概率的概念古典概型几何概型概率的公理化定义
1.2事件的概率

例4 某城市的电话号码由5个数字组成,每个 数字可能是从0-9这十个数字中的任一个,求电 话号码由五个不同数字组成的概率.
解:
从10个不同数字中 取5个的排列
=0.3024
问:
保持计 数法则 的一致 性!
错在何处?
计算样本空间样本点总数和所求事件 所含样本点数计数方法不同.
需要注意的是:
1、在应用古典概型时必须注意“等可能 性”的条件.
P(A) 55 4 5 5 6 6 9
(2)事件B包含的基本事件数为mB=4×4×2+5×4=52 所以
P(B) 52 13 5 6 6 45
例:30名学生中有3名运动员,将这30名学生平均分 成3组,求: (1)每组有一名运动员的概率; (2)3名运动员集中在一个组的概率。 解:设A:每组有一名运动员;B: 3名运动员集中在一组
在许多场合,由对称性和均衡性,我们 就可以认为基本事件是等可能的并在此基础 上计算事件的概率.
2、在用排列组合公式计算古典概率时, 必须注意不要重复计数,也不要遗漏.
例:
用 0,1,2,3,4,5 这六个数字排成三位数,求
(1)没有相同数字的三位数的概率. (2)没有相同数字的三位偶数的概率.
解: 设A=没有相同数字的三位数,B表示没有相同 数字的三位偶数,则基本事件总数n=5×6×6=180 (1)事件A包含的基本事件数为mA=5×5×4 所以
NC C C
10 30
10 20
10 10
30! 10! 10! 10!
27! 3! 9! 9! 9! 50 P( A) N 203
3C C C P( B) N
7 27
10 20
10 10
1-3概率的公理化体系及性质

于是所求概率为
P ( AB ) 1 { P ( A) P ( B ) P ( AB )}
83 3 333 250 1 . 2000 2000 2000 4
三、小结
1. 频率 (波动) n 概率(稳定). 2. 两个基本概率模型 古典概型:各样本点等可能出现,样本空间只有 有限个样本点。 m P ( A) n 几何概型:各样本点等可能出现,样本空间具有几 何度量。 L A P( A) L
A1 4只鞋子中恰有两只配成一双
于是 A A1 A2,且A1 A2 , 则 P( A) P( A1 A2 ) P( A1 ) P( A2 )
1 2 2 2 C5 [C4 2 ] C5 13 4 4 21 C10 C10
另解 设A 4只鞋子都不能配成双
( t<T ) 后离去.设每人在0 到T 这段时间内各时刻 到达该地是等可能的 , 且两人到达的时刻互不牵 连.求甲、乙两人能会面的概率. 解 设 x , y 分别为甲,乙两人到达的时
刻, 那末 0 x T , 0 y T .
两人会面的充 T 上点的坐标 , 则有如图区域。
a
针的中点M到最近的一条平行 直线的距离, 表示针与该平行直线的 夹角.
M x
那么针落在平面上的位 置可由( x , )完全确定.
投 针 试 验 的 所 有 可 能果 结 与矩形区域 a {( x , ) | 0 x ,0 } 2 中的所有点一一对应 .
概率的可列可加性
2. 性质 (1) P ( ) 0.
(2) 若A1 , A2 ,, An是两两互不相容的事件, 则有
P ( A1 A2 An ) P ( A1 ) P ( A2 ) P ( An ).
