经典功率谱估计方法实现问题的研究
功率谱估计

功率谱估计引言:对信号和系统进行的分析研究、处理有两类方法:一类是在时域内进行,维纳滤波、卡尔曼滤波以及自适应滤波等都属于时域处理方法;另一类方法是频域研究方法。
对于确定性信号,傅里叶变换是在频率分析研究的理论基础,但是在实际生活中大多数信号是随机信号,而随机信号的傅里叶变换是不存在的,在实际应用中,通常通过采集和观测平稳随机过程的一个抽样序列的一段(有限个)数据,根据这有限个已知的数据来估计随机过程的功率谱问题来对随机信号进行分析,这即是频率谱估计。
功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内通过用某种有效的方法来估计出其功率谱密度,从而得出信号、噪声及干扰的一些性质来,提取被淹没在噪声中的有用信号。
功率谱估计就是通过信号的相关性估计出接受到信号的功率随频率的变化关系,实际用途有滤波,信号识别(分析出信号的频率),信号分离,系统辨识等。
谱估计技术是现代信号处理的一个重要部分,还包括空间谱估计,高阶谱估计等。
按照Weiner —Khintchine 定理,随机信号的功率谱和其自相关函数服从傅里叶变换关系,可以得出功率谱的一个定义,如公式(1)所示:()jwm m xx jw xx e m re P -∞-∞=∑=)( 公式(1)对于平稳随机信号,服从各态历经性,集合平均可以用时间平均来代替,可以推出功率谱的另一定义。
如公式(2)所示:()])(121[2lim ∑-=-∞→+=N N n jwn N jw xx e n x N E e P 公式(2)频率谱估计主要分为经典谱估计和现代谱估计,经典谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有相关法和周期图法;现代谱估计是通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱,主要是针对经典谱估计的分辨率低和方差性能不好等问题提出的,应用最广的是AR 参数模型。
现代信号处理经典的功率谱估计

现代信号处理经典的功率谱估计《现代信号处理》姓名:李建强学号:201512172087专业:电子科学与技术作业内容:在MATLAB平台上对一个特定的平稳随机信号进行经典功率谱估计和现代功率谱估计的比较一、前言功率谱估计是信息学科中的研究热点,在过去的30多年里取得了飞速的发展。
在许多工程应用中,它能给出被分析对象的能量随频率的分布情况。
平滑周期图是一种计算简单的经典方法,它的主要特点是与任何模型参数无关,但估计出来的功率谱很难与信号的真是功率谱相匹配。
与周期图方法不同,现代谱估计主要是针对经典谱估计(周期图和自相关法)的分辨率低和方差性能不好的问题而提出的。
其使用参数化的模型,能够给出比周期图方法高得多的频率分辨率。
其内容极其丰富,涉及的学科和领域也相当广泛,按是否有参数大致可分为参数模型估计和非参数模型估计,前者有AR模型、MA模型、ARMA模型、PRONY指数模型等;后者有最小方差方法、多分量的MUSIC方法等。
二、总体概述本次实验分别使用经典的功率谱估计(如周期图法)与AR模型法对某一特定的平稳随机信号进行其功率谱估计,由图像得到信号的频率。
利用MATLAB平台,直观形象地观察并比较二者估计效果的区别,以便于加深对功率谱估计的理解和掌握。
三、具体的实现步骤1、经典法功率谱估计周期图法又称直接法,它是从随机信号x(n)中截取N长的一段,把它视为能量有限的真实功率谱的估计的一个抽样。
1.1、实现步骤(1)、模拟系统输出参数x(n)=A*sin(2πf1*n)+B*sin(2πf2*n),包括序列长度N(128或512或1024,加性高斯白噪声(AGWN)功率一定,设置A,B,f1,f2,n的值。
(2)、应用周期图法(不加窗)对信号的功率谱密度进行估计,使用直接法在MATLAB平台上进行编程实现。
