{3套试卷汇总}2018年贵阳市八年级上学期数学期末统考试题

合集下载

〖汇总3套试卷〗贵阳市2018年八年级上学期数学期末调研试题

〖汇总3套试卷〗贵阳市2018年八年级上学期数学期末调研试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列说法正确的是( )A .若ab =0,则点P (a ,b )表示原点B .点(1,﹣a 2)一定在第四象限C .已知点A (1,﹣3)与点B (1,3),则直线AB 平行y 轴D .已知点A (1,﹣3),AB ∥y 轴,且AB =4,则B 点的坐标为(1,1)【答案】C【分析】直接利用坐标轴上点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.【详解】解:A 、若ab =0,则点P (a ,b )表示在坐标轴上,故此选项错误;B 、点(1,﹣a 2)一定在第四象限或x 轴上,故此选项错误;C 、已知点A (1,﹣3)与点B (1,3),则直线AB 平行y 轴,正确;D 、已知点A (1,﹣3),AB ∥y 轴,且AB =4,则B 点的坐标为(1,1)或(1,﹣7),故此选项错误. 故选C .【点睛】本题考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键2.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环),下列说法中正确的个数是( ) ①若这5次成绩的平均数是8,则8x =;②若这5次成绩的中位数为8,则8x =;③若这5次成绩的众数为8,则8x =;④若这5次成绩的方差为8,则8x =A .1个B .2个C .3个D .4个 【答案】A【分析】根据中位数,平均数,众数和方差的概念逐一判断即可.【详解】①若这5次成绩的平均数是8,则8589788x =⨯----=,故正确;②若这5次成绩的中位数为8,则x 可以任意数,故错误;③若这5次成绩的众数为8,则x 只要不等于7或9即可,故错误;④若8x =时,方差为2221[3(88)(98)(78)]0.45⨯-+-+-=,故错误.所以正确的只有1个故选:A .【点睛】本题主要考查数据的分析,掌握平均数,中位数,众数,方差的求法是解题的关键.3.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .15B .13C .58D .38【答案】C【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球, 故摸到红球的概率为58, 故选:C .【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)= m n,难度适中. 4.已知y 2+my+1是完全平方式,则m 的值是( )A .2B .±2C .1D .±1【答案】B【分析】完全平方公式:a 1±1ab+b 1的特点是首平方,尾平方,首尾底数积的两倍在中央,这里首末两项是y 和1的平方,那么中间项为加上或减去y 和1的乘积的1倍.【详解】∵(y±1)1=y 1±1y+1,∴在y 1+my+1中,my =±1y ,解得m=±1.故选B.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的1倍,就构成了一个完全平方式.注意积的1倍的符号,避免漏解.5.若实数,m n 满足等式 40m -=,且mn 、恰好是等腰ABC ∆的两条的边长,则ABC ∆的周长是( )A .6或8B .8或10C .8D .10【答案】D【分析】根据 40m -=可得m ,n 的值,在对等腰△ABC 的边长进行分类讨论即可.【详解】解:∵ 40m -=∴40m -=,20n -=∴4,2m n ==,当m=4是腰长时,则底边为2,∴周长为:4+4+2=10,当n=2为腰长时,则底边为4,∵2+2=4,不能构成三角形,所以不符合题意,故答案为:D.【点睛】本题考查了非负数的性质,等腰三角形的定义以及三角形的三边关系,解题的关键是对等腰三角形的边长进行分类讨论,注意运用三角形的三边关系进行验证.6.已知等腰三角形的两边长分别为2cm和4cm,则它的周长为()A.8 B.10 C.8 或10 D.6【答案】B【解析】题目给出等腰三角形有两条边长为2和4,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当2是腰时,2,2,4不能组成三角形,应舍去;当4是腰时,4,4,2能够组成三角形.∴周长为10cm,故选B.【点睛】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.7.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()A.4B.5C.6D.9【答案】C【分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x<7+2,即5<x<1.因此,本题的第三边应满足5<x<1,把各项代入不等式符合的即为答案.4,5,1都不符合不等式5<x<1,只有6符合不等式,故选C.【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.8.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)【答案】C【解析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P (1,﹣2)关于y 轴对称的点的坐标是(﹣1,﹣2),故选C .【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键. 关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.9.已知111ABC A B C ∆≅∆,A 与1A 对应,B 与1B 对应,170,50A B ∠=︒∠=︒,则C ∠的度数为( ) A .70︒B .50︒C .120︒D .60︒【答案】D【分析】根据全等三角形的对应角相等,得到150B B ∠=∠=︒,然后利用三角形内角和定理,即可求出C ∠.【详解】解:∵111ABC A B C ∆≅∆,∴150B B ∠=∠=︒,∵180A B C ∠+∠+∠=︒,70A ∠=︒,∴180705060C ∠=︒-︒-︒=︒;故选择:D.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,解题的关键是掌握全等三角形的对应角相等,以及熟练运用三角形内角和定理解题.10.下列四组数据中,能作为直角三角形三边长的是( )A .1,2,3B 3,C .23,24,25D .0.3,0.4,0.5 【答案】D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A 、12+22≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;B 、2+2≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;C 、(32)2+(42)2≠(52)2,根据勾股定理的逆定理可知不能作为直角三角形三边长;D 、0.32+0.42=0.52,根据勾股定理的逆定理可知能作为直角三角形三边长.故选:D .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.二、填空题11.如图,在平面直角坐标系中,111A B C ∆、222A B C ∆、333A B C ∆、…、n n n A B C ∆均为等腰直角三角形,且123n C C C C ∠=∠=∠==∠90=︒,点1A 、2A 、3A 、……、n A 和点1B 、2B 、3B 、……、n B 分别在正比例函数12y x =和y x =-的图象上,且点1A 、2A 、3A 、……、n A 的横坐标分别为1,2,3…n ,线段11A B 、22A B 、33A B 、…、n n A B 均与y 轴平行.按照图中所反映的规律,则n n n A B C ∆的顶点n C 的坐标是_____.(其中n 为正整数)【答案】71,44n n ⎛⎫- ⎪⎝⎭ 【分析】当x=1代入12y x =和 y x =-中,求出A 1,B 1的坐标,再由△A 1B 1C 1为等腰直角三角形,求出C 1的坐标,同理求出C 2,C 3,C 4的坐标,找到规律,即可求出n n n A B C ∆的顶点n C 的坐标.【详解】当x=1代入12y x =和y x =-中,得:11122y =⨯=,1y =-, ∴111,2A ⎛⎫ ⎪⎝⎭,()11,1B -,∴()1113122A B =--=, ∵△A 1B 1C 1为等腰直角三角形,∴C 1的横坐标为111137112224A B +=+⨯=, C 1的纵坐标为111131112224A B -+=-+⨯=-, ∴C 1的坐标为71,44⎛⎫- ⎪⎝⎭; 当x=2代入12y x =和y x =-中,得:1212y =⨯=,2y =-, ∴()22,1A ,()22,2B -,∴()22123A B =--=,∵△A 2B 2C 2为等腰直角三角形,∴C 2的横坐标为22117223222A B +=+⨯=, C 2的纵坐标为22111223222A B -+=-+⨯=-, ∴C 2的坐标为71,22⎛⎫- ⎪⎝⎭; 同理,可得C 3的坐标为213,44⎛⎫- ⎪⎝⎭;C 4的坐标为()7,1-; ∴n n n A B C ∆的顶点n C 的坐标是71,44n n ⎛⎫-⎪⎝⎭, 故答案为:71,44n n ⎛⎫-⎪⎝⎭. 【点睛】 本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,正确求出C 1、C 2、C 3、C 4的坐标找到规律是解题的关键.12.若不等式组81x x m <⎧⎨+>⎩有解,则m 的取值范围是____. 【答案】9m <【分析】根据题意,利用不等式组取解集的方法即可得到m 的范围.【详解】解:由题知不等式为81x x m <⎧⎨>-⎩, ∵不等式有解,∴18m -<,∴9m <,故答案为9m <.【点睛】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.13.若正比例函数2y x =-的图象经过点()1,4A a -,则a 的值是__________.【答案】-1【分析】把点()1,4A a -代入函数解析式,列出关于a 的方程,通过解方程组来求a 的值.【详解】∵正比例函数2y x =-的图象经过点()1,4A a -,∴2(1)4a --=解得,a=-1.故答案为:-1.【点睛】本题考查了一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx (k≠0). 14.因式分解:3x 2-6xy+3y 2=______.【答案】3(x ﹣y )1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x 1﹣6xy+3y 1=3(x 1﹣1xy+y 1)=3(x ﹣y )1.考点:提公因式法与公式法的综合运用15.4的平方根是 .【答案】±1.【解析】试题分析:∵2(2)4±=,∴4的平方根是±1.故答案为±1.考点:平方根.16.据统计分析2019年中国互联网行业发展趋势,3年内智能手机用户将达到1.2亿户,用科学记数法表示1.2亿为_______户.【答案】3.32×2【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将1.2亿用科学记数法表示为:3.32×2.故答案为3.32×2.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.点(3,2-)关于x 轴的对称点的坐标是__________.【答案】(3,2)【解析】利用关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P'的坐标是(x ,﹣y ),进而求出即可.【详解】点(3,﹣2)关于x 轴的对称点坐标是(3,2).故答案为(3,2).【点睛】本题考查了关于x 轴对称点的性质,正确记忆横纵坐标的关系是解题的关键.三、解答题18.有一家糖果加工厂,它们要对一款奶糖进行包装,要求每袋净含量为100g .现使用甲、乙两种包装机同时包装100g的糖果,从中各抽出10袋,测得实际质量(g)如下:甲:101,102,99,100,98,103,100,98,100,99乙:100,101,100,98,101,97,100,98,103,102(1)分别计算两组数据的平均数、众数、中位数;(2)要想包装机包装奶糖质量比较稳定,你认为选择哪种包装机比较适合?简述理由.【答案】(1)甲:平均数为100、众数为100、中位数为100;乙:平均数为100、中位数是100、乙的众数是100;(2)选择甲种包装机比较合适.【分析】(1)根据平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数进行计算即可.(2)利用方差公式分别计算出甲、乙的方差,然后可得答案.【详解】解:(1)甲的平均数为:110(101+102+99+100+98+103+100+98+100+99)=100;乙的平均数为:110(100+101+100+98+101+97+100+98+103+102)=100;甲中数据从小到大排列为:98,98,99,99,100,100,100,101,102,103 故甲的中位数是:100,甲的众数是100,乙中数据从小到大排列为:97,98,98,100,100,100,101,101,102,103 故乙的中位数是:100,乙的众数是100;(2)甲的方差为:2S甲=110[(101﹣100)2+(102﹣100)2+(99﹣100)2+(100﹣100)2+(98﹣100)2+(103﹣100)2+(100﹣100)2+(98﹣100)2+(100﹣100)2+(98﹣100)2) =2.4;乙的方差为:2S乙=110[(100﹣100)2+(101﹣100)2+(100﹣100)2+(98﹣100)2+(101﹣100)2+(97﹣100)2+(100﹣100)2+(98﹣100)2+(103﹣100)2+(102﹣100)2] =3.2,∵2S甲<2S乙,∴选择甲种包装机比较合适.【点睛】此题主要考查了中位数、平均数、众数以及方差,关键是掌握三数的计算方法,掌握方差公式.19.如图,在 ABC中,AB=13,BC=14,AC=15.求BC边上的高.【答案】1【分析】AD 为高,那么题中有两个直角三角形.AD 在这两个直角三角形中,设BD 为未知数,可利用勾股定理都表示出AD 长.求得BD 长,再根据勾股定理求得AD 长.【详解】解:设BD=x,则CD=14-x .在Rt ∆ABD 中,222AD AB BD =-=132-2x在Rt ∆ACD 中,222AD AC CD =-=152-()214x -∴132-2x =152-()214x -解之得x =5∴AD=22AB BD -=22135-=1.【点睛】勾股定理.20.某校计划组织1920名师生研学,经过研究,决定租用当地租车公司一共40辆A 、B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息.(注:载客量指的是每辆客最多可载该校师生的人数)设学校租用A 型号客车x 辆,租车总费用为y 元.(1)求y 与x 的函数关系式,并求出x 的取值范围;(2)若要使租车总费用不超过25200元,一共有几种租车方案?哪种租车方案最省钱,并求此方案的租车费用.【答案】(1)15≤ x <40且x 为整数;(2)若要使租车总费用不超过25200元,一共有6种方案,当租用A 型号客车15辆,B 型号客车25辆时最省钱,此时租车总费用为24700元。