§1.4 概率的公理化定义及概率的性质

§1.4 概率的公理化定义及概率的性质一、几何概率一个随机试验,如果数学模型是古典概型,那么描述这个实验的样本空间Ω,文件域 F 和概率P 已在前面得到解决。
在古典概型中,试验的结果是有限的,受到了很大的限制。
在实际问题中经常遇到试验结果是无限的情况的。
例如,若我们在一个面积为ΩS 的区域Ω中,等可能的任意投点,这里等可能的确切意义是这样的:在区域Ω中有任意一个小区域A ,若它的面积为A S , 则点A 落在A 中的可能性大小与A S 成正比,而与A 的位置及形状无关。
如果点A 落在区域A 这个随机事件仍记为A ,则由P(Ω)=1可得Ω=S S A P A)(, 这一类概率称为几何概率。
同样,如果在一条线段上投点,那么只需要将面积改为长度,如果在一个立方体内投点,则只需将面积改为体积。
例1:(会面问题)甲乙两人约定在6时到7时之间某处会面,并约定先到者应等候另一人一刻钟,过时即可离去,求两人能会面的概率。
解:以x 和y 分别表示甲乙约会的时间,则600,600≤≤≤≤y x 。
两人能会面的充要条件是15≤-y x 在平面上建立直角坐标系(如教材图)则(x,y )的所有可能结果是边长为60米的正方形,而可能会面的时间由图中阴影部分表示。
这是一个几何概率问题,由等可能性 167604560)(222=-==ΩS S A P A例2 蒲丰(Buffon )投针问题。
平面上画有等距离的平行线,平行线间的距离为a(a>0),向平面任意投掷一枚长为l(l<a)的针,试求针与平行线相交的概率。
解:假设x 表示针的中点与最近一条平行线的距离,又以ϕ表示针与此直线间的交角,有20ax ≤≤,πϕ≤≤0 由这两式可以确定ϕ,x 平面上的一个矩形 }0,20),({πϕϕ≤≤≤≤=Ωax x , 这时为了针与平行线相交,其条件为ϕsin 2lx ≤,由这个不等式表示的区域A 是图中的阴影部分 }sin 2,20),({ϕϕlx a x x A ≤≤≤=由等可能性可知 a la d lS S A P A ππϕϕπ22sin 2)(0===⎰Ω 若l,a 为已知,则以π值代入上式,即可计算得P (A )的值。
1-2(概率的定义、古典概率)

P( AB) P( A) P( B) P( A B)
P( A) P( B) 1 0.3 —— 最小值
最小值在 P( A B) 1 时取得
P( AB) P( A) 0.6
—— 最大值
最大值在 P( A B) P( B) 时取得
三.几何概率
早在概率论发展初期,人们就认识到, 只考虑有限个等可能样本点的古典方法是不 够的. 把等可能推广到无限个样本点场合,人们 引入了几何概型. 由此形成了确定概率的另 一方法——几何方法.
P( AB ) P( A) P( AB) 0.7 0.1 0.6 (2) P( A B) P( A) P( B) P( AB) 0.8
(1)
(3) P( A B) P( A B) 0.2
例2 设A , B满足 P ( A ) = 0.6, P ( B ) = 0.7, 在 何条件下, P(AB) 取得最大(小)值?最大(小) 值是多少? 解 P( A B) P( A) P( B) P( AB)
P ( Ai ) P ( Ai )
i 1 i 1 n n 1 i j n
P( A A )
i j
1 i j k n
P( A A A )
i j k
„ ( 1)
n1
P ( A1 A2 „ An )
例1 小王参加“智力大冲浪”游戏, 他能 答出甲、乙二类问题的概率分别为0.7和0.2, 两类问题都能答出的概率为0.1. 求小王 (1) 答出甲类而答不出乙类问题的概率 (2) 至少有一类问题能答出的概率 (3) 两类问题都答不出的概率 解 事件A , B分别表示“能答出甲,乙类问题”
概率统计知识点