(3)、输出相应波形图,进行观察,记录。
1.2 MATLAB源代码实现clear all; %清除工作空间所有之前的变量close all; %关闭之前的所有的figureclc; %清除命令行之前所有的文字n=1:1:128; %设定采样点n=1-128f1=0.2; %设定f1频率的值0.2f2=0.213; %设定f2频率的值0.213A=1; %取定第一个正弦函数的振幅B=1; %取定第一个正弦函数的振幅a=0; %设定相位为0x1=A*sin(2*pi*f1*n+a)+B*sin(2*pi*f2*n+a ); %定义x1函数,不添加高斯白噪声x2=awgn(x1,3); %在x1基础上添加加性高斯白噪声,信噪比为3,定义x2函数temp=0; %定义临时值,并规定初始值为0temp=fft(x2,128); %对x2做快速傅里叶变换pw1=abs(temp).^2/128; %对temp做经典功率估计k=0:length(temp)-1;w=2*pi*k/128;figure(1); %输出x1函数图像plot(w/pi/2,pw1) %输出功率谱函数pw1图像xlabel('信号频率/Hz');ylabel('PSD/傅立叶功率谱估计');title('正弦信号x(n)添加高斯白噪声后的,周期图法功率频谱分析');grid;%------------------------------------------------------------------------- pw2=temp.*conj(temp)/128; %对temp做向量的共轭乘积k=0:length(temp)-1;w=2*pi*k/128;figure(2);plot(w/pi/2,pw2); %输出功率谱函数pw2图像xlabel('信号频率/Hz');ylabel('PSD/傅立叶功率谱估计');title('正弦信号x(n)自相关法功率谱估计');grid;1.3 matlab仿真图形(1)、用直接法,功率谱图像,采样点N=128。
经典功率谱估计

雷达和声呐系统
目标检测
在雷达和声呐系统中,经典功率谱估计常被用于目标检测。通过对接收到的信号进行功率 谱分析,可以判断是否存在目标以及目标的位置和速度等信息。
距离和速度测量
在雷达和声呐系统中,经典功率谱估计还可以用于距离和速度测量。通过对接收到的信号 进行功率谱分析,可以估计出目标与系统之间的距离和相对速度。
信号分类
在雷达和声呐系统中,经典功率谱估计还可以用于信号分类。通过对接收到的信号进行功 率谱分析,可以判断目标的类型,例如区分飞机、船舶或车辆等不同类型目标。
05 经典功率谱估计的改进方 法
基于小波变换的功率谱估计
1
小波变换能够将信号分解成不同频率和时间尺度 的分量,从而更好地揭示信号的内在结构和特征。
然而,这些方法通常需要较长 的数据长度和较为复杂的计算 过程,对于短数据和实时处理 的应用场景具有一定的局限性 。
研究展望
01
随着信号处理技术的发展,经典功率谱估计方法仍有进一步优化的空 间。
02
针对短数据和实时处理的应用场景,研究更为快速、准确的功率谱估 计方法具有重要的实际意义。
03
结合机器学习和人工智能技术,探索基于数据驱动的功率谱估计方法 是一个值得关注的方向。
优点
能够提供较高的频率分辨率和较低的估计误差。
原理
格莱姆-梅尔谱估计利用了信号的模型参数,通过 构造一个模型函数来描述信号的频率响应特性, 并求解该函数的极值问题得到信号的功率谱。
缺点
需要预先设定模型函数的形式和参数,且计算复 杂度较高。
03 经典功率谱估计的优缺点
优点
01
02
03
算法成熟
经典功率谱估计方法经过 多年的研究和发展,已经 相当成熟,具有较高的稳 定性和可靠性。
数字信号处理中的功率谱估计原理探讨

数字信号处理中的功率谱估计原理探讨功率谱估计是数字信号处理中的一项重要任务,它用于分析信号的频率成分和功率分布特性。