(汇总3份试卷)2018年贵阳市八年级上学期数学期末联考试题

(汇总3份试卷)2018年贵阳市八年级上学期数学期末联考试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知方程组03mx y x ny +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则2m n +的值为( )A .1B .2C .3D .0【答案】C【分析】将12x y =⎧⎨=-⎩代入03mx yx ny +=⎧⎨+=⎩求出m 、n 的值,再计算2m n +的值即可.【详解】将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩可得21m n =⎧⎨=-⎩, 则222(1)3m n +=⨯+-=.故选C.【点睛】本题考查方程组的解,解题的关键是将将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩求出m 、n 的值. 2.如图,已知△ABC 是等边三角形,点B 、C ,D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=()A .30°B .25°C .15°D .10°【答案】C 【详解】解: , ,, ,,.,.3.代数式22248x x y y -+++的值为( )A .正数B .非正数C .负数D .非负数【答案】D【分析】首先将代数式变换形式,然后利用完全平方公式,即可判定其为非负数.【详解】由题意,得()()()()22222224821443123x x y y x x y y x y -+++=-+++++=-+++ ∴无论x 、y 为何值,代数式的值均为非负数,故选:D.【点睛】此题主要考查利用完全平方公式判定代数式的值,熟练掌握,即可解题.4.若关于x 的方程2122ax x x 无解,则a 的值是( ) A .1B .2C .-1或2D .1或2【答案】A【分析】根据解分式方程的步骤,可求出分式方程的解,根据分式方程无解,可得a 的值.【详解】解:方程两边同乘()2x -,得()22ax x =+-, ()10a x -=,∵关于x 的方程2122axx x 无解,∴20x -=,10a -=,解得:2x =,1a =,把2x =代入()10a x -=,得:()120a -⨯=,解得:1a =,综上,1a =,故答案为:1.【点睛】本题考查了分式方程的解,把分式方程转化成整式方程,把分式方程的增根代入整式方程,求出答案. 5.下列图形中有稳定性的是( )A .正方形B .长方形C .直角三角形D .平行四边形【答案】C【分析】根据三角形稳定性即可得答案.【详解】三角形具有稳定性,有着稳固、坚定、耐压的特点;而四边形不具有稳定性,易于变形.四个选项中,只有C 选项是三角形,其他三个选项均为四边形,故答案为C.【点睛】本题考查的知识点是三角形稳定性. 6.将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图(单位:cm )所示.则桌子的高度h=图1 图2A .30cmB .35cmC .40cmD .45cm【答案】C【分析】设小长方形的长为x ,宽为y ,根据题意可列出方程组,即可求解h.【详解】设小长方形的长为x ,宽为y ,由图可得 -6020h y x y x h+=⎧⎨-+=⎩ 解得h=40cm ,故选C.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据图形列出方程组进行求解.7.要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD ,设BC 的边长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x <12)B .y=-12x+12(0<x <24) C .y=-2x-24(0<x <12)D .y=-12x-12(0<x <24) 【答案】B 【分析】根据题意可得2y+x=24,继而可得出y 与x 之间的函数关系式,及自变量x 的范围.【详解】解:由题意得:2y+x=24,故可得:y=12-x +12(0<x <24). 故选:B .【点睛】此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.8.下列各式中,是最简二次根式的是( )A .6B .12C .18D .27【答案】A 【分析】根据最简二次根式的定义判断即可.需要符合以下两个条件: 1.被开方数中不含能开得尽方的因数或因式;2.被开方数的因数是整数,因式是整式.【详解】解:A.6不能继续化简,故正确; B.12=23,故错误; C.18=32,故错误; D. 27=33故错误.故选:A.【点睛】本题考查最简二次根式的定义,理解掌握定义是解答关键.9.将两块完全一样(全等)的含30的直角三角板按如图所示的方式放置,其中交点M 为AC 和A C ''的中点,若2BC =,则点A 和点A '之间的距离为( )A .2B .3C .1D .32【答案】B 【分析】连接A A ',A C '和C C ',根据矩形的判定可得:四边形A ACC ''是矩形,根据矩形的性质可得:A A '=C C ',90A CC ''∠=︒,然后根据30°所对的直角边是斜边的一半即可求出A B '',再根据勾股定理即可求出A C '',然后根据30°所对的直角边是斜边的一半即可求出C C ',从而求出A A '.【详解】解:连接A A ',A C '和C C '∵点M 为AC 和A C ''的中点∴四边形A ACC ''是平行四边形根据全等的性质AC =A C '',BC=2B C ''=∴四边形A ACC ''是矩形∴A A '=C C ',90A CC ''∠=︒在Rt △C B A '''中,∠A '=30°∴A B ''=24B C ''=根据勾股定理,A C ''=2223A B B C ''''-=在Rt △A CC ''中,∠A '=30°132C C A C '''== ∴A A '=3C C '=故选B .【点睛】此题考查的是矩形的判定及性质、直角三角形的性质和勾股定理,掌握矩形的判定及性质、30°所对的直角边是斜边的一半和用勾股定理解直角三角形是解决此题的关键.10.如图,已知∠ACD =60°,∠B =20°,那么∠A 的度数是( )A .40°B .60°C .80°D .120°【答案】A 【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD-∠B=60°-20°=40°,故选A .【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.二、填空题11.如图,已知点M (-1,0),点N (5m ,3m+2)是直线AB :4y x =-+右侧一点,且满足∠OBM=∠ABN ,则点N 的坐标是_____.【答案】5,3 3⎛⎫ ⎪⎝⎭【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q(5,1),易得直线BQ 的解析式,所以将点N代入该解析式来求m的值即可.【详解】解:在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(-1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为y=−35x+4,将N(5m,3m+2)代入y=−35x+4,得3m+2=﹣35×5m+4解得m=13,∴N5,33⎛⎫ ⎪⎝⎭.故答案为:5,3 3⎛⎫ ⎪⎝⎭【点睛】本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.12.观察下列各式:111113132a ⎛⎫==- ⎪⨯⎝⎭; 2111135235a ⎛⎫==- ⎪⨯⎝⎭; 3111157257a ⎛⎫==- ⎪⨯⎝⎭; 4111179279a ⎛⎫==- ⎪⨯⎝⎭; ⋯⋯⋯,则123200a a a a +++⋅⋅⋅+=______ 【答案】200401【分析】根据题意,总结式子的变化规律,然后得到1111()(21)(21)22121n a n n n n ==--⨯+-+,然后把代数式化简,通过拆项合并的方法进行计算,即可求出答案. 【详解】解:∵111113132a ⎛⎫==- ⎪⨯⎝⎭; 2111135235a ⎛⎫==- ⎪⨯⎝⎭; 3111157257a ⎛⎫==- ⎪⨯⎝⎭; 4111179279a ⎛⎫==- ⎪⨯⎝⎭;…… ∴1111()(21)(21)22121n a n n n n ==--⨯+-+; ∴123200a a a a +++⋅⋅⋅+11111111111(1)()()()232352572399401=-+-+-+⋅⋅⋅+⨯- 11111111(1)233557399401=⨯-+-+-+⋅⋅⋅+- 11(1)2401=⨯- 14002401=⨯ 200401=; 故答案为:200401. 【点睛】 本题考查了整式的混合运算,以及数字的变化规律,解题的关键是熟练掌握正确掌握题意,找到题目的规律,从而运用拆项法进行解题.13.如图,AD 、BE 是等边ABC 的两条高线,AD 、BE 交于点O ,则∠AOB =_____度.【答案】1【分析】根据等边三角形的性质可得AB =AC =BC ,∠CAB =∠ABC =60°,然后根据三线合一求出∠BAD 和∠ABE ,最后利用三角形的内角和定理即可求出结论.【详解】解:∵ABC 是等边三角形,∴AB =AC =BC ,∠CAB =∠ABC =60°,∵AD 、BE 是等边ABC 的两条高线,∴∠BAD =12∠BAC =30°,∠ABE =12∠ABC =30°, ∴∠AOB =180°﹣∠BAD ﹣∠ABE =180°﹣30°﹣30°=1°,故答案为:1.【点睛】此题考查的是等边三角形的性质,掌握等边三角形的定义和三线合一是解题关键.14.“关心他人,奉献爱心”.我市某中学举行慈善一日捐活动,活动中七年级一班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了条形统计图.根据图中提供的信息,全班同学捐款的总金额是___元.【答案】1620【分析】由表提供的信息可知,把金额乘以对应人数,然后相加即可.【详解】解:根据题意,得,⨯+⨯+⨯+⨯+⨯总金额为:106201330205081003=++++60260600400300=元;1620故答案为1620.【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是读懂题意,根据表格中的数据进行计算.15.如图,在△ABC中∠ABC和∠ACB平分线交于点O,过点O作OD⊥BC于点D,△ABC的周长为21,OD=4,则△ABC的面积是_____.【答案】1【分析】作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质求出OE=OD=4和OF=OD=4,根据三角形面积公式计算即可.【详解】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB是∠ABC的平分线,OD⊥BC,OE⊥AB,∴OE=OD=4,同理OF=OD=4,△ABC的面积=12×AB×4+12×AC×4+12×BC×4=1.故答案为:1.【点睛】本题主要考查角平分线的性质,解题的关键是掌握角的平分线上的点到角的两边的距离相等.16.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.【答案】AD的中点【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AD的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.17.甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温方差大小关系为s 甲2__________s 乙2(填“>”或“<”).【答案】>【分析】根据方差的意义:方差越小则波动越小,稳定性也越好,结合气温统计图即可得出结论. 【详解】解:由气温统计图可知:乙地的气温波动小,比较稳定 ∴乙地气温的方差小∴22s s >乙甲故答案为:>. 【点睛】此题考查的是比较方差的大小,掌握方差的意义:方差越小则波动越小,稳定性也越好是解决此题的关键. 三、解答题18.