工具。

对于离散信号,功率谱的计算通常涉及到傅里叶变换(Fourier Transform)或者更一般的傅里叶分析方法。

假设有一个离散信号(x(n))(其中(n)表示时间或样本序号),其功率谱(P(f))可以通过以下步骤计算:
傅里叶变换:首先,对信号(x(n))进行傅里叶变换,得到其频谱(X(f)):
(X(f) = \sum_{n=-\infty}^{\infty} x(n) e^{-j2\pi fn})
计算功率谱:然后,计算频谱的模的平方,即得到功率谱(P(f)):
(P(f) = |X(f)|^2)
功率谱密度(Power Spectral Density, PSD)
是单位频率范围内的平均功率,通常用于描述连续信号的功率分布。

对于连续信号(x(t))(其中(t)表示时间),其功率谱密度(S_{xx}(f))可以通过自相关函数和傅里叶变换得到:
自相关函数:首先,计算信号(x(t))的自相关函数(R_{xx}(\tau)):
(R{xx}(\tau) = \int{-\infty}^{\infty} x(t) x(t+\tau) dt)
傅里叶变换:然后,对自相关函数(R{xx}(\tau))进行傅里叶变换,得到功率谱密度(S{xx}(f)):(S{xx}(f) = \int{-\infty}^{\infty} R_{xx}(\tau) e^{-j2\pi f\tau} d\tau)。

经典功率谱估计

经典功率谱估计

雷达和声呐系统
目标检测
在雷达和声呐系统中,经典功率谱估计常被用于目标检测。通过对接收到的信号进行功率 谱分析,可以判断是否存在目标以及目标的位置和速度等信息。
距离和速度测量
在雷达和声呐系统中,经典功率谱估计还可以用于距离和速度测量。通过对接收到的信号 进行功率谱分析,可以估计出目标与系统之间的距离和相对速度。
信号分类
在雷达和声呐系统中,经典功率谱估计还可以用于信号分类。通过对接收到的信号进行功 率谱分析,可以判断目标的类型,例如区分飞机、船舶或车辆等不同类型目标。
05 经典功率谱估计的改进方 法
基于小波变换的功率谱估计
1
小波变换能够将信号分解成不同频率和时间尺度 的分量,从而更好地揭示信号的内在结构和特征。
然而,这些方法通常需要较长 的数据长度和较为复杂的计算 过程,对于短数据和实时处理 的应用场景具有一定的局限性 。
研究展望
01
随着信号处理技术的发展,经典功率谱估计方法仍有进一步优化的空 间。
02
针对短数据和实时处理的应用场景,研究更为快速、准确的功率谱估 计方法具有重要的实际意义。
03
结合机器学习和人工智能技术,探索基于数据驱动的功率谱估计方法 是一个值得关注的方向。
优点
能够提供较高的频率分辨率和较低的估计误差。
原理
格莱姆-梅尔谱估计利用了信号的模型参数,通过 构造一个模型函数来描述信号的频率响应特性, 并求解该函数的极值问题得到信号的功率谱。
缺点
需要预先设定模型函数的形式和参数,且计算复 杂度较高。
03 经典功率谱估计的优缺点
优点
01
02
03
算法成熟
经典功率谱估计方法经过 多年的研究和发展,已经 相当成熟,具有较高的稳 定性和可靠性。

基于Burg算法的AR模型功率谱估计简介

基于Burg算法的AR模型功率谱估计简介

基于Burg 算法的AR 模型功率谱估计简介摘要:在对随机信号的分析中,功率谱估计是一类重要的参数研究,功率谱估计的方法分为经典谱法和参数模型方法。

参数模型方法是利用型号的先验知识,确定信号的模型,然后估计出模型的参数,以实现对信号的功率谱估计。

根据wold 定理,AR 模型是比较常用的模型,根据Burg 算法等多种方法可以确定其参数。

关键词:功率谱估计;AR 模型;Burg 算法随机信号的功率谱反映它的频率成分以及各成分的相对强弱, 能从频域上揭示信号的节律, 是随机信号的重要特征。

因此, 用数字信号处理手段来估计随机信号的功率谱也是统计信号处理的基本手段之一。

在信号处理的许多应用中, 常常需要进行谱估计的测量。

例如, 在雷达系统中, 为了得到目标速度的信息需要进行谱测量; 在声纳系统中, 为了寻找水面舰艇或潜艇也要对混有噪声的信号进行分析。

总之, 在许多应用领域中, 例如, 雷达、声纳、通讯声学、语言等领域, 都需要对信号的基本参数进行分析和估计, 以得到有用的信息, 其中, 谱分析就是一类最重要的参数研究。