在许多应用领域,如通信系统、语音处理、雷达信号处理等,功率谱估计被广泛应用。
本文将探讨功率谱估计的基本原理,介绍几种常用的功率谱估计方法,并讨论其优缺点。
一、功率谱估计的基本原理在数字信号处理中,功率谱估计是通过对信号进行频谱分析来获取信号的功率分布信息。
功率谱表示信号在不同频率下的功率强度,它可以反映信号的频域特性。
常用的功率谱估计方法有周期图法、非周期图法和模型法等。
周期图法基于周期自相关函数的峰值来估计信号的功率谱,适用于周期信号和稳态信号;非周期图法通过对信号进行傅里叶变换来估计功率谱,适用于非周期信号和非稳态信号;模型法则是基于信号模型假设,将信号拟合为数学模型,从而得到功率谱估计结果。
二、常用的功率谱估计方法1. 周期图法周期图法是一种基于周期性信号特点的功率谱估计方法。
它通过计算信号的周期自相关函数来实现功率谱估计。
常用的周期图法有自相关法和互相关法。
自相关法是基于信号与其自身的相关性来估计功率谱的,它通过计算信号的自相关函数来得到功率谱。
自相关法对于周期信号和稳态信号有较好的性能,但对于非周期信号和非稳态信号的估计结果则较差。
互相关法是通过计算信号与加性白噪声之间的互相关函数来估计功率谱的。
互相关法在估计非周期信号和非稳态信号的功率谱时表现较好,但对于周期信号的估计结果则较差。
2. 非周期图法非周期图法是一种基于信号的频谱特性的功率谱估计方法。
它通过信号的傅里叶变换来获得信号的频谱信息,并进一步得到功率谱的估计结果。
常用的非周期图法有快速傅里叶变换法和滤波器法。
快速傅里叶变换法是一种高效计算信号频谱的方法。
它通过对信号进行快速傅里叶变换,将信号从时域转换到频域,并得到信号的频谱信息。
通过对频谱进行平方运算可以得到信号的功率谱估计结果。
滤波器法是一种基于滤波器的功率谱估计方法。
(完整版)功率谱估计性能分析及Matlab仿真

功率谱估计性能分析及Matlab 仿真1 引言随机信号在时域上是无限长的,在测量样本上也是无穷多的,因此随机信号的能量是无限的,应该用功率信号来描述。
然而,功率信号不满足傅里叶变换的狄里克雷绝对可积的条件,因此严格意义上随机信号的傅里叶变换是不存在的。
因此,要实现随机信号的频域分析,不能简单从频谱的概念出发进行研究,而是功率谱[1]。
信号的功率谱密度描述随机信号的功率在频域随频率的分布。
利用给定的N 个样本数据估计一个平稳随机信号的功率谱密度叫做谱估计。
谱估计方法分为两大类:经典谱估计和现代谱估计。
经典功率谱估计如周期图法、自相关法等,其主要缺陷是描述功率谱波动的数字特征方差性能较差,频率分辨率低。
方差性能差的原因是无法获得按功率谱密度定义中求均值和求极限的运算[2]。
分辨率低的原因是在周期图法中,假定延迟窗以外的自相关函数全为0。
这是不符合实际情况的,因而产生了较差的频率分辨率。
而现代谱估计的目标都是旨在改善谱估计的分辨率,如自相关法和Burg 法等。
2 经典功率谱估计经典功率谱估计是截取较长的数据链中的一段作为工作区,而工作区之外的数据假设为0,这样就相当将数据加一窗函数,根据截取的N 个样本数据估计出其功率谱[1]。
2.1 周期图法( Periodogram )Schuster 首先提出周期图法。
周期图法是根据各态历经的随机过程功率谱的定义进行的谱估计。
取平稳随机信号()x n 的有限个观察值(0),(1),...,(1)x x x n -,求出其傅里叶变换10()()N j j n N n X e x n e ωω---==∑然后进行谱估计21()()j N S X e Nωω-= 周期图法应用比较广泛,主要是由于它与序列的频谱有直接的对应关系,并且可以采用FFT 快速算法来计算。
但是,这种方法需要对无限长的平稳随机序列进行截断,相当于对其加矩形窗,使之成为有限长数据。
同时,这也意味着对自相关函数加三角窗,使功率谱与窗函数卷积,从而产生频谱泄露,容易使弱信号的主瓣被强信号的旁瓣所淹没,造成频谱的模糊和失真,使得谱分辨率较低[1]。