设121515x x -+--==21x x 和221122x x x x ++的值 【答案】35+2 【分析】直接将12x x 、代入21x x ,再分母有理化即可;先求得12x x +,12x x 的值,再将221122x x x x ++变形为12x x +,12x x 的形式即可求解.【详解】()()2222115515151(51)6253521551(5)15151x x --+++++======-+---+ ∵12151515151x x -+---+--+===-, 22121515(1)5)1224x x -----===-, ∴()()()222211221212112x x x x x x x x ++=+-=---=.本题考查了二次根式的混合运算,涉及的知识点有分母有理化、完全平方公式的应用、平方差公式的应用,熟练掌握二次根式的运算法则和完全平方公式的结构特征是解题的关键.19.问题背景:(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE =BD +CE .拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE 、BD 、CE 三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB 中,∠ACB =90°,AC =BC ,点C 的坐标为(-2,0),点A 的坐标为(-6,3),请直接写出B 点的坐标.【答案】(1)证明见解析;(2)DE =BD +CE ;(3)B(1,4)【分析】(1)证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可; (2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE ,证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(3)根据△AEC ≌△CFB ,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答. 【详解】(1)证明:∵BD ⊥直线m ,CE ⊥直线m , ∴∠ADB =∠CEA =90° ∵∠BAC =90° ∴∠BAD +∠CAE =90° ∵∠BAD +∠ABD =90° ∴∠CAE =∠ABD ∵在△ADB 和△CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AE =BD ,AD =CE ∴DE =AE +AD =BD +CE 即:DE =BD +CE(2)解:数量关系:DE =BD +CE理由如下:在△ABD 中,∠ABD=180°-∠ADB-∠BAD , ∵∠CAE=180°-∠BAC-∠BAD ,∠BDA=∠AEC , ∴∠ABD=∠CAE , 在△ABD 和△CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABD ≌△CAE (AAS ) ∴AE=BD ,AD=CE , ∴DE=AD+AE=BD+CE ;(3)解:如图,作AE ⊥x 轴于E ,BF ⊥x 轴于F , 由(1)可知,△AEC ≌△CFB , ∴CF=AE=3,BF=CE=OE-OC=4, ∴OF=CF-OC=1,∴点B 的坐标为B (1,4).【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.20.如图1,A 为x 轴负半轴上一点,B 为x 轴正半轴上一点,C 点坐标为()0,a ,D 点坐标(),,b a 为且2 30a b ++=.(1)求C D 、两点的坐标; (2)求BDC S ∆;(3)如图2,若A 点坐标为()3,0,B -点坐标为()2,0,点P 为线段OC 上一点,BP 的延长线交线段AC 于点Q ,若BPC AOPQ S S ∆=四边形,求出点Q 坐标.(4)如图3,若ADC DAC ∠=∠,点B 在x 轴正半轴上任意运动,ACB ∠的平分线CE 交DA 的延长线于点E ,在B 点的运动过程中,EABC∠∠的值是否发生变化,若不变化,求出比值;若变化请说明理由.【答案】(1)C (0,-2),D (-3,-2);(2)3;(3)Q (95-,45-);(4)E ABC∠∠值不变,且为12【分析】(1)根据 2 30a b ++=中绝对值和算术平方根的非负性可求得a 和b 的值,从而得到C 和D 的坐标;(2)求出CD 的长度,再根据三角形的面积公式列式计算即可;(3)根据BPC AOPQ S S ∆=四边形可得△ABQ 的面积等于△BOC 的面积,求出△OBC 的面积,再根据AB 的长度可求得点Q 的纵坐标,然后求出直线AC 的表达式,代入点Q 纵坐标即可求出点Q 的横坐标; (4)在△AOE 和△BFC 中,利用三角形内角和定理列式整理表示出∠ABC ,然后相比即可得解. 【详解】解:(1)∵ 2 30a b ++=, ∴a+2=0,b+3=0, ∴a=-2,b=-3,∴C (0,-2),D (-3,-2); (2)∵C (0,-2),D (-3,-2), ∴CD=3,且CD ∥x 轴, ∴BDC S △=12×3×2=3; (3)∵BPC AOPQ S S ∆=四边形,△OBP 为公共部分,∴S △ABQ =S △BOC ,∵B (2,0),C (0,-2) ∴S △BOC =1222⨯⨯=2= S △ABQ , ∵A (-3,0), ∴AB=5,S △ABQ =152Q y ⨯⨯=2,∴45Q y =-,设直线AC 的表达式为y=kx+b , 将A ,C 坐标代入,032k bb =-+⎧⎨-=⎩, 解得:232k b ⎧=-⎪⎨⎪=-⎩,∴直线AC 的表达式为:223y x =--, 令y=45-, 解得x=95-,∴点Q 的坐标为(95-,45-); (4)在△ACE 中,设∠ADC=∠DAC=α,∠ACE=β, ∠E=∠DAC-∠ACE=α-β, ∵CE 平分∠ACB , ∴∠BCE=∠ACE=β, 在△AFE 和△BFC 中, ∠E+∠EAF+∠AFE=180°, ∠ABC+∠BCF+∠BFC=180°, ∵CD ∥x 轴, ∴∠EAF=∠ADC=α, 又∵∠AFE=∠BFC ,∴∠E+∠EAF=∠ABC+∠BCF , 即α-β+α=∠ABC+β,∴E ABC ∠∠=()2αβαβ--=12,为定值.【点睛】本题考查了坐标与图形的性质,三角形角平分线,三角形的面积,三角形内角和定理,待定系数法求一次函数解析式,属于综合体,熟记性质并准确识图是解题的关键.21.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.【答案】(1)①见解析;②见解析;(2)2【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴ABFAFCS2S∆∆=.【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.22.如图1,在平面直角坐标系中,直线l1:y=-x+5与x轴,y轴分别交于A.B两点.直线l2:y=-4x+b与l1交于点D(-3,8)且与x轴,y轴分别交于C、E.(1)求出点A坐标,直线l2的解析式;(2)如图2,点P为线段AD上一点(不含端点),连接CP ,一动点Q从C出发,沿线段CP 以每秒1个单位的速度运动到点P,再沿着线段PD以每秒2个单位的速度运动到点D停止,求点Q在整个运动过程中所用最少时间与点P的坐标;(3)如图3,平面直角坐标系中有一点G(m,2),使得S∆CEG=S∆CEB,求点G的坐标.【答案】(1)A(5,0),y=-4x-4;(2)8秒,P(-1,6);(3)1315G G,244-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭2,2,.【分析】(1)根据l1解析式,y=0即可求出点A坐标,将D点代入l2解析式并解方程,即可求出l2解析式(2)根据OA=OB可知ABO和DPQ都为等腰直角三角形,根据路程和速度,可得点Q在整个运动过程中所用的时间为PC PQ+,当C,P,Q三点共线时,t有最小值,根据矩形的判定和性质可以求出P和Q 的坐标以及最小时间.(3)用面积法CEG HEG HCG-S S S∆∆∆=,用含m的表达式求出CEGS∆,根据S∆CEG=S∆CEB可以求出G点坐标. 【详解】(1)直线l1:y=-x+5,令y=0,则x=5,故A(5,0).将点D(-3,8)代入l2:y=-4x+b,解得b=-4,则直线l2的解析式为y=-4x-4.∴点A 坐标为A (5,0),直线l 2的解析式为y =-4x-4.(2)如图所示,过P 点做y 轴平行线PQ ,做D 点做x 轴平行线DQ ,PQ 与DQ 相交于点Q ,可知DPQ为等腰直角三角形,DP=2QP .依题意有12PC t PC PQ =+=+ 当C,P,Q 三点共线时,t 有最小值,此时=8PC PQ +故点Q 在整个运功过程中所用的最少时间是8秒,此时点P 的坐标为(-1,6). (3)如图过G 做x 轴平行线,交直线CD 于点H ,过C 点做CJ ⊥HG .根据l 2的解析式,可得点H (3,22-),E (0,-4),C (-1,0) 根据l 1的解析式,可得点A (5,0),B (0,5) 则GH=32m +CEB 119E CO=91=222S B ∆=⋅⨯⨯ CEG HEG HCG 1113=HG EK HG CJ=HG EK CJ =2222∆∆∆-⨯⨯-⨯⨯⨯⨯-+=()2S m S S又S ∆CEG =S ∆CEB 所以39=m +2,解得12315,m m ==-故1315G G ,244-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭2,2, 【点睛】本题考察一次函数的综合题、待定系数法、平行线的性质、等高模型、垂线段最短等性质,解题的关键是灵活运用所学的知识解决问题,学会用转化的思想思考问题,属于压轴题.23.为响应国家的号召,减少污染,某厂家生产出一种节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.这种油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,费用为118元;若完全用电做动力行驶,费用为36元,已知汽车行驶中每千米用油的费用比用电的费用多1.6元.(1)求汽车行驶中每千米用电的费用和甲、乙两地之间的距离.(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过61元,则至少需要用电行驶多少千米?【答案】(1)汽车行驶中每千米用电的费用是0.3元,甲、乙两地之间的距离是121千米;(2)至少需要用电行驶81千米.【分析】(1)设汽车行驶中每千米用电的费用是x 元,则每千米用油的费用为()0.6x +元,根据题意,列出分式方程,并解方程即可;(2)先求出汽车行驶中每千米用油的费用,设汽车用电行驶ykm ,然后根据题意,列出一元一次不等式,即可求出结论.【详解】解:(1)设汽车行驶中每千米用电的费用是x 元,则每千米用油的费用为()0.6x +元, 列方程得108360.6x x=+,解得0.3x =,经检验0.3x =是原方程的解,则甲、乙两地之间的距离是360.3120÷=千米.答:汽车行驶中每千米用电的费用是0.3元,甲、乙两地之间的距离是360.3120÷=千米. (2)汽车行驶中每千米用油的费用为0.30.60.9+=元. 设汽车用电行驶ykm , 可得()0.30.912060y y +-≤, 解得80y ≥,答:至少需要用电行驶81千米. 【点睛】题的关键.24.如图,点C,F,B,E在同一条直线上,AC⊥CE,DF⊥CE,垂足分别为C,F,且AB=DE,CF=BE.求证:∠A=∠D.【答案】详见解析【分析】证明Rt△ACB≌Rt△DFE(HL)可得结论.【详解】证明:∵AC⊥CE,DF⊥CE,∴∠C=∠DFE=90°,∵CF=BE,∴CB=FE,∵AB=DE,∴Rt△ACB≌Rt△DFE(HL),∴∠A=∠D.【点睛】本题考查三角形全等的判定,关键在于记住判定条件.25.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,△ADC和△CEB全等吗?请说明理由;(2)聪明的小亮发现,当直线MN绕点C旋转到图1的位置时,可得DE=AD+BE,请你说明其中的理由;(3)小亮将直线MN绕点C旋转到图2的位置,发现DE、AD、BE之间存在着一个新的数量关系,请直接写出这一数量关系。