1 功率谱估计简介一个宽平稳随机过程的功率谱是其自相关序列的傅里叶变换,因此功率谱估计就等效于自相关估计。

对于自相关各态遍历的过程,应有:)()()(121lim *k r n x k n x N N x N N n =⎭⎬⎫⎩⎨⎧++∞→∑-= 如果所有的)(n x 都是已知的,理论上功率谱估计就很简单了,只需要对其自相关序列取傅里叶变换就可以了。

但是,这种方法有两个个很大的问题:一是不是所有的信号都是平稳信号,而且有用的数据量可能只有很少的一部分;二是数据中通常都会有噪声或群其它干扰信号。

因此,谱估计就是用有限个含有噪声的观测值来估计)(jw x e P 。

谱估计的方法一般分为两类。

第一类称为经典方法或参数方法,它首先由给定的数据估计自相关序列)(k r x ,然后对估计出的)(ˆk rx 进行傅里叶变换获得功率谱估计。

功率谱估计Levinson 递推法和 Burg 法

功率谱估计Levinson 递推法和 Burg 法

数字信号处理实验报告姓名: 学号: 日期:2015.12.141. 实验任务信号为两个正弦信号加高斯白噪声,各正弦信号的信噪比均为10dB ,长度为N ,信号频率分别为1f 和2f ,初始相位021==ϕϕ,取2.01=s f f ,s f f 1取不同的数值:0.3,0.25。

s f 为采样率。

(1)分别用 Levinson 递推法和 Burg 法进行功率谱估计,并分析改变数据长度、模型阶数对谱估计结果的影响。

(2)当正弦信号相位、频率、信噪比改变后,上述谱估计的结果有何变化?并作分析说明。

2. 原理分析2.1 现代谱估计中的参数建模根据参数模型来描述随机信号的方法,我们可以知道,如果能确定信号()x n 的信号模型,根据信号观测数据求出模型参数,系统函数用()z H 表示,模型输入白噪声,其方差为2w σ,信号的功率谱用下式求出:()()22iww jw xx e H e P σ=按照这种求功率谱的思路,功率谱估计可分为三个步骤: (1)选择合适的信号模型;(2)根据()n x 有限的观测数据,或者它的有限个自相关函数的估计值,估计模型的参数;(3)计算墨香的输出功率谱。

其中以(1)、(2)两步最为关键。

按照模型的不同,谱估计的方法有许多种,它们共同的特点是对信号观测区以外的数据不假设为0,而先根据信号观测数据估计模型参数,按照求模型输出功率的方法估计信号功率谱,回避了数据观测区以外的数据假设问题。

下面分析AR 谱估计的两种方法:自相关法——列文森(Levenson )递推法和伯格(Burg )递推法。

这两种方法均为已知信号观测数据,估计功率谱,两者共同特点是由信号观测数据求模型系数时采用信号预测误差最小的原则。

对于长记录数据,这些方法的估计质量是相似的,但对于短记录数据,不同方法之间存在差别。

2.2 自相关法——列文森(Levenson )递推法自相关法的出发点是选择AR 模型参数使预测误差功率最小,预测误差功率为()()()21211∑∑∑∞-∞==∞-∞=-+==n pi pi n i n x a n x Nn e Nρ假设信号()x n 的数据区在01n N ≤≤-范围,有P 个预测系数,N 个数据经过冲激响应为()0,1,pi a i p =的滤波器,输出预测误差()e n 的长度为N p +,因此应用下式计算:()()()210121011∑∑∑-+==-+=-+==P N n pi pi P N n i n x a n x Nn e Nρ()e n 的长度长于数据的长度,上式中数据()x n 的两端需补充零点,相当于对无穷长的信号加窗处理,得到长度为N 的数据。