一.随机事件和概率1、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1, 2° P(Ω) =13° 对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎟⎟⎠⎞⎜⎜⎝⎛11)(i i i i A P A P Υ常称为可列(完全)可加性。
则称P(A)为事件A 的概率。
(2)古典概型(等可能概型)1° {}n ωωωΛ21,=Ω,2° nP P P n 1)()()(21===ωωωΛ。
设任一事件A ,它是由m ωωωΛ21,组成的,则有P(A)={})()()(21m ωωωΥΛΥΥ=)()()(21m P P P ωωω+++Λn m =基本事件总数所包含的基本事件数A =2、五大公式(加法、减法、乘法、全概、贝叶斯)(1)加法公式P(A+B)=P(A)+P(B)-P(AB)当 P(AB)=0时,P(A+B)=P(A)+P(B)(2)减法公式P(A-B)=P(A)-P(AB)当B ⊂ A 时,P(A-B)=P(A)-P(B)当A=Ω时,P(B )=1- P(B)(3)条件概率和乘法公式定义 设A、B 是两个事件,且P(A)>0,则称)()(A P AB P 为事件A 发生条件下,事件B 发生的条件概率,记为=)/(A B P )()(A P AB P 。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
(4)全概公式设事件B 1, B 2,Λ , B n 满足1°B 1, B 2,Λ , B n两两互不相容,P (B i ) > 0(i = 1,2,Λ , n ) ,2°Υni iB A 1=⊂,则有)|()()|()()|()()(2211n n B A P B P B A P B P B A P B P A P +++=Λ。
概率的定义及其确定方法

1.2 概率的定义及其确定方法本节包括概率的公理化定义、排列与组合公式、确定概率的频率方法、古典方法、几何方法及主观方法。
主要介绍概率的定义,在排列、组合公式的基础上,利用频率方法、古典方法、几何方法及主观方法计算事件的概率。
概率是对随机事件发生可能性大小的数值度量。
1.随机事件的发生是带有偶然性的,但随机事件的发生的可能性是有大小之分的;2. 随机事件的发生的可能性是可以度量的,犹如长度和面积一样;3.在日常生活中往往用百分比来表示。
这里也是如此在概率论的发展史上,曾经有过概率的古典定义、概率的几何定义、概率的频率(统计)定义和概率的主观定义。
1933年,前苏联数学家柯尔莫哥洛夫首次提出了概率的公里化定义。
一、概率的公理化定义1.定义 设Ω为一样本空间,为Ω上的某些子集组成的一个事件域,如果对任意事件A ∈,定义在上的一个实值函数P (A )满足: (1)非负性公理:()0;P A ≥ (2)正则性公理:()1;P A = (3)可列可加性公理:若12,,,n A A A 两两互不相容,有11()();n n n n P A P A +∞+∞===∑则称P (A )为事件A 的概率,称三元素(,,)P Ω为概率空间。
1.并没有告诉我们应如何确定概率。
但概率的古典定义、概率的几何定义、概率的频率(统计)定义和概率的主观定义都是在一定的场合下确定概率的方法。
由于计算概率要用到排列与组合的公式。
2.概率是关于事件的函数。
二、排列与组合公式1.两大计数原理(1)乘法原理 :如果某件事需要经过k 步才能完成,做完第一步有1m 种方法,做完第二步有2m 种方法,…,做完第k 步有k m 种方法,那么完成这件事共有12n m m m ⨯⨯⨯种方法。
如某班共有45位同学,他们生日完全不相同的情况有365×364×363×…×321种。
(2)加法原理:如果某件事可由k 类不同的办法之一去完成,在第一类办法中有1m 种完成方法,在第二类办法中有2m 种方法,…,在第k 类办法中有k m 种方法,那么完成这件事共有12n m m m +++种方法。
1.3古典概型与几何概型
所含的总取法为 aPbi1[(a b i)!] 故
P(B)
a
Pbi
1[(a b (a b)!
i)!]