贵阳市八年级上册数学期末考试试卷

贵阳市八年级上册数学期末考试试卷

贵阳市八年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2018九上·内蒙古期末) 下列图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .2. (2分)下列各组线段中,能够组成直角三角形的一组是()A . 1,2,3B . 2,3,4C . 4,5,6D . 1,,3. (2分)已知p(x,y)在函数y=−的图象上,那么点P应在平面直角坐标系中的()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°.现沿直线EG 将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为()A . 4B . 3C . 2D . 15. (2分) (2015八下·灌阳期中) 已知一个平行四边形两邻边的长分别为4和7,那么它的周长为()A . 11B . 18C . 22D . 286. (2分)菱形的周长为8 cm,高为1 cm,则该菱形较大的内角的度数为()A . 160°B . 150°C . 135°D . 120°7. (2分)菱形,矩形,正方形都具有的性质是()A . 对角线相等且互相平分B . 对角线相等且互相垂直平分C . 对角线互相平分D . 四条边相等,四个角相等8. (2分)已知函数y=3x+1,当自变量x增加m时,相应函数值增加()A . 3m+1B . 3mC . mD . 3m-1二、填空题 (共8题;共8分)9. (1分) (2019八上·顺德月考) 点M(﹣1,y1),N(3,y2)在该函数y=﹣ x+1的图象上,则y1________ y2(填>、< 或=).10. (1分)如图,正六边形ABCDEF,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.则∠MPN=________.11. (1分)请写出一个图象经过第一、三象限的正比例函数的解析式________ .12. (1分) (2017七下·临川期末) 如图∠C=∠D=900 ,要使△ABC≌△BAD需要添加的一个条件是________.13. (1分) (2019七下·南京月考) 如图,直线a经过平移后得到直线b,若∠3=30°,则∠1+∠2=________°.14. (1分)(2017·微山模拟) 如图平行四边形ABCD中,∠ABD=30°,AB=4,AE⊥BD,CF⊥BD,且,E,F 恰好是BD的三等分点,又M、N分别是AB,CD的中点,那么四边形MENF的面积是________.15. (1分) (2020八下·重庆月考) 如图,在矩形ABCD中,AC,BD交于点O,M、N分别为BC、OC的中点.若BD=8,则MN的长为________.16. (1分)(2017·兰州模拟) 在平面直角坐标系中,正方形ABCD的位置如右图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1 ,作正方形A1B1C1C;延长C1B1交x轴于点A2 ,作正方形A2B2C2C1 ,…按这样的规律进行下去,第2017个正方形的面积为________.三、解答题 (共8题;共77分)17. (8分) (2016八上·道真期末) 如图,在平面直角坐标系中,每个小正方形的边长为1,点A的坐标为(﹣3,2).请按要求分别完成下列各小题:(1)①把△ABC向下平移4个单位得到△A1B1C1,画出△A1B1C1;画出△ABC关于y轴对称的△A2B2C2;________②点A1的坐标是________;点C2的坐标是________;(2)求△ABC的面积.18. (5分)如图,在△ABC中,AD=BD,AD⊥BC于点D,∠C=55°,求∠BAC的度数.19. (7分)已知,关于x的一次函数y=(1-3a)x+2a-4的图象不经过第三象限.(1)当-2≤x≤5时,________≤y≤________.(用含a的代数式表示)(2)确定a的取值范围.20. (5分)如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?21. (15分)(2017·微山模拟) 雾霾天气已经成为人们普遍关注的话题,雾霾不仅仅影响人们的出行,还影响着人们的健康.在2017年2月周末休息期间,某校九年级一班综合实践小组的同学以“雾霾天气的主要成因”为主题,随机调查了太原市部分市民的观点,并对调查结果进行了整理,绘制了如下不完整的统计表及统计图,观察并回答下列问题:类别雾霾天气的主要成因百分比A工业污染45%B汽车尾气排放mC城中村燃煤问题15%D其他(绿化不足等)n(1)请你求出本次被调查市民的人数及m,n的值,并补全条形统计图;(2)若该市有800万人口,请你估计持有B,C两类看法的市民共有多少人?(3)小明同学在四个质地、大小、形状都完全相同的小球上标记A,B,C,D代表四个雾霾天气的主要成因中,放在一个不透明的盒子中,他先随机抽取一个小球,放回去,再随机抽取一个小球,请用画树状图或列表的方法,求出小颖同学刚好抽到B和D的概率.(用A,B,C,D表示各项目)22. (15分)(2018·泰安) 如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;(3) BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF⋅MH.23. (10分)某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?24. (12分)(2017·石景山模拟) 在平面直角坐标系xOy中,对“隔离直线”给出如下定义:点P(x,m)是图形G1上的任意一点,点Q(x,n)是图形G2上的任意一点,若存在直线l:kx+b(k≠0)满足m≤kx+b且n≥kx+b,则称直线l:y=kx+b(k≠0)是图形G1与G2的“隔离直线”.如图1,直线l:y=﹣x﹣4是函数y= (x<0)的图象与正方形OABC的一条“隔离直线”.(1)在直线y1=﹣2x,y2=3x+1,y3=﹣x+3中,是图1函数y= (x<0)的图象与正方形OABC的“隔离直线”的为________;请你再写出一条符合题意的不同的“隔离直线”的表达式:________;(2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是(,1),⊙O的半径为2.是否存在△EDF与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;(3)正方形A1B1C1D1的一边在y轴上,其它三边都在y轴的右侧,点M(1,t)是此正方形的中心.若存在直线y=2x+b是函数y=x2﹣2x﹣3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”,请直接写出t的取值范围.参考答案一、单选题 (共8题;共16分)1-1、2、答案:略3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共77分)17-1、17-2、18-1、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、。

2018-2019学年贵州省贵阳市八年级(上)期末数学试卷-普通用卷

2018-2019学年贵州省贵阳市八年级(上)期末数学试卷-普通用卷

2018-2019学年贵州省贵阳市八年级(上)期末数学试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列实数中是无理数的是()A. 237B. π C. √16 D. −232.在下列图形中,由∠1=∠2一定能得到AB∥CD的是()A. B.C. D.3.下列二次根式中,是最简二次根式的为()A. √12B. √8C. √10D. √504.下列描述不能确定具体位置的是()A. 贵阳横店影城1号厅6排7座B. 坐标(3,2)可以确定一个点的位置C. 贵阳市筑城广场北偏东40∘D. 位于北纬28∘,东经112∘的城市5.下列命题中真命题是()A. 若a2=b2,则a=bB. 4的平方根是±2C. 两个锐角之和一定是钝角D. 相等的两个角是对顶角6.某地连续统计了10天日最高气温,并绘制成如图所示的扇形统计图.这10天日最高气温的众数是()A. 32∘CB. 33∘CC. 34∘CD. 35∘C7.在同一平面直角坐标系中,直线y=2x+3与y=2x-5的位置关系是()A. 平行B. 相交C. 重合D. 垂直8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A. {(10y +x)−(8x +y)=1311x=9yB. {9x +13=11y 10y+x=8x+yC. {(8x +y)−(10y +x)=139x=11yD. {(10y +x)−(8x +y)=139x=11y9. 在精准扶贫中,某乡镇实施产业扶贫,帮助贫困户承包荒山种植猕猴桃.到了收获季节,已知猕猴桃销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.则y 与x 的函数关系式为( )A. y =−10x −300B. y =10x +300C. y =−10x +300D. y =10x −30010. 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G 的边长是6cm ,则正方形A ,B ,C ,D ,E ,F ,G 的面积之和是( )A. 18cm 2 B. 36cm 2C. 72cm 2D. 108cm 2二、填空题(本大题共4小题,共16.0分)11. 比较大小:√6______3(填:“>”或“<”或“=”) 12. 用图象法解二元一次方程组{x −y +2=0kx−y+b=0小英所画图象如图所示,则方程组的解为______.13. 如图,△ABO 是关于y 轴对称的轴对称图形,点A 的坐标为(-2,3),则点B 的坐标为______.14. 如图,在△ABC 中,点D 是BC 边上的一点,∠B =50°,∠BAD =26°,将△ABD 沿AD折叠得到△AED ,AE 与BC 交于点F ,则∠AFC =______度.三、计算题(本大题共1小题,共10.0分)15.为传承中华文化,学习六艺技能,某中学组织初二年级学生到孔学堂研学旅行.已知大型客车每辆能坐60人,中型客车每辆能坐45人,现该校有初二年级学生375人.根据题目提供的信息解决下列问题:(1)这次研学旅行需要大、中型客车各几辆才能使每个学生上车都有座位,且每辆车正好坐满?(2)若大型客车租金为1500元/辆,中型客车租金为1200元/辆,请帮该校设计一种最划算的租车方案.四、解答题(本大题共6小题,共44.0分)16.(1)化简:√12−√24+(√5+√3)(√5−√3)√6(2)如图,数轴上点A和点B表示的数分别是1和√5.若点A是BC的中点.求点C所表示的数.17.已知:△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)求△ABC的面积.18.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?19.读书可以遇见更好的自己,4月23日是世界读书日,某校为了解学生阅读情况,抽样调查了部分学生每周用于课外阅读的时间.