功率谱估计

功率谱估计
已知信号:
W(n)为零均值方差为1的AWGN,n=1,2,3……,128
1.1周期图法:
我们知道随机信号的功率谱和自相关函数是一对傅式变换对:
而自相关函数定义为:
对于平稳随机过程,并由功率谱的偶函数特性得:
实际得到的随机信号只能是它的一个样本的片断,因此只能用有限长的样本序列来估计功率谱,这相当于用一个有限宽度(N)的窗函数 去乘样本序列,于是有(用离散频率K代替ω):
title('周期图法');
xlabel('Hz');
ylabel('dB/Hz');
window1=hamming(128);
noverlap=20; %数据20%的重叠
[Pxx1,f]=pwelch(xn,window1,noverlap,nfft,Fs,'onesided');
plot_Pxx1=10*log10(Pxx1);
仿真结果:
2.现代功率谱估计
现代功率谱估计即参数谱估计方法是通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱。主要是针对经典谱估计的分辨率低和方差性能不好等问题提出的。主要方法有最大熵谱分析法(AR模型法)、Pisarenko谐波分解法、Prony提取计点法、Prony谱分解法以及Carpon最大似然法。其中AR模型应用较多,具有代表性。常用的模型有ARMA模型、AR模型、MA模型。
这就是用样本序列片断的DFT来估计功率谱的式子。由于加了矩形窗,使得这种直接的周期图估计平滑性、一致性和分辨率不能满足实际要求,因此有必要对上式作一些修改,这些修改主要有两种方法:
1.分段平均:即将长度为N的数据分成L段(允许有重叠),分别求出每一段的功率谱,然后即以平均。这样L个平均的方插笔每个随机变量的单独方差小L倍。

功率谱和经典谱估计的应用:

功率谱和经典谱估计的应用:
功率谱和经典谱估计的应用:
1、功率谱的应用: 功率谱反映了随机信号各频率成分功率能量的分布情况,
可以揭示信号中隐含的周期性及靠得很近的谱峰等有用的信息, 应用及其广泛。例如,在语音信号识别、雷达杂波分析、地震 勘测信号处理、水声信号处理、系统辨识中非线性系统识别、 物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周 期研究等许多领域,发挥了重要作用。
涡街流量计的信号频率与流体速度成线性比例关系,工 程应用中一般测量该信号的频率,然后根据仪表系数转换算成 实际的流量。因为噪声的原因,数字信号处理必须实现准确的 功率—频率计算。对涡街信号处理的第一步就是直接做功率谱 估计,计算功率谱能量最大的谱线对应的信号频率就是涡街信 号的频率。用这个频率来确定涡街信号的区间范围方便后续进 一步处理。
2、经典谱估计的应用:
经典谱估计法由于假定信号的自相关函数在数据观测区以外等于 零,因此估计出来的功率谱很难与信号的真实功率谱相匹配,是一种低 分辨率的谱估计方法,而现在已有很多质量更好的谱估计方法,所以经 典谱现在主要用于一些要求不高的场合,做一些基础的工作。
(1)涡街流量计
在基于经典谱估计改进方法的涡街流量计中通过经典谱估计的FFT 算法来计算信号频率的区间范围,以待后续进一步的处理。
(2)汽轮机振动信号 当汽轮机产生故障时,其振动信号的频谱能量分布情况会有 所改变,因此对振动信号进行频谱分析是当前常用的汽轮机故障 特征提取方法。周期图法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代信号处理作业
实验题目:
设信号)()8.0cos(25.0)47.0cos()35.0cos()(321n v n n n n x ++++++=θπθπθπ,其中321,,θθθ是[]ππ,-内的独立随机变量,v(n)是单位高斯白噪声。

1.利用周期图法对序列进行功率谱估计。

数据窗采用汉明窗。

2.利用BT 法对序列进行功率谱估计,自相关函数的最大相关长度为M=64,128,256,512采用BARTLETT 窗。

3.利用Welch 法对序列进行功率谱估计,50%重叠,采用汉明窗,L=256,128,64。

4.利用Burg 法对序列进行AR 模型功率谱估计,阶数分别为10,13.
要求每个实验都取1024个点,fft 作为谱估计,取50个样本序列的算术平均,画出平均的功率谱图。