功率谱和经典谱估计的应用:

1、功率谱的应用: 功率谱反映了随机信号各频率成分功率能量的分布情况,
可以揭示信号中隐含的周期性及靠得很近的谱峰等有用的信息, 应用及其广泛。例如,在语音信号识别、雷达杂波分析、地震 勘测信号处理、水声信号处理、系统辨识中非线性系统识别、 物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周 期研究等许多领域,发挥了重要作用。
涡街流量计的信号频率与流体速度成线性比例关系,工 程应用中一般测量该信号的频率,然后根据仪表系数转换算成 实际的流量。因为噪声的原因,数字信号处理必须实现准确的 功率—频率计算。对涡街信号处理的第一步就是直接做功率谱 估计,计算功率谱能量最大的谱线对应的信号频率就是涡街信 号的频率。用这个频率来确定涡街信号的区间范围方便后续进 一步处理。
2、经典谱估计的应用:
经典谱估计法由于假定信号的自相关函数在数据观测区以外等于 零,因此估计出来的功率谱很难与信号的真实功率谱相匹配,是一种低 分辨率的谱估计方法,而现在已有很多质量更好的谱估计方法,所以经 典谱现在主要用于一些要求不高的场合,做一些基础的工作。
(1)涡街流量计
在基于经典谱估计改进方法的涡街流量计中通过经典谱估计的FFT 算法来计算信号频率的区间范围,以待后续进一步的处理。
(2)汽轮机振动信号 当汽轮机产生故障时,其振动信号的频谱能量分布情况会有 所改变,因此对振动信号进行频谱分析是当前常用的汽轮机故障 特征提取方法。周期图法
功率谱估计报告范文

功率谱估计报告范文
一、功率谱估计的原理
功率谱估计是用来估计信号的功率谱密度(PSD)。
功率谱密度是描述信号在不同频率上的功率分布情况,是信号频谱特征的重要指标之一、功率谱估计的目标是通过有限长的信号序列来估计信号的功率谱密度,从而得到信号的频谱特征。
二、功率谱估计的常用方法
1.周期图法
周期图法是通过信号的周期性来估计功率谱密度。
该方法将有限长的信号序列进行周期延拓,然后通过傅里叶变换或卷积运算得到功率谱密度估计。
2.自相关法
自相关法是通过信号的自相关函数来估计功率谱密度。
该方法先计算信号序列的自相关函数,然后通过傅里叶变换得到功率谱密度估计。
3.平均功率谱法
平均功率谱法是通过将信号序列分段并求取每段的功率谱密度,然后对各段的功率谱密度进行均值运算来估计信号的功率谱密度。
常用的平均功率谱法有Welch法和Bartlett法。
三、功率谱估计的实际应用案例
1.语音信号处理
2.无线通信
3.振动信号分析
总之,功率谱估计是分析信号频谱特征的常用方法,通过对有限长的信号序列进行处理,估计信号的功率谱密度。
功率谱估计可以应用于语音信号处理、无线通信以及振动信号分析等多个领域。
在实际应用中,根据信号特点和需求选择合适的功率谱估计方法,并结合其他信号处理技术进行综合分析。
对功率谱估计常用方法的探讨及应用

DSP课程的设计对功率谱估计常用方法的探讨及应用分析进行傅里叶变换在频域中研究信号,是研究确定性信号最简单且有效的手段,但在现代信号分析中,对于常见的随机信号,不可能用清楚的数学关系式来描述,其傅里叶变换更不存在,转而可以利用给定的N个样本数据估计一个平稳随机信号的功率谱密度。
功率谱估计是数字信号处理的重要研究内容之一。
功率谱估计可以分为经典功率谱估计和现代功率谱估计。
本文介绍了各种经典功率谱估计方法,不仅从理论上对各种方法的谱估计质量进行了分析比较,而且通过Matlab进行了仿真。
在对经典谱估计进行讨论之后,还分析了现代谱估计即参数谱估计方法,通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱。
现代谱估计的内容极其丰富,设计的学科及应用的领域都相当广泛,至今每年都有大量的科研成果出来。
在本文的最后利用现代谱估计的方法讨论了功率谱方法在噪声源信号识别中的应用。