数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)9060601504011013014690100758112014015981102010081整理分析数据:(1)补全下列表格中的统计量:平均数中位数众数92.15______ 81(2)按如下分段整理样本数据并补全表格:课外阅读时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数2______ 8______得出结论:(3)用样本中的统计量估计该校学生每周用于课外阅读时间的等级情况,并说明理由.20.如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.21.在如图所示的平面直角坐标系中,已知一次函数y=x+3的图象与x轴交于点A,与y轴交于点B.(1)写出A点和B点的坐标;(2)在平面直角坐标系中画出一次函数=x+3的图象;(3)若C点的坐标为C(3,0),判断△ABC的形状,并说明理由.答案和解析1.【答案】B【解析】解:A、,是有理数,故此选项错误;B、π是无理数,故此选项正确;C、=4,是有理数,故此选项错误;D、-,是有理数,故此选项错误;故选:B.直接利用无理数的定义分析得出答案.此题主要考查了无理数的定义,正确把握无理数的定义是解题关键.2.【答案】A【解析】解:如下图,∵∠1=∠2,∴AB∥CD,故选:A.根据同位角相等两直线平行判断即可.此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.3.【答案】C【解析】解:A、=,被开方数含分母,不是最简二次根式;B、=2,被开方数含能开得尽方的因数,不是最简二次根式;C、是最简二次根式;D、=5,被开方数含能开得尽方的因数,不是最简二次根式.故选:C.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.【答案】C【解析】解:A.贵阳横店影城1号厅6排7座能确定具体位置;B.坐标(3,2)可以确定一个点的位置;C.贵阳市筑城广场北偏东40°不能确定具体位置;D.位于北纬28°,东经112°的城市能确定具体位置;故选:C.在数轴上,用一个数据就能确定一个点的位置;在平面直角坐标系中,要用两个数据才能表示一个点的位置;在空间内要用三个数据才能表示一个点的位置.本题考查了坐标确定位置,是数学在生活中应用,平面位置对应平面直角坐标系,空间位置对应空间直角坐标系.可以做到在生活中理解数学的意义.5.【答案】B【解析】解:A、若a2=b2,则a=b或a=-b,所以A选项错误;B、4的平方根是±2,所以B选项正确;C、两个锐角之和不一定是钝角,若30°与60°的和为直角;所以C选项错误;D、相等的两个角不一定为对顶角,所以D选项错误.故选:B.利用平方根的定义对A、B进行判断;利用反例对C进行判断;根据对顶角的定义对D进行判断.本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.【答案】C【解析】解:由扇形统计图知,这10天日最高气温为34°的天数所占百分比最大,所以这10天日最高气温为34°的天数最多,所以这10天日最高气温的众数为34°,故选:C.由扇形统计图知,这10天日最高气温为34°的天数所占百分比最大,即最高气温为34°的天数最多,根据众数的定义可得答案.本题主要考查扇形统计图与众数,解题的关键是根据扇形统计图得出解题所需数据及众数的定义.7.【答案】A【解析】解:∵直线y=2x+3与y=2x-5的k值相等,∴直线y=2x+3与y=2x-5的位置关系是平行,故选:A.根据直线y=2x+3与y=2x-5中的k都等于2,于是得到结论.本题考查了两条直线相交或平行问题,知道两直线的k值相等时两直线平行是解题的关键.8.【答案】D【解析】解:设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.9.【答案】C【解析】解:设y与x的函数关系式为y=kx+b,将点(10,200),(15,150)代入y=kx+b,得:,解得:,所以y与x的函数关系式为y=-10x+300.故选:C.根据函数图象可设y与x的函数关系式为y=kx+b,找出点的坐标,利用待定系数法求出y与x的函数关系式即可.本题考查了一次函数的应用,待定系数法求一次函数解析式,一次函数图象上点的坐标特征.解题的关键是:利用函数图象得出y与x的函数关系是一次函数的关系,从而利用待定系数法求解.10.【答案】D【解析】解:由图可得,A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F、G的面积之和为3个G的面积.∵G的面积是62=36cm2,∴A、B、C、D、E、F、G的面积之和为36×3=108cm2.故选:D.根据正方形的面积公式,运用勾股定理可以证明:正方形A,B,C,D的面积之和等于正方形E,F的面积之和,正方形E,F的面积之和等于最大正方形G的面积.本题主要考查了勾股定理,注意在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.11.【答案】<【解析】解:∵6<9,∴<3.故答案为:<.依据被开放数越大对应的算术平方根越大可估算出的大小,故此可求得问题的答案.本题主要考查的是比较实数的大小,熟练掌握相关知识是解题的关键.x=112.【答案】{y=3【解析】解:把A(1,m)代入x-y+2=0得1-m+2=0,解得m=3,所以A点坐标为(1,3),所以二元一次方程组的解为.故答案为.先利用直线x-y+2=0确定A点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标求解.本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.13.【答案】(2,3)【解析】解:∵△ABO是关于y轴对称的轴对称图形,∴点A(-2,3)与点B关于y轴对称,∴点B坐标为(2,3),故答案为:(2,3).由△ABO 是关于y 轴对称的轴对称图形知点A (-2,3)与点B 关于y 轴对称,据此可得.本题主要考查关于坐标轴对称点的坐标,解题的关键是熟练掌握轴对称图形的性质和关于y 轴对称的两点的坐标特点.14.【答案】102【解析】解:∵将△ABD 沿AD 折叠得到△AED ,∴∠BAD=∠DAF=26°, ∴∠BAF=52°, ∵∠B+∠BAF+∠AFB=180°, ∴∠AFB=78°, ∴∠AFC=102°, 故答案为:102.由折叠的性质可得∠BAD=∠DAF=26°,根据三角形内角和定理可求出∠AFB=78°,即可得∠AFC 的度数. 本题考查了折叠的性质,三角形内角和定理,熟练运用折叠的性质是本题的关键.15.【答案】解:(1)设需要大型客车x 辆,中型客车y 辆,根据题意,得:60x +45y =375,当x =1时,y =7;当x =2时,y =173;当x =3时,y =133;当x =4时,y =3;当x =5时,y =53;当x =6时,y =13;∵要使每个学生上车都有座位,且每辆车正好坐满,∴有两种选择,方案一:需要大型客车1辆,中型客车7辆;方案二:需要大型客车4辆,中型客车3辆.(2)方案一:1500×1+1200×7=9900(元), 方案二:1500×4+1200×3=9600(元), ∵9900>9600,∴方案二更划算.【解析】(1)设需要大型客车x 辆,中型客车y 辆,根据学生总人数为375人列出关于x 、y 的二元一次方程,再利用x 、y 均为非负整数可得答案;(2)分别计算出每个方案中的总租金,从而得出答案.本题主要考查二元一次方程,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.16.【答案】解:(1)原式=√126-√246+5-3 =√2-2+2=√2;(2)∵数轴上点A 和点B 表示的数分别是1和√5,∴OA =1,AB =OB -OA =√5-1,∵点A 是BC 的中点.∴CA =BA =√5-1,∴OC =CA -OA =√5-1-1=√5-2,∴点C 所表示的数为2-√5.【解析】(1)根据二次根式的除法法则和平方差公式计算;(2)先计算出AB 的长,再利用线段中点定义得到CA 的长,然后计算出OC 的长则可表示出点C 所表示的数.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了数轴.17.【答案】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)△ABC 的面积为:6-12×3×1-12×2×2-12×1×1=2. 【解析】(1)直接利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用△ABC 所在矩形面积减去周围三角形面积进而得出答案. 此题主要考查了轴对称变换,正确得出对应点位置是解题关键.18.【答案】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等, ∴BC =CA .设AC 为x ,则OC =9-x ,由勾股定理得:OB 2+OC 2=BC 2,又∵OA=9,OB=3,∴32+(9-x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.【解析】根据小球滚动的速度与机器人行走的速度相等,运动时间相等得出BC=CA.设AC为x,则OC=9-x,根据勾股定理即可得出结论.本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.19.【答案】90 4 6【解析】解:(1)将20个学生每周用于课外阅读的时间的数据按大小顺序排列后,可得中位数为=90,故答案为:90;(2)由题可得,在40≤x<80范围内的数据有4个;在120≤x<160范围内的数据有6个;故答案为:4,6;(3)估计该校学生每周用于课外阅读时间的等级为B,理由:由于平均数为92.7,中位数为90,众数为81,这三个统计量均在80≤x<120范围内,次范围内的等级为B等.(1)将一组数据按照从小到大(或从大到小)的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.(2)依据样本中的数据,即可得到不同等级的人数;(3)依据平均数为92.7,中位数为90,众数为81,三个统计量均在80≤x<120范围内,可得结论.此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.20.【答案】解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,内错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁内角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)【解析】依据平行线的性质,即可得到∠BCD=70°,进而得出∠E+∠DCE=180°,进而得到EF∥CD,进而得到AB∥EF.本题考查平行线的性质和判定,解题的关键是熟练掌握平行线的判定和性质.21.【答案】解:(1)在y=x+3中,令x=0,则y=3;令y=0,则x=-3;∴A(-3,0),B(0,3);(2)一次函数=x+3的图象如图所示,(3)如图,依题意得AO=BO=CO=3,∴AB=BC=√32+32=3√2,AC=6,∵AB2+BC2=36,AC2=36,∴AB2+BC2=AC2,∴△ABC是等腰直角三角形.【解析】(1)依据一次函数y=x+3的图象与x轴交于点A,与y轴交于点B,即可得到A点和B点的坐标;(2)依据A点和B点的坐标,即可画出一次函数=x+3的图象;(3)依据勾股定理的逆定理,即可得出△ABC的形状.本题考查了一次函数的图象和性质、一次函数图象上点的坐标特征等知识点,能熟记一次函数的性质是解此题的关键.。