a Pbi 1 Pai b
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
及两个球全是黑球的概率
解 (2) 已知 在 10 个球中任取两球的取法有C120 种 在 10 个球中取到一个白球和一个黑球的取法有C13C17 种 在 10 个球中取两个球均是黑球的取法有C32种 记B为事件“刚好取到一个白球一个黑球” C为事件
“两个球均为黑球” 则
P(B)
C13 C17 C120
P(D)
Ckn
(N 1)nk Nn
例115 一个袋子中装有ab个球 其中a个黑球 b个白球 随意地每次从中取出一球(不放回) 求下列各事件的概率
(1)第i次取到的是黑球 (2)第i次才取到黑球 (3)前i次中能取到黑球
解 (ab)次取球的总取法为(ab)! 记(1) (2) (3)中的事件 分别为A B C
总数为24 记(1) (2) (3) (4)的事件分别为A B C D
(1) A有两种排法 故有
P(A)
2 24
1 12
(2) B有2(3!)12种排法 故有
P(B)
12 24
1 12
例113 将标号为1 2 3 4的四个球随意地排成一行 求下 列各事件的概率
(1)各球自左至右或自右至左恰好排成1 2 3 4的顺序 (2)第1号球排在最右边或最左边 (3)第1号球与第2号球相邻
等价于将n个球全部放到其余N1个箱子中 共有(N1)n种放
一概率论的基本概念
2)将一枚硬币抛掷二次,观察出现正面的次数。
3)在一批电视中任抽取一次,测试它的寿命。
注: 样本空间是一个有限或无限的点集。 样本空间的元素是由试验的目的所确定。
随机事件(简称事件):
随机试验E的样本空间 的子集称为E的随机事件。
通常用大写字母A,B,…表示。 当且仅当这一子集中的一个样本点出现时,称这一
20 同色球无区别。 k
例4 两封信任意地向标号为1,2,3,4的四个邮筒投寄, 求 1)第3个邮筒恰好投入1封信的概率; 2)有两个邮筒各有一封信的概率。 解 1)设事件A表示“第三个邮筒只投入1封信” 两封信任意投入4个邮筒,共有 42 种 而事件A的不同投法有
2)设事件B表示“有两个邮筒各有1封信”
P(A )
r P365 r
例6 设有n个球每个球都以同样的概率 格子(N≥ n)的每个格子中,试求 1)某指定的n个格子中各有一球的概率。
落到N个
2)任何n个格子中各有1球的概率。 解 设 A ={某指定的n个格子中各有一球}
B ={任何n个格子中各有一球} 1 2 3 n
N
例7:从0,1,2, …,9共10个数字中随机地有放回地接连取4 个数字,并按其出现的先后排成一行.试求下列事件的概 率
例(5) 有r 个人,设每个人的生日是365天的 任何一天是等可能的,试求事件“至少有两 人同生日”的概率.
解:令 A={至少有两人同生日} 则 A ={ r 个人的生日都不同} 为求P(A), 先求P( A )
(365) r P365 P(A ) 1 P(A ) 1 r (365)
于是 P ( A) 1 P ( A ) 1 1 1 2! 3! 3
1 1 n1 1 1 (1 ( 1) ) 2! 3! n! 1 1 n 1 ( 1) 2! 3! n!
大学概率论与数理统计第一章(2)-56页PPT资料
练习
等可能概型
解:从袋中取两球,每一种取法就是一个基本事件。
设 A= “ 取到的两只都是白球 ”,
B= “ 取到的两只球颜色相同 ”,
C= “ 取到的两只球中至少有一只是白球”。
有放回抽取:
42
4222
P(A) 62 0.444 P(B) 62 0.556
22 P(C)1P(C)1620.889
例(会面问题) 两人约定在早上8点至9点在某地会
面,先到者等15分钟离去。假定每人在1小时的任 何时刻到达都是等可能的,求两人会面的概率。
解:设两人的到达时刻分别为x和y,则
0 x 6,0 0 y 60
两人能会面的充要条件是
xy 15
如图,问题转化为平面区域:
{x ( ,y)0x 6,0 0 y 6}0
n! n 1 !.... n m !
4 随机取数问题
例4 从1到200这200个自然数中任取一个,
(1)求取到的数能被6整除的概率 (2)求取到的数能被8整除的概率 (3)求取到的数既能被6整除也能被8整除的概率
解:N(S)=200, N(1)=[200/6]=33,
N(2)=[200/8]=25
频率的性质
(1) 0 fn(A) 1; (2) fn(S)=1; fn( )=0 (3) 可加性:若AB= ,则
fn(AB)= fn(A) +fn(B).
实践证明:当试验次数n增大时, fn(A) 逐渐 趋向一个稳定值。可将此稳定值记作P(A),即可将 P(A)作为事件A的概率
四. 概率的公理化定义(数学定义)
练习
等可能概型
例 2 一口袋装有6只球,其中4只白球、2只红球。从 袋中取球两次,每次随机的取一只。考虑两种取球方 式:
2、概率的几种定义(古典概型).