文章还给出了常见谱估计方法的比较,便于深刻理解各种方法的特点,从而在实际工作中做出合理的选择。
1.功率谱方法的发展功率谱估计是随机信号处理的重要内容,其技术渊源很长,而且在过去的40余年中获得了飞速的发展。
涉及到信号与系统、随机信号分析、概率统计、矩阵代数等一系列的基础学科,广泛应用于人民的日常生活及军事、工业、农业活动中,是一个具有强大生命力的研究领域。
本文将简要回顾一下功率谱估计的发展历程,对常用的一些方法进行总结。
功率谱的估计方法有很多,主要有经典谱估计和现代谱估计。
经典谱估计又可以分成两种:一种是BT法,也叫间接法;另一种是直接法又称周期图法。
现代谱估计的方法又大致可分为参数模型谱估计和非参数模型谱估计,前者有AR模型、MA模型、ARMA模型、PRONY模型等,后者有最小方差方法、多分量的MUSIC方法等。
1.1功率谱研究的发展过程功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内提取被淹没在噪声中的有用信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 随机信号的经典谱估计方法估计功率谱密度的平滑周期图是一种计算简单的经典方法。
它的主要特点是与任何模型参数无关,是一类非参数化方法[4]。
它的主要问题是:由于假定信号的自相关函数在数据观测区以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。
在一般情况下,周期图的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。
本章主要介绍了周期图法、相关法谱估计(BT )、巴特利特(Bartlett)平均周期图的方法和Welch 法这四种方法。
2.1 周期图法周期图法又称直接法。
它是从随机信号x(n)中截取N 长的一段,把它视为能量有限x(n)真实功率谱)(jw x e S 的估计)(jw x e S 的抽样.周期图这一概念早在1899年就提出了,但由于点数N一般比较大,该方法的计算量过大而在当时无法使用。
只是1965年FFT 出现后,此法才变成谱估计的一个常用方法。
周期图法[5]包含了下列两条假设:1.认为随机序列是广义平稳且各态遍历的,可以用其一个样本x(n)中的一段)(n x N 来估计该随机序列的功率谱。
这当然必然带来误差。
2.由于对)(n x N 采用DFT ,就默认)(n x N 在时域是周期的,以及)(k x N 在频域是周期的。
这种方法把随机序列样本x(n)看成是截得一段)(n x N 的周期延拓,这也就是周期图法这个名字的来历。
与相关法相比,相关法在求相关函数)(m R x 时将)(n x N 以外是数据全都看成零,因此相关法认为除)(n x N 外x(n)是全零序列,这种处理方法显然与周期图法不一样。
但是,当相关法被引入基于FFT 的快速相关后,相关法和周期图法开始融合。
通过比较我们发现:如果相关法中M=N ,不加延迟窗,那么就和补充(N-1)个零的周期图法一样了。
简单地可以这样说:周期图法是M=N 时相关法的特例。
因此相关法和周期图法可结合使用。
2.2 相关法谱估计(BT )法这种方法以相关函数为媒介来计算功率谱,所以又叫间接法。
它是1958年由Blackman 和Tukey 提出。
这种方法的具体步骤是:第一步:从无限长随机序列x(n)中截取长度N 的有限长序列列)(n x N 第二步:由N 长序列)(n x N 求(2M-1)点的自相关函数)(m R x ∧序列。
即)()(1)(1m n x n xNm R N n N Nx +=∑-=∧(2-1)这里,m=-(M-1)…,-1,0,1…,M-1,M N ,)(m R x 是双边序列,但是由自相关函数的偶对称性式,只要求出m=0,。
,M-1的傅里叶变换,另一半也就知道了。
第三步:由相关函数的傅式变换求功率谱。