[试卷合集3套]贵阳市2018年八年级上学期数学期末复习检测试题

[试卷合集3套]贵阳市2018年八年级上学期数学期末复习检测试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,点C 的坐标为(3,4),CA y ⊥轴于点A ,D 是线段AO 上一点,且OD 3AD =,点B 从原点O 出发,沿x 轴正方向运动,CB 与直线13y x =交于E ,则CDE ∆的面积( )A .逐渐变大B .先变大后变小C .逐渐变小D .始终不变【答案】D【分析】根据已知条件得到OA=4,AC=3,求得AD=1,OD=3,设E 1,3m m ⎛⎫ ⎪⎝⎭,即可求得BC 直线解析式为123933-=---m my x m m,进而得到B 点坐标,再根据梯形和三角形的面积公式进行计算即可得到结论.【详解】∵点C 的坐标为(3,4),CA ⊥y 轴于点A , ∴OA=4,AC=3, ∵OD=3AD , ∴AD=1,OD=3,∵CB 与直线13y x =交于点E ,∴设E 1,3m m ⎛⎫ ⎪⎝⎭,设直线BC 的解析式为:y kx b =+ 将C(3,4)与E 1,3m m ⎛⎫ ⎪⎝⎭代入得:3413k b mk b m +=⎧⎪⎨+=⎪⎩,解得129333m k mm b m -⎧=⎪⎪-⎨⎪=-⎪-⎩ ∴直线BC 解析式为:123933-=---m m y x m m令y=0,则123=0933----m mx m m 解得912=-mx m∴9B 012,⎛⎫⎪-⎝⎭m mS △CDE =S 梯形AOBC -S △ACD -S △DOE -S △OBE=191119134313212222123⎛⎫⨯+⨯-⨯⨯-⨯-⨯⨯ ⎪--⎝⎭m m m m m m =92所以△CDE 的面积始终不变, 故选:D . 【点睛】本题考查了一次函数中的面积问题,解题的关键是求出BC 直线解析式,利用面积公式求出△CDE 的面积. 2.如图所示,△ABC 中AC 边上的高线是( )A .线段DAB .线段BAC .线段BD D .线段BC【答案】C【解析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高. 【详解】由图可知,ABC 中AC 边上的高线是BD.故选:C. 【点睛】掌握垂线的定义是解题的关键.3.以下列选项中的数为长度的三条线段中,不能组成直角三角形的是( ) A .8,15,17 B .4,6,8C .3,4,5D .6,8,10【答案】B【解析】试题解析:A. 22281517+=, 故是直角三角形,故错误; B. 222468+≠, 故不是直角三角形,正确; C. 222345+=, 故是直角三角形,故错误; D. 2226810+=, 故是直角三角形,故错误. 故选B.点睛:如果三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形. 4.已知14x x -=,则221x x+的值是( )A .18B .16C .14D .12【答案】A【分析】根据完全平方公式可得2211216x x x x -⨯⨯+=,然后变形可得答案. 【详解】∵14x x-= ∴2211216x x x x-⨯⨯+= ∴22118x x += 故选:A . 【点睛】此题主要考查了完全平方公式,关键是掌握完全平方公式:222()2a b a ab b ±=±+. 5.如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( )A .18°B .24°C .30°D .36°【答案】A【解析】试题分析:先根据等腰三角形的性质求得∠C 的度数,再根据三角形的内角和定理求解即可. ∵AB =AC ,∠A =36° ∴∠C =72°∵BD 是AC 边上的高 ∴∠DBC =180°-90°-72°=18° 故选A.考点:等腰三角形的性质,三角形的内角和定理点评:三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.6.如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为( )A .1080︒B .900︒C .720︒D .540︒【分析】根据多边形的内角和=180°(n-2),其中n为正多边形的边数,计算即可【详解】解:正六边形的内角和为:180°×(6-2)=720°故选C.【点睛】此题考查的是求正六边形的内角和,掌握多边形的内角和公式是解决此题的关键.7.下列图形中,不是轴对称图形的是()A.B.C.D.【答案】A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 这个图形叫做轴对称图形.8.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S甲2=17,S乙2=36,S丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次第二次第三次第四次丁同学80 80 90 90则这四名同学四次数学测试成绩最稳定的是()A.甲B.乙C.丙D.丁【答案】C【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【详解】丁同学的平均成绩为:14⨯(80+80+90+90)=85;方差为S丁214=[2×(80﹣85)2+2×(90﹣85)2]=25,所以四个人中丙的方差最小,成绩最稳定.故选C.本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大. 9.如图,它由两块相同的直角梯形拼成,由此可以验证的算式为( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(1)(1)a b -=+【答案】A【分析】根据图中边的关系,可求出两图的面积,而两图面积相等,从而推导出了平方差的公式. 【详解】如图,拼成的等腰梯形如下:上图阴影的面积s =a 2−b 2,下图等腰梯形的面积s =2(a +b )(a−b )÷2=(a +b )(a−b ), 两面积相等所以等式成立a 2−b 2=(a +b )(a−b ).这是平方差公式. 故选:A .【点睛】本题考查了平方差公式的几何背景,解决本题的关键是求出两图的面积,而两图面积相等,从而推导出了平方差的公式.10.如果0a b -<,且0ab <,那么点(),a b 在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵0a b -<,且0ab <, ∴a 0,0b <> ∴点(),a b 在第二象限 故选:B 【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 二、填空题 11.若,则=_____.【答案】1.【解析】将m=2n 代入原式中进行计算即可. 【详解】解:由题意可得m=2n ,则原式=,故答案为:1. 【点睛】本题考查了分式的化简求值.12.一个等腰三角形的内角为80°,则它的一个底角为_____. 【答案】50°或80°【分析】分情况讨论,当80°是顶角时,底角为(18080)250︒-︒÷=︒;当80°是底角时,则一个底角就是80°.【详解】在等腰三角形中,若顶角是80°,则一个底角是(18080)250︒-︒÷=︒;若内角80°是底角时,则另一个底角就是80°,所以它的一个底角就是50°或80°, 故答案为:50°或80°. 【点睛】本题考查了等腰三角形的性质,分类讨论思想的应用,三角形内角和的定理,熟记等腰三角形的性质以及内角和定理是解题关键.13.计算02(3)(3)--⨯-=_______. 【答案】19【分析】先运用零次幂和负整数次幂化简,然后再计算即可. 【详解】解:0211=1=(3)(3)99-⨯-⨯-.故答案为:19.【点睛】本题主要考查了零次幂和负整数次幂,运用零次幂和负整数次幂对原式化简成为解答本题的关键.14.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED;【答案】AC=DF(或∠A=∠F或∠B=∠E)【解析】∵BD=CE,∴BD-CD=CE-CD,∴BC=DE,①条件是AC=DF时,在△ABC和△FED中,12AC DFBC DE⎧⎪∠∠⎨⎪⎩===∴△ABC≌△FED(SAS);②当∠A=∠F时,12A FBC DE∠=∠⎧⎪∠∠⎨⎪⎩==∴△ABC≌△FED(AAS);③当∠B=∠E时,12BC DEB E∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC≌△FED(ASA)故答案为AC=DF(或∠A=∠F或∠B=∠E).15.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为_____.【答案】x >﹣2【分析】根据两函数的交点坐标,结合图象即可确定出所求不等式的解集. 【详解】解:由题意及图象得: 不等式3x+b >ax ﹣3的解集为x >﹣2, 故答案为:x >﹣2 【点睛】本题考查了一次函数与一元一次不等式,利用了数形结合的思想,灵活运用数形结合思想是解本题的关键. 16.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒, 30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒, 41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =, 33312428A B B A ∴===, 同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n , ∴△556A B A 的边长为5232=.故答案为:32. 【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.17.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S 甲2、S 乙2,且S 甲2>S 乙2,则队员身高比较整齐的球队是_____. 【答案】乙队【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】∵S 甲2>S 乙2,∴队员身高比较整齐的球队是乙, 故答案为:乙队. 【点睛】此题考查方差的意义.解题关键在于掌握方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题18.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见解析;(2)∠BDF=18°.【分析】(1)先证明四边形ABCD是平行四边形,求出∠ABC=90°,然后根据矩形的判定定理,即可得到结论;(2)求出∠FDC的度数,根据三角形的内角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度数.【详解】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的判定和性质,矩形的判定和性质,能灵活运用定理进行推理是解题的关键.注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.19.如图,∠AFD=∠1,AC∥DE,(1)试说明:DF∥BC;(2)若∠1=68°,DF平分∠ADE,求∠B的度数.【答案】(1)证明见解析;(2)68°.【解析】试题分析:(1)由AC ∥DE 得∠1=∠C ,而∠AFD=∠1,故∠AFD=∠C ,故可得证;(2)由(1)得∠EDF=68°,又DF 平分∠ADE ,所以∠EDA=68°,结合DF ∥BC 即可求出结果.试题解析:(1)∵AC ∥DE ,∴∠1=∠C ,∵∠AFD=∠1,∴∠AFD=∠C ,∴DF ∥BC ;(2)∵DF ∥BC ,∴∠EDF=∠1=68°,∵DF 平分∠ADE ,∴∠EDA=∠EDF=68°,∵∠ADE=∠1+∠B∴∠B=∠ADE-∠1=68°+68°-68°=68°.20.如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图②形状拼成一个正方形.(1)若13a =,3b =.求图②中阴影部分面积;(2)观察图②,写出()2a b +,()2a b -,ab 三个代数式之间的等量关系.(简要写出推理过程)(3)根据(2)题的等量关系,完成下列问题:若9a b +=,14ab =,求211a b ⎛⎫- ⎪⎝⎭的值.【答案】(1)100S =阴;(2)()()224a b a b ab +=-+或()()224a b ab a b +-=-,过程见解析;(3)25196【分析】(1)根据图形可知,阴影正方形的边长为小长方形的长与宽的差,写出即可求解; (2)根据完全平方公式的变形即可得到关系式;(3)根据1114b a a b --=,故求出()2222111414b a b a a b --⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,代入(2)中的公式即可求解. 【详解】解:(1)∵阴影正方形的边长为小长方形的长与宽的差,即阴影正方形的边长为13-3=10∴100S =阴;(2)结论:()()224a b a b ab +=-+ 或()()224a b ab a b +-=-∵ ()2222a b a ab b +=++,()2222a b a ab b -=-+ ∴()222224242a b ab a ab b ab a ab b -+=-++=++ ∴()()224a b a b ab +=-+或()()224a b ab a b +-=-; (3) ∵11b a a b ab--=,14ab = ∴1114b a a b --= ∴()2222111414b a b a a b --⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭ 由(2)可知()()224b a b a ab -=+- ∴()()222224111414196b a b a ab b a a b -+--⎛⎫⎛⎫-=== ⎪ ⎪⎝⎭⎝⎭∵9a b +=,14ab = ∴()222411941425196196196b a ab a b +--⨯⎛⎫-=== ⎪⎝⎭. 【点睛】本题考查了完全平方公式的几何背景,以及两个公式之间的关系,从整体与局部两种情况分析并写出面积的表达式是解题的关键.21.综合与探究[问题]如图1,在Rt ABC ∆中,90,ACB AC BC ∠==,过点C 作直线l 平行于,90AB EDF ∠=,点D 在直线l 上移动,角的一边DE 始终经过点B ,另一边DF 与AC 交于点P ,研究DP 和DB 的数量关系.[探究发现](1)如图2,某数学学习小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P 与点C 重合时,很容易就可以得到,DP DB =请写出证明过程;[数学思考](2)如图3,若点P 是AC 上的任意一点(不含端点A C 、),受(1)的启发,另一个学习小组过点D ,DG CD ⊥交BC 于点C ,就可以证明DP DB =,请完成证明过程;[拓展引申](3)若点P 是CA 延长线上的任意一点,在图(4)中补充完整图形,并判断结论是否仍然成立.【答案】 [探究发现](1)见解析; [数学思考](2)见解析;[拓展引申](3)补充完整图形见解析;结论仍然成立.【分析】(1)根据等腰三角形性质和平行线性质可证45DCB DBC ∠=∠=︒;(2)在CDP ∆和GDB ∆中,证CDP GDB DC DG DCP DGB ∠=∠⎧⎪=⎨⎪∠=∠⎩,得()CDP GDB ASA ∆∆≌,可得; (3)根据题意画图,与(2)同理可得.【详解】[探究发现]()190,ACB AC BC ∠=︒=,45CAB CBA ∴∠=∠=︒//CD AB ,45CBA DCB ∴∠=∠=︒,且BD CD ⊥45DCB DBC ∴∠=∠=︒∴DB DC =.即.DP DB =[数学思考]()2,45DG CD DCB ⊥∠=︒45DCG DGC ∴∠=∠=︒.,135DC DG DCP DGB ∴=∠=∠=︒;90CDG BDP ∠=∠=︒在CDP ∆和GDB ∆中,CDP GDB DC DGDCP DGB ∠=∠⎧⎪=⎨⎪∠=∠⎩()CDP GDB ASA ∴∆∆≌DP DB ∴=.[拓展引申]()3如图,作DG CD ⊥,与(2)同理,可证()DCB GDP ASA ∆∆≌,得DP DB =.所以结论仍然成立.【点睛】考核知识点:等腰三角形判定和性质.运用全等三角形判定和性质解决问题是关键.22.如图,在△ABC 中,AB =AC ,点D 在△ABC 内,BD =BC ,∠DBC =60°,点E 在△ABC 外,∠BCE =150°,∠ABE=60°.(1)求∠ADB 的度数 .(2)判断△ABE 的形状并证明 .(3)连结DE,若DE⊥BD,DE=6,求AD的长【答案】(1)150°;(2)△ABE是等边三角形,理由详见解析;(1)1.【分析】(1)首先证明△DBC是等边三角形,推出∠BDC=60°,DB=DC,再证明△ADB≌△ADC,推出∠ADB =∠ADC即可解决问题;(2)利用ASA证明△ABD≌△EBC得到AB=BE,结合∠ABE=60°可得△ABE是等边三角形;(1)首先证明△DEC是含有10度角的直角三角形,求出EC的长,利用全等三角形的性质即可解决问题.【详解】解:(1)∵BD=BC,∠DBC=60°,∴△DBC是等边三角形,∴DB=DC,∠BDC=60°,∵AB=AC,AD=AD,∴△ADB≌△ADC(SSS),∴∠ADB=∠ADC,∴∠ADB=12(160°−60°)=150°;(2)△ABE是等边三角形.证明:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE,∵∠ADB=∠BCE=150°,BD=BC,∴△ABD≌△EBC(ASA),∴AB=BE,∵∠ABE=60°,∴△ABE是等边三角形;(1)连接DE.∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°,∴∠EDC=10°,∴EC=12DE=1,∵△ABD≌△EBC,∴AD=EC=1.【点睛】本题考查全等三角形的判定和性质、等边三角形的判定和性质、10度角的直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.23.化简(1)2121 11x xx x++⎛⎫-⋅⎪+⎝⎭.(2)1193332xx x x-⎛⎫+⋅⎪-+⎝⎭.【答案】(1)x+1;(2)33x-+.【分析】(1)先算括号内的分式的减法,再算乘法,因式分解后约分可以解答本题;(2)先算括号内的分式的加法,再算乘法,因式分解后约分可以解答本题.【详解】解:(1)2121 11x xx x++⎛⎫-⋅⎪+⎝⎭=2 11(1)1x xx x +-+⋅+=1 1x xx+⋅=x+1;(2)1193332x x x x-⎛⎫+⋅⎪-+⎝⎭=333(3) (3)(3)2x x x x x x ++--⋅+-=2332 xx x-⋅+=33x-+.【点睛】本题考查了分式的四则混合运算,掌握运算法则和运算顺序是关键.24.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC .(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(52,k)是线段BC上一点,在线段BM上是否存在一点N,使△BPN的面积等于△BCM面积的14?若存在,请求出点N的坐标;若不存在,请说明理由.【答案】(1)C(﹣3,1),直线AC:y=13x+2;(2)证明见解析;(3)N(﹣83,0).【分析】(1)作CQ⊥x轴,垂足为Q,根据条件证明△ABO≌△BCQ,从而求出CQ=OB=1,可得C(﹣3,1),用待定系数法可求直线AC的解析式y=13x+2;(2)作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,证明△BCH≌△BDF,△BOE≌△DGE,可得BE=DE;(3)先求出直线BC的解析式,从而确定点P的坐标,假设存在点N使△BPN的面积等于△BCM面积的14,然后可求出BN的长,比较BM,BN的大小,判断点N是否在线段BM上即可.【详解】解:(1)如图1,作CQ⊥x轴,垂足为Q,∴∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∵BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=13x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∵BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∵DG=OB ,∴△BOE ≌△DGE ,∴BE=DE ;(3)如图3,直线BC :y=﹣12x ﹣12,P (52-,k )是线段BC 上一点, ∴P (﹣52,34),由y=13x+2知M (﹣6,0), ∴BM=5,则S △BCM =52, 则12BN·31=44×52, ∴BN=53,ON=83, ∴BN <BM ,∴点N 在线段BM 上,∴N (﹣83,0).考点:1.等腰直角三角形的性质;2.全等三角形的判定与性质;3.待定系数法求解析式. 25.分解因式:22363ax axy ay -+【答案】()23-a x y【分析】先提取公因式,然后在利用公式法分解因式即可.【详解】原式()2232a x xy y =-+()23a x y =-【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知 35x <<,则化简 221(5)x x 的结果是( ). A .4B .6-2xC .-4D .2x-6 【答案】A【分析】根据绝对值的性质以及二次根式的性质即可求出答案.【详解】解:因为35x <<,所以10x -<,50x ->,则221(5)xx 15x x 15x x4=,故选:A .【点睛】本题考查二次根式,解题的关键是熟练运用绝对值的性质以及二次根式的性质. 2.下列四个图案中,不是轴对称图案的是( )A .B .C .D .【答案】B【分析】根据轴对称图形的定义逐项判断即得答案.【详解】解:A 、是轴对称图案,故本选项不符合题意;B 、不是轴对称图案,故本选项符合题意;C 、是轴对称图案,故本选项不符合题意;D 、是轴对称图案,故本选项不符合题意.故选:B .【点睛】本题考查了轴对称图形的定义,属于应知应会题型,熟知概念是关键.3.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的()A.总体B.个体C.样本D.样本容量【答案】C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.4x必须满足的条件是()A.x≤2B.x<2C.x≤-2D.x<-2【答案】A,∴2-x≥0,∴x≤2.故选A.5.下列句子中,不是命题的是()A.三角形的内角和等于180度B.对顶角相等C.过一点作已知直线的垂线D.两点确定一条直线【答案】C【分析】判断一件事情的句子叫做命题,根据定义即可判断.【详解】解:C选项不能进行判断,所以其不是命题.故选C【点睛】本题考查了命题,判断命题关键掌握两点:①能够进行判断;②句子一般是陈述句.6.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是()A.3 B.4 C.5 D.6【答案】C【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选C.【点睛】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补.7.如图,已知点A 和直线MN ,过点A 用尺规作图画出直线MN 的垂线,下列画法中错误的是( ) A . B .C .D .【答案】A【分析】根据经过直线外一点作已知直线的方法即可判断.【详解】解:已知点A 和直线MN ,过点A 用尺规作图画出直线MN 的垂线,画法正确的是B 、C 、D 选项,不符合题意.A 选项错误,符合题意;故选:A .【点睛】本题考查了作图-基本作图,解决本题的关键是掌握经过一点作已知直线的垂线的方法.8.如图,在下列四组条件中,不能判断ABC DEF △≌△的是( )A .AB DE BC EF AC DF ===,,B .AB DE B E BC EF =∠=∠=,,C .AB DE AC DF B E ==∠=∠,,D .BE BC EF C F ∠=∠=∠=∠,,【答案】C【分析】根据全等三角形的判定定理逐一判断即可.【详解】解:A . 若AB DE BC EF AC DF ===,,,利用SSS 可证ABC DEF △≌△,故本选项不符合题意;B . 若AB DE B E BC EF =∠=∠=,,,利用SAS 可证ABC DEF △≌△,故本选项不符合题意; C . 若AB DE AC DF B E ==∠=∠,,,两边及其一边的对角对应相等不能判定两个三角形全等,故本选项符合题意;D . 若BE BC EF C F ∠=∠=∠=∠,,,利用ASA 可证ABC DEF △≌△,故本选项不符合题意. 故选C .【点睛】此题考查的是判定全等三角形所需的条件,掌握全等三角形的各个判定定理是解决此题的关键. 9.若分式21x x --的值为零,则x 的值为( ) A .2-B .2±C .2D .2 【答案】B【分析】直接利用分式的值为零则分子为零,分母不为零进而得出答案. 【详解】解:∵分式21x x --的值为0,∴|x|-2=0,且x-1≠0,解得:x=2±.故选:B .【点睛】本题考查分式值为零的条件,解题关键是熟练掌握分式值为零的条件.10.一个正数的两个平方根分别是2a-1与-a+2,则a 的值为( )A .1B .-1C .2D .-2 【答案】B【分析】根据一个正数的两个平方根互为相反数得到关于a 的一元一次方程,求解即可.【详解】解:根据题意可得:()2120a a -+-+=,解得1a =-,故选:B .【点睛】本题考查了平方根的概念,正确理解一个正数的两个平方根的关系,求得a 的值是关键.二、填空题11.要使分式22x x -有意义,则x 的取值范围是_______________. 【答案】2x ≠【解析】根据分式有意义的条件,则:20.x -≠解得: 2.x ≠故答案为 2.x ≠【点睛】分式有意义的条件:分母不为零.12.方程233x x=-的解是 . 【答案】x=1.【分析】根据解分式方程的步骤解答即可.【详解】去分母得:2x=3x ﹣1,解得:x=1,经检验x=1是分式方程的解,故答案为x=1.【点睛】本题主要考查了解分式方程的步骤,牢牢掌握其步骤就解答此类问题的关键.13m =__________.【答案】1m +1=2,然后解方程即可.=∴m +1=2,∴m =1.故答案为1.【点睛】本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.14.因式分解24ax a -= .【答案】(2)(2)a x x +-.【详解】试题分析:原式=2(4)(2)(2)a x a x x -=+-.故答案为(2)(2)a x x +-.考点:提公因式法与公式法的综合运用.15.如图,把△ABC 沿EF 对折,折叠后的图形如图所示.若∠A =60°,∠1=96°,则∠2的度数为_____.【答案】24°.【分析】首先根据三角形内角和定理可得∠AEF+∠AFE =120°,再根据邻补角的性质可得∠FEB+∠EFC =360°﹣120°=240°,再根据由折叠可得:∠B ′EF+∠EFC ′=∠FEB+∠EFC =240°,然后计算出∠1+∠2的度数,进而得到答案.【详解】解:∵∠A =60°,∴∠AEF+∠AFE =180°﹣60°=120°.∴∠FEB+∠EFC =360°﹣120°=240°.∵由折叠可得:∠B ′EF+∠EFC ′=∠FEB+∠EFC =240°.∴∠1+∠2=240°﹣120°=120°.∵∠1=96°,∴∠2=120°﹣96°=24°.故答案为:24°.【点睛】考核知识点:折叠性质.理解折叠性质是关键.16.若关于x 和y 的二元一次方程组22231x y x y m +=⎧⎨+=+⎩,满足0x y +>,那么m 的取值范围是_____. 【答案】m >−1【分析】两方程相加可得x +y =m +1,根据题意得出关于m 的不等式,解之可得.【详解】解:22231x y x y m +=⎧⎨+=+⎩①②, ①+②得:3x +3y =3m +3,则x +y =m +1,∵0x y +>,∴m +1>0,解得:m >−1,故答案为:m >−1.【点睛】本题考查的是解二元一次方程组以及解一元一次不等式,整体求出x +y =m +1是解题的关键. 17.等腰三角形的两边长分别为2和4,则其周长为_____.【答案】10【分析】根据等腰三角形的性质可分两种情况讨论:①当2为腰时②当4为腰时;再根据三角形的三边关系确定是否能构成三角形,再计算三角形的周长,即可完成.【详解】①当2为腰时,另两边为2、4, 2+2=4,不能构成三角形,舍去;②当4为腰时,另两边为2、4, 2+4>4,能构成三角形,此时三角形的周长为4+2+4=10故答案为10【点睛】本题主要考查等腰三角形的性质,还涉及了三角形三边的关系,熟练掌握以上知识点是解题关键.三、解答题18.如图,在ABC ∆中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE ∆≅∆;(2)若100A ∠=︒,50C ∠=︒,求AEB ∠的度数.【答案】 (1)见解析;(2)65︒【分析】(1)由角平分线定义得出ABE DBE ∠∠=,由SAS 证明ABE DBE ∆≅∆即可;(2)由三角形内角和定理得出30ABC ∠=︒,由角平分线定义得出1152ABE DBE ABC ∠∠∠︒===,在ABE ∆中,由三角形内角和定理即可得出答案.【详解】(1)证明:BE 平分ABC ∠,∴ABE DBE ∠∠=,在ABE ∆和DBE ∆中,AB DB ABE DBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∴()ABE DBE SAS ∆≅∆;(2)100A ∠=︒,50C ∠=︒,∴30ABC ∠=︒,BE 平分ABC ∠, ∴1152ABE DBE ABC ∠∠∠︒===, 在ABE ∆中,1801801001565AEB A ABE ∠=︒∠∠=︒︒︒=︒----.【点睛】本题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键.19.某商场花9万元从厂家购买A 型和B 型两种型号的电视机共50台,其中A 型电视机的进价为每台1500元,B 型电视机的进价为每台2500元.(1)求该商场购买A 型和B 型电视机各多少台?(2)若商场A 型电视机的售价为每台1700元,B 型电视机的售价为每台2800元,不考虑其他因素,那么销售完这50台电视机该商场可获利多少元?【答案】(1)该商场购买A 型电视机35台,B 型电视机15台;(2)销售完这50台电视机该商场可获利11500元.【分析】(1)根据A 型、B 型两种型号的电视机共50台,共用9万元列出方程组解答即可;(2)算出各自每台的利润乘台数得出各自的利润,再相加即可.【详解】解:(1)设该商场购买A 型电视机x 台,B 型电视机y 台,由题意得501500250090000x y x y +=⎧⎨+=⎩, 解得:3515x y =⎧⎨=⎩答:该商场购买A 型电视机35台,B 型电视机15台.(2)35×(1700﹣1500)+15×(2800﹣2500)=7000+4500=11500(元)答:销售完这50台电视机该商场可获利11500元.【点睛】本题考查二元一次方程组的应用,根据总台数和总价钱得出相应的等量关系是解题的关键.20.如图,在平面直角坐标系中,ABC ∆的三个顶点坐标分别为11A (,),4(3)B ,,42C (,).(1)在图中画出ABC ∆关于x 轴对称的111A B C ∆;(2)通过平移,使1C 移动到原点O 的位置,画出平移后的222A B C ∆.(3)在ABC ∆中有一点P m n (,),则经过以上两次变换后点P 的对应点2P 的坐标为 .【答案】(1)图见解析;(2)图见解析;(3)()4,2m n --+【分析】(1)先分别找到A 、B 、C 关于x 轴的对称点111A B C 、、,然后连接11A B 、11B C 、11A C 即可; (2)先判断1C 移动到原点O 的位置时的平移规律,然后分别将11A B 、、1C 按此规律平移,得到22A B 、、2C ,连接22A B 、22B C 、22A C 即可;(3)根据关于x 轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可得到1P ,然后根据(2)中的平移规律即可得到2P 的坐标.【详解】解:(1)先分别找到A 、B 、C 关于x 轴的对称点111A B C 、、,然后连接11A B 、11B C 、11A C ,如下图所示:111A B C ∆即为所求(2)∵42C (,)∴()142C ,-∴()142C ,-到点O (0,0)的平移规律为:先向左平移4个单位,再向上平移2个单位分别将11A B 、、1C 按此规律平移,得到22A B 、、2C ,连接22A B 、22B C 、22A C ,如图所示,222A B C ∆即为所求;(3)由(1)可知,()P m n ,经过第一次变化后为()1,P m n -然后根据(2)的平移规律,经过第二次变化后为()24,2P m n --+故答案为:()4,2m n --+.【点睛】此题考查的是画已知图形关于x 轴对称的图形、平移后的图形、点的对称规律和平移规律,掌握关于x 轴对称图形画法、平移后的图形画法、关于x 轴对称两点坐标规律和坐标的平移规律是解决此题的关键. 21.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay =(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)1xy+y 1﹣1+x 1=x 1+1xy+y 1﹣1=(x+y)1﹣1=(x+y+1)(x+y ﹣1)(1)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如: x 1+1x ﹣3=x 1+1x+1﹣4=(x+1)1﹣11=(x+1+1)(x+1﹣1)=(x+3)(x ﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a 1﹣b 1+a ﹣b ;(1)分解因式:x 1﹣6x ﹣7;(3)分解因式:a 1+4ab ﹣5b 1.【答案】(1)()()1a b a b -++;(1)()()17+-x x ;(3)()()5a b a b +-.【解析】试题分析:(1)仿照例(1)将前两项和后两项分别分作一组,然后前两项利用平方差公式分解,然后提出公因式(a-b)即可;(1)仿照例(1)将-7拆成9-16,然后前三项利用完全平方公式分解后,再用平方差公式分解即可;(3)仿照例(1)将-5b 1拆成4b 1-9b 1,然后前三项利用完全平方公式分解后,再用平方差公式分解即可.试题解析:解:(1)22a b a b -+-=()()()a b a b a b +-+-=()()1a b a b -++;(1)原式=22223337x x -⨯⨯+--=()2316x --=()()3434x x -+--=()()17x x +-; (3)原式=()()222222225a a b b b b +⨯⨯+--=()2229a b b +-=()()2323a b b a b b +++-=()()5a b a b +-. 点睛:本题考查了因式分解的综合应用,熟悉因式分解的方法和读懂例题是解决此题的关键. 22.如图,在ABC ∆中,AB AC =,点D 是BC 边上一点,EF 垂直平分CD ,交AC 于点E ,交BC 于点F ,连结DE ,求证://DE AB .。