性大小, 因此在大量重复试验中 常用频率作为概率的近似值.
37
2、频率的稳定性,例如抛硬币(验 证出现正面的概率占0.5,打字机
键盘设计,信息编码(使用频率较
高的字母用较短的码), 密码的破 译。
38
3、概率的统计定义 如果随着试验次数 事件A发生的频率在区间 的增大, 上某
个数字p附近摆动,则称事件A发
率问题,可以将365天看作盒子 , 个人看作
18
个球。
设A=“n个人生日各不相同”
故所求概率为: (生日各不相同的概率) 所以 个人中至少有两人生日 相同的概率为:
19
经计算可得下述结果:
从表中可看出,在仅有64人的班 级里“至少有两人生日相同”这 事件的概率与1相差无几。
20
例4 公平抽签问题:
概率,并称为几何概率。
28
例:约会问题 甲乙二人约定在[0,T] 时段内去某地会面,规定先到者等 候一段时间 再离去,试求 事件A=“甲乙将会面”的概率。
29
解:分别以x,y表示甲乙到达会面地
点的时间,则样本点是坐标平面上 一个点 ,而样本空间 是边长为 T的正方形,由于二人到达时刻的任 意性,样本点在S中均匀分布,属几 何概型。
12
解:(1) 这是一个古典概型问题, 由于每个球可落 入 个盒子中的 任一个盒子,故有
种不同放法(重复排列)
13
事件A中样本点数取决于n个球 放入n个盒子中的顺序,故A包 含的样本点数为:
所以
14
(2) 事件B与事件A的差异仅在于各 含一球的n个盒子没有指定,所以 B的样本点数为:
所以
15
(3) 下面我们来求 事件 C所含样
1.2
随机事件的概率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加法公式:设完成一件事可有两种途径,第一种途 径有n1种方法,第二种途径有n2种方法,则完成这 件事共有n1+n2种方法。
城市甲
:2
城市乙
:4
则从甲城市到乙城市一共有:2+4= 6 条线路
2.2 古典概型
四 古典概型的计算
乘法公式:设完成一件事需分两步,第一步 有n1种方法,第二步有n2种方法,则完成这件 事共有n1n2种方法
皮尔逊 皮尔逊
频率:设A为随机试验E的任一事件,相同的条件下 重复n次,用nA表示事件A在n次试验中出现的次数, 称比值fn(A)=nA/n为A在n次试验中出现的频率
2.1 概率的概念
一 概率
2.1 概率的概念
一 概率
频率在一定程度上反映了事件发生的 可能性大小. 尽管每进行一连串(n次)试 验,所得到的频率可以各不相同,但只要 n 相当大,频率与概率是会非常接近的. 因此,概率是可以通过频率来“测量” 的, 频率是概率的一个近似.
n1 n2
:2
城市甲
:4
城市乙
:3
从甲城市到丙乡村的线路 一共有:(2+4+3) ×(2+3) 条。
3
2
乡村丙
2.2 古典概型
四 古典概型的计算
有重复排列:从含有n个元素的集合中随机抽 取k次,每次取一个,记录其结果后放回,将 记录结果排成一列,
n n n
n
共有nk种排列方式.
2.2 古典概型
四 古典概型的计算
无重复排列:从含有n个元素的集合中随机抽 取k 次,每次取一个,取后不放回,将所取 元素排成一列,
n n-1n-2
n-k+1
共有Pnk=n(n-1)…(n-k+1)种排列方式.
2.2 古典概型
四 古典概型的计算
组合:从含有n个元素的集合中随机抽取k 个, 共有
k n Pn n! k Cn k k! k!(n k)!