即jwmM M m Xjwx em Re S ----=∧∧∑=)()(1)1( (2-2)以上过程中经历了两次截断,一次是将x(n)截成N 长,称为加数据窗,一次是将x(n)截成(2M-1)长,称为加延迟窗。
因此所得的功率谱仅是近似值,也叫谱估计,式中的)(jw x e S 代表估值。
一般取M<<N ,因为只有当M 较小时,序列傅式变换的点数才较小,功率谱的计算量才不至于大到难以实现,而且谱估计质量也较好。
因此,在FFT 问世之前,相关法是最常用的谱估计方法。
当FFT 问世后,情况有所变化。
因为截断后的)(n x N 可视作能量信号,由相关卷积定理可得)(m R x ∧)]()([1m x m x NN N -*=(2-3)这就将相关化为线性卷积,而线性卷积又可以用快速卷积来实现。
我们可对上式两边取(2N-1)点DFT ,则有2121212)(1)()([1)(K X NK x k x Nm R N N N x ---∧=*=(2-4)于是将时域卷积变为频域乘积,用快速相关求)(m R x ∧的完整方案如下: 1.对N 长)(n x N 的补充(N-1)个零,成为(2N-1)长的。
2.求(2N-1)点的FFT ,得∑-=----=220121212)()(N N mkN N N W n xK X 。
3.求212)(1K X N N -。
由DFT 性质,)(12n x N -是纯实的,)(12k x N -满足共轭偶对称,而212)(1K X NN -一定是实偶的,且以(2N-1)为周期。
4. 求(2N-1)点的IFFT :mkN N N k N x W K X NN m R -----=-∧∑-=121)1(212)(1121)( (2-5)这里212)(1K X NN -是实偶的,m=-(N-1)...0...N-1。
本来IFFT 求和范围是0至2N-2,由于212)(1K X NN -的实偶性与周期性,求和范围改为-(N-1)至(N-1)不影响计算结果。
同理可将m 的范围改为-(N-1)至(N-1)。
上述的快速相关中,补充零的目的是为了能用圆周卷积代替线性卷积,以便进一步采用快速卷积算法。
快速相关输出是-(N-1)至(N-1)的2N-1点,加)(m W M 窗后截取的是-(M-1)至(M-1)的频段,最后作(2M-1)点FFT ,得)(k S x ∧。
我们注意到:如果数据点数与自相关序列点数相同即M=N ,则(2N-1)点的IFFT 后紧跟一个(2N-1)点的FFT ,利用)(m R x ∧的对称性,FT 运算框的计算式变为=)(K S X ∑---=∧1)1()(N N m Xm R1212---N mkN X W (2-6)由于N=M 并假设窗形状是矩形的,第二次()m W M 的截断就不需要了。
比较式(2-5)和式(2-6), ](m)R FFT[k S x x∧=)(,])(1[)( 212K X NIFFT m R N x -∧=正反傅氏变换可以抵消,直接得)(k S x=212)(1K X NN - (2-7)为了实行基2FFT ,也可将(2N-1)点换成2N 点,这样做不影响结果的正确性。
2.3 巴特利特(Bartlett)平均周期图法首先让我们来看一下为什么周期图经过某种平均(或平滑)后会使它的方差当∞→N 时趋于零,达到一致估计的目的。
如果L x x x , , ,21 是不相关的随机变量,每一个具有期望值μ,方差2σ,则可以证明它们的数学平均L x x x x l /)...