(汇总3份试卷)2018年贵阳市某达标中学八年级上学期数学期末质量检测试题

(汇总3份试卷)2018年贵阳市某达标中学八年级上学期数学期末质量检测试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.以下列各组长度的线段为边,其中a>3,能构成三角形的是( )A.2a+7,a+3,a+4 B.5a²,6 a²,10 a²C.3a,4a,a D.a-1,a-2,3a-3【答案】B【分析】根据三角形的三边关系和a的取值范围逐一判断即可.【详解】解:A.(a+3)+(a+4)=2a+7,不能构成三角形,故本选项不符合题意;B.5a²+6a²>10a²,能构成三角形,故本选项符合题意;C.3a+a =4a,不能构成三角形,故本选项不符合题意;D.(a-1)+(a-2)=2a-3<2a-3+a=3a-3,不能构成三角形,故本选项不符合题意.故选B.【点睛】此题考查的是判断三条线段是否能构成三角形,掌握三角形的三边关系是解决此题的关键.2.若(x+4)(x﹣2)=x2+ax+b,则ab的积为()A.﹣10 B.﹣16 C.10 D.﹣6【答案】B【分析】首先利用多项式乘以多项式计算(x+4)(x﹣2),然后可得a、b的值,进而可得答案.【详解】(x+4)(x﹣2)=x2﹣2x+4x﹣8=x2+2x﹣8,∴a=2,b=﹣8,∴ab=﹣1.故选:B.【点睛】本题考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.3.如图,D为等腰Rt△ABC的斜边AB的中点,E为BC边上一点,连接ED并延长交CA的延长线于点F,过D作DH⊥EF交AC于G,交BC的延长线于H,则以下结论:①DE=DG;②BE=CG;③DF=DH;④BH =CF.其中正确的是()A.②③B.③④C.①④D.①②③④【答案】D【分析】连接CD ,欲证线段相等,就证它们所在的三角形全等,即证明,DBE DCG DCH DAF ∆≅∆∆≅∆即可.【详解】如图,连接CD∵△ABC 是等腰直角三角形,CD 是中线∴,45BD DC B DCA =∠=∠=︒又∵90BDC EDH ∠=∠=︒,即BDE EDC EDC CDH ∠+∠=∠+∠BDE CDH ∴∠=∠()DBE DCG ASA ∴∆≅∆,DE DG BE CG ∴==,则①②正确同理可证:DCH DAF ∆≅∆,DF DH AF CH ∴==,则③正确,BC AC CH AF ==BH CF ∴=,则④正确综上,正确的有①②③④故选:D .【点睛】本题考查了等腰三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造全等三角形是解题关键.4.如图,OP 平分MON ∠,PE OM ⊥于点E ,PF ON ⊥于点F ,OA OB =,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对【答案】C【分析】根据SAS , HL ,AAS 分别证明AOP BOP =,Rt PAE Rt PBF ≅,OEP OFP ≅,即可得到答案.【详解】∵OP 平分MON ∠,∴∠AOP=∠BOP ,∵OA OB =,OP=OP ,∴AOP BOP =(SAS )∴AP=BP ,∵OP 平分MON ∠,∴PE=PF ,∵PE OM ⊥于点E ,PF ON ⊥于点F ,∴Rt PAE Rt PBF ≅(HL ),∵OP 平分MON ∠,∴∠AOP=∠BOP ,又∵∠OEP=∠OFP=90°,OP=OP ,∴OEP OFP ≅(AAS ).故选C .【点睛】本题主要考查三角形全等的判定定理,掌握SAS , HL ,AAS 证明三角形全等,是解题的关键. 5.下列命题是假命题的是( ).A .两直线平行,内错角相等B .三角形内角和等于180°C .对顶角相等D .相等的角是对顶角【分析】根据平行线的性质、三角形的内角和定理和对顶角的性质逐一判断即可.【详解】解:A .两直线平行,内错角相等,是真命题,故不符合题意;B .三角形内角和等于180°,是真命题,故不符合题意;C .对顶角相等,是真命题,故不符合题意;D .相等的角不一定是对顶角,故符合题意.故选D .【点睛】此题考查的是真假命题的判断,掌握平行线的性质、三角形的内角和定理和对顶角的性质是解决此题的关键.6.在平行四边形ABCD 中,A ∠、B 的度数之比为3:1,则C ∠的度数为( )A .135︒B .130︒C .50︒D .45︒ 【答案】A【分析】由四边形ABCD 为平行四边形,可知∠A +∠B =180°,∠A =∠C ,依据:A B ∠∠=3:1可求得∠A 的度数,即可求得∠C 的度数.【详解】解:∵四边形ABCD 为平行四边形,∴∠A +∠B =180°,∠A =∠C ,∵:A B ∠∠=3:1, ∴31801354A ∠=︒⨯=︒ ∴135C ∠=︒,故选:A .【点睛】本题主要考查平行四边形的性质:(1)邻角互补;(2)平行四边形的两组对角分别相等.7.下列银行标志中,既不是中心对称图形也不是轴对称图形的是( )A .B .C .D .【答案】D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,也是中心对称图形,故A 选项不合题意;B 、是轴对称图形,不是中心对称图形,故B 选项不合题意;C 、是轴对称图形,也是中心对称图形.故C 选项不合题意;D 、不是轴对称图形,也不是中心对称图形,故D 选项符合题意;故选D .此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.8.某种产品的原料提价,因而厂家决定对产品进行提价,现有3种方案:①第一次提价%m ,第二次提价%n ;②第一次提价%n ,第二次提价%m ;③第一次、第二次提价均为%2m n +.其中m 和n 是不相等的正数.下列说法正确的是( )A .方案①提价最多B .方案②提价最多C .方案③提价最多D .三种方案提价一样多 【答案】C 【分析】方案①和②显然相同,用方案③的单价减去方案①的单价,利用完全平方公式及多项式乘以多项式的法则化简,去括号合并后再利用完全平方公式变形,根据m 不等于n 判定出其差为正数,进而确定出方案③的提价多.【详解】解:设%=m a ,%n b =,则提价后三种方案的价格分别为:方案①:(1)(1)(1)a b a b ab ++=+++;方案②:(1)(1)(1)a b a b ab ++=+++; 方案③:2222(1)(1)24a b a ab b a b ++++=+++, 方案③比方案①提价多:222(1)(1)4a ab b a b a b ab +++++-+++ 222114a ab b a b a b ab ++=+++---- 2224a ab b ab ++=- 21()4a b =-, m 和n 是不相等的正数,a b ∴≠, ∴21()04a b ->, ∴方案③提价最多.故选:C .【点睛】此题考查了整式混合运算的应用,比较代数式大小利用的方法为作差法,熟练掌握完全平方公式是解本题的关键.9. “某市为处理污水,需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时×××××.设原计划每天铺设管道x 米,则可得方程400040002010x x -=+.”根据此情境,题中用“×××××”表示得缺失的条件,应补为( )A .每天比原计划多铺设10米,结果延期20天才完成任务B .每天比原计划少铺设10米,结果延期20天才完成任务C .每天比原计划多铺设10米,结果提前20天完成任务D .每天比原计划少铺设10米,结果提前20天完成任务【答案】C【分析】由题意根据工作时间=工作总量÷工作效率,那么4000÷x 表示原来的工作时间,那么4000÷(x+10)就表示现在的工作时间,20就代表原计划比现在多的时间进行分析即可.【详解】解:原计划每天铺设管道x 米,那么x+10就应该是实际每天比原计划多铺了10米, 而用400040002010x x -=+则表示用原计划的时间﹣实际用的时间=20天, 那么就说明每天比原计划多铺设10米,结果提前20天完成任务.故选:C .【点睛】本题考查分式方程的应用,是根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.10.点 P (x ,y )是平面直角坐标系内的一个点,且它的横、纵坐标是二元一次方程组 3243x y a x y a -=-⎧⎨+=-+⎩的解(a 为任意实数),则当 a 变化时,点 P 一定不会经过( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【分析】首先用消元法消去a ,得到y 与x 的函数关系式,然后根据一次函数的图象及性质即可得出结论. 【详解】解:3243x y a x y a -=-⎧⎨+=-+⎩①② 用②×2+①,得52x y +=∴52y x =-+∵50,20-<>∴52y x =-+过一、二、四象限,不过第三象限∴点P 一定不会经过第三象限,故选:C .【点睛】本题考查了一次函数与二元一次方程的知识,解题的关键是首先消去a ,求出y 与x 的函数关系式.二、填空题11.在平面直角坐标系中,点P (a-1,a )是第二象限内的点,则a 的取值范围是__________。

2018-2019学年贵州省贵阳市八年级(上)期末数学试卷

2018-2019学年贵州省贵阳市八年级(上)期末数学试卷

2018-2019学年贵州省贵阳市八年级(上)期末数学试卷(考试时间:80分满分:100分)一、选择题(每小题3分,共30分)1.下列实数中是无理数的是()A.B.πC.D.﹣2.在下列图形中,由∠1=∠2一定能得到AB∥CD的是()A. B.C. D.3.下列二次根式中,是最简二次根式的为()A.B.C.D.4.下列描述不能确定具体位置的是()A.贵阳横店影城1号厅6排7座 B.坐标(3,2)可以确定一个点的位置C.贵阳市筑城广场北偏东40° D.位于北纬28°,东经112°的城市5.下列命题中真命题是()A.若a2=b2,则a=b B.4的平方根是±2C.两个锐角之和一定是钝角 D.相等的两个角是对顶角6.某地连续统计了10天日最高气温,并绘制成如图所示的扇形统计图.这10天日最高气温的众数是()A.32°C B.33°C C.34°C D.35°C7.在同一平面直角坐标系中,直线y=2x+3与y=2x﹣5的位置关系是()A.平行B.相交C.重合D.垂直8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A. B.C. D.9.在精准扶贫中,某乡镇实施产业扶贫,帮助贫困户承包荒山种植猕猴桃.到了收获季节,已知猕猴桃销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.则y与x的函数关系式为()A.y=﹣10x﹣300 B.y=10x+300 C.y=﹣10x+300 D.y=10x﹣30010.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2C.72cm2D.108cm2二、填空题(每小题4分,共16分)11.比较大小:3(填:“>”或“<”或“=”)12.用图象法解二元一次方程组小英所画图象如图所示,则方程组的解为.13.如图,△ABO是关于y轴对称的轴对称图形,点A的坐标为(﹣2,3),则点B的坐标为.14.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=26°,将△ABD沿AD折叠得到△AED,AE与BC交于点F,则∠AFC=度.三、解答题(共54分)15.(8分)(1)化简:+()()(2)如图,数轴上点A和点B表示的数分别是1和.若点A是BC的中点.求点C所表示的数.16.(8分)已知:△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)求△ABC的面积.17.(6分)如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO 方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?18.(8分)读书可以遇见更好的自己,4月23日是世界读书日,某校为了解学生阅读情况,抽样调查了部分学生每周用于课外阅读的时间.数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)90 60 60 150 40 110 130 146 90 10075 81 120 140 159 81 10 20 100 81整理分析数据:(1)补全下列表格中的统计量:平均数中位数众数92.15 81(2)按如下分段整理样本数据并补全表格:课外阅读时间x(min) 0≤x<40 40≤x<80 80≤x<120 120≤x<160等