第二章
事件的概率
概率的概念 古典概型 几何概型 概率的公理化定义
2.1 概率的概念
一 概率
概率: 随机试验中,事件A出现的可能性大小, 记为P(A). 例如:反复投掷一牧均匀硬币,有如下结果:
实 验者 蒲 丰 次数n 4040 12000 24000 正面向上 (m) 2048 6019 12012 频率(f =m/n) 0.5070 0.5016 0.5005
一 古典概型
若随机实验E有如下特征: 1.有限性:试验的可能结果只有有限个 样本空间Ω={ω1, ω2 , … , ωn }; 2.等可能性:各个可能结果出现是等可能的 P(ω1)=P(ω2)=…=P(ωn). 则称这种实验为古典概型
2.2 古典概型
二 古典概型概率的计算公式
设有一个古典型试验,其样本空间为, Ω={ω1, ω2 , … , ωn } 而事件A是由Ω中的k(k≤n)个(也称为有利 于A的样本点)不同的基本事件所组成,则A的 概率为:
种取法.
2.2 古典概型
四 古典概型的几类基本问题 1抽球问题
例1:在盒子中有3个白球,2个红球,现从中任抽 2个球,求:(1)取到两个球都是白的概率;(2) 取到一红一白的概率。 解:设 A={取到两个球都是白的} B={取到两球一白一红} 2 N ( ) C 基本事件总数为 5 2 N ( A ) C A的有利事件数为 3
例:有三个子女的家庭,设每个孩子是男是女的概率 相等,则至少有一个男孩的概率是多少?
解:设A--至少有一个男孩,以H表示某个孩子是男孩 N(Ω)={HHH,HHT,HTH,THH,HTT,TTH,THT,TTT}
N(A)={HHH,HHT,HTH,THH,HTT,TTH,THT}
N ( A) 7 P( A) N (S ) 8
2.1 概率的概念
二 概率的性质
1. 2. 3.
非负性 0≤P(A) ≤1 规范性 P(Ω)=1 有限可加性 若A1, A2 ,A3… ,An互 斥,则 P( A ) p(A )
n n k k 1 k 1 k
即有限个互不相容的事件的和事件 的概率等于这些事件的概率之和
2.2 古典概型
四 古典概型的计算
基本记数原理
设有m个试验,第1个试验有n种可能结果, 对于第i(2≤i ≤n)次试验,前i-1个试验 的每一种可能结果,都使第i个试验有ni种 可能的结果,则m个试验共有 n 1× n 2× …× n m 种可能的结果
排列与组合
2.2 古典概型
四 古典概型的计算
复习:排列与组合的基本概念
非负性与规范性 对任意事件A,有0P(A)1; 证: 对任意事件A,以kA表示它所包含的基本事件数, n表示基本事件总数,则对于任意事件A,有 0≤kA≤n 或 0≤kA/n ≤ 1 故 0≤P(A)=kA/n ≤n/n = 1 即 0≤P(A)≤1 特别地: P(Ω)= n/n =1, P()= 0/n =0
k ( A) 有利于A的样本点数 p( A) n() 样本点总数
2.2 古典概型
三 古典概型概率的性质
(1)非负性:对任意事件A,有 0P(A)1; (2)规范性:必然事件概率等于1,不可能事件的 概率等于0 P()=1; P()=0 (3)可加性:如果事件A与B互不相容,即AB=, P(AB)=P(A)+P(B)
如果事件A与B互不相容,即AB=, P(AB)=P(A)+P(B) 证: 设 A含k1个基本事件:ω (1), ω (1),… ω (1) 1(2) 2(2) k1 (2) B含k2个基本事件:ω1 , ω2 ,… ωk2 即 A={ω1(1), ω2(1),… ωk2(1)} B={ω1(2), ω2(2),… ωk2(2)} 由定义 P(A)= k1/n, P(B)= k2/n 又由于A∩B= A∪B={ω1(1), ω2(1),… ωk2(1) , ω1(2), ω2(2),… ωk2(2)} A∪B 中含有k1 +k2个基本事件 p(A∪B)=(k1 +k2)/n= k1/n+k2/n=P(A)+典概型的计算
古典概型的概率计算步骤: (1) 判断试验为古典试验, 即基本事件总数为有限 个, 且各基本事件出现的可能性相同。 (2) 计算样本空间中样本点的个数n ; (3) 计算事件A 包含样本点的个数m ; (4) 由P(A)=m/n 计算事件A 的概率。
2.2 古典概型