(21+++=的期望值等于μ,数学平均的方差等于L /2σ,即:[][]μμ=⋅=+++=L Lx x x E Lx E L 1121[][][]222)(][))((x E xE x E x E x Var -=-=[]22212)(1μ-+++=L x x x E L()[]2112222121μ-⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++=∑∑=≠=L j Lji i j i L x x E x x x E L[][][]∑∑∑∑=≠==≠=⋅=Lj Lji i ijL j ji i jix E x E x x E 1111222)1(μμμμL L L L -=-=所以[][][]⎥⎦⎤⎢⎣⎡-=-⎥⎦⎤⎢⎣⎡-+=∑∑==2122222122211μμμμL x E L L L x E L x Var L i i L i i [][][][][][]{}22222221212])[(])[(])[(1LLxE x E xE x E xE x E L-++-+-=LL L2221σσ==(2-8)由(2-8)可见,L 个平均的方差比每个随机变量的单独方差小L 倍。
当[]0 →∞→x V a r L ,可达到一致谱估计的目的。
因而降低估计量的方差的一种有效方法是将若干个独立估计值进行平均。
把这种方法应用于谱估计通常归功于Bartlett 。
Bartlett 平均周期图的方法是将序列)10( )(-≤≤N n n x 分段求周期图再平均。
设将)(n x 分成L 段,每段有M 个样本,因而LM N =,第i 段样本序列可写成Li M n M iM n x n x i≤≤-≤≤-+=1 ,10 )()(第i 段的周期图为21)(1)(∑-=-=M n nj jiM en xMI ωω如果)( ,m M m xx φ>很小,则可假定各段的周期图)(ωiM I 是互相独立的。
对功率谱密度的概念的讨论,谱估计可定义为L 段周期图的平均,即∑==Li i MxxILP 1)(1)(ˆωω (2-9)于是它的期望值为[][][]∑===Li iM i MxxI E IE LP E 1)()(1)(ˆωωω[]⎰--=ππθωθθπωd eW P P E j B xx xx)()(21)(ˆ)(()[()[⎰-⎥⎦⎤⎢⎣⎡--=ππθθωθωθπd M P Mxx 22/sin 2sin )(21 (2-10)这里L N M /=,因此Bartlett 估计的期望值是真实谱)(ωxx P 与三角窗函数的卷积。
由于三角窗函数不等于δ函数,所以Bartlett 估计也是有偏估计即0≠Bias ,但当∞→N 时,0→Bias。
由于我们假定各段周期图是相互独立的,所以可按式(2-8)得到下式:[][])(1)(ˆωωMxx I Var LP Var =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+≈22s i n )s i n (1)(1ωωωM M P L xx (2-11)由此可见,随着L 的增加[])(ˆωxx P Var 是下降的,当∞→L 时,[]0)(ˆ→ωxxP Var 。
因此Bartlett 估计是一致估计。
比较式(2-10)的[])(ˆωxxP E 与式(2-1)的[])(ωN I E 可见在二种情况的估计量的期望值都是真值)(ωxx P 与窗口函数)(ωj B e W 的卷积形式,但后者将前者WB 中N 改为M ,NL N M <=/。
因而使)(ωj B e W 主瓣的宽度增大。
由于主瓣的宽度愈窄愈接近δ函数,偏倚愈小。
今式(3-10)中)(ωj B e W 的主瓣宽度大于后式中的主瓣宽度,因而[][])()(ˆωωNxx I Bias P Bias >,而主瓣愈宽分辨率就愈差。
因此Bias 可用来说明谱的分辨率,Bias 愈大说明谱分辨率愈差。
一个固定的记录长度N ,周期图分段的数目L 愈大将使方差愈小,但M 也愈小,因而使Bias 愈大,谱分辨率变得愈差。
因此Bartlett 方法中Bias 或谱分辨率和估计量的方差间是有互换关系的。
M 和N 的选择一般是由对所研究的信号的预先了解来指导的。
例如,如果我们知道谱有一个窄峰,同时如果分辨出这个峰是重要的,那么我们必须选择M 足够大。
又从方差的表达式我们可以确定谱估计的可接受的方差所要求的记录长度N=(LM)。