实验原理:
1)。

周期图法:
又称间接法,它把随机信号的N 个观察值x N (n)直接进行傅里叶变换,得到X N (e jw ),然后取其幅值的平方,再除以N ,作为对x (n )真实功率谱的估计。

2^
)(1)(jw e X N
w P N per =
, 其中∑-=-=1
)()(N n jwn N jw
N e n x e X 2)。

BT 法:
对于N 个观察值x(0),x(1),。

,x(N-1),令x N (n)=a(n)x(n)。

计算r x (m )为
∑--=-≤+=
m
N n N N
x N m m n x n x
N m r 10
1),()(1
)(,计算其傅里叶变换
∑-=--≤=
M
M
m jwm x
BT N M e m r
m v w P 1 ,)()()(^
^
,作为观察值的功率谱的估计。

其中v(m)是平滑窗。

3)。

Welch 法:
假定观察数据是x(n),n=0,1,2...,N-1,现将其分段,每段长度为M,段与段之间的重叠为M-K,第i 个数据段经加窗后可表示为 1,...,1,0 )()()(-=+=M i iK n x n a n x i M
其中K 为一整数,L 为分段数,该数据段的周期图为
2)(1)(^w X MU w P i M i
per =,其中∑-=-=1
0)()(M n j w n i
M i M e n x w X 。

由此得到平均周期图为
∑-==10
^_
)(1)(L i i
per w P L w P 。

其中归一化U 取∑-==
10
2
)(1M n n a
M U 。

4)。

Burg 法:
在约束条件下,使得)(2
1^^^
b
f ρρρ+=极小化,其中,约束条件是它所得到的
各阶模型解要求满足Levison 递归关系。

仿真结果:
1.周期图法
2.1)BT 法,平滑窗采用BARTLETT窗,长度为64;
2.3)BT 法,平滑窗采用BARTLETT窗,长度为256;
3.1 L=256
3.2 L=128
3.1 L=64
4.1。

Burg 法,阶数为10;
4.1。

Burg 法,阶数为13;
仿真分析:
1. 周期图法得到的功率谱,特点是离散性大,曲线粗糙,方差较大,但是分辨率较高;
2. 从图中可以看出间接法估计的偏差大于周期图法。

这是因为BT 法在)(^
m r x 上施加了一个较短的平滑窗v(m)。

但是BT 法得到的功率谱的方差,从图中可以看出,要小于周期图法得到的方差,所以
其分辨率要比周期图法差。

从理论上,BT 法和周期图法的方差之比为∑-==
ΛM
M
n n v
N
)(1
2
,一般
来说,v(m)是以m=0对称递减的,又M<<N,所以Λ<1。

验证了实验所得。

BT 法中对于延迟窗取不同的长度,从图中可以看出,长度越长,方差越大,分辨率越高。

因为BT 法的方差和∑-=M
M
n n v
)(2
成正比关系,当
长度越长时,
∑-=M
M
n n v
)(2
越大,所以得到的功率谱的方差越大。

(BT 法中要求平滑窗的长度为2M+1,即为奇数,关于m=0处对称。

本实验中,给出的平滑窗为偶数,与自相关函数关于m=0对称,且r (0)最大这一特性是否十分吻合,值得商榷)。

3. Welch 法是将N 点观察值分为L 个数据段,用以改善功率谱图的方差特性。

从图中看出,对比周期图法,Welch 法作出的功率谱图的方差特性的确得到大大的改善。

但是在给每段序列用适当的窗口函数加权后,在得到平滑的估计结果同时,使得功率谱额主瓣变宽,因此分辨率有所下降。

从图中可以看出,Welch 法中,随着分的段数增加,得到的功率谱的方差变得更好,这是因为Welch 法中方差与分的段数大约成反比关系。

而分辨率则随着段数增加而下降。

4. burg 法从图中可以看出,随着阶数的增高,分辨率提升。

本实验中,由于阶数比较小,得到的功率谱图并不理想。

现代谱估计的一些隐含着数据和自相关函数的外推, 使其可能的长度超过给定的
长度, 不象经典谱估计那样受窗函数的影响。

因而现代谱的分别率比较高, 而且现代谱线要平滑得多。

相关文档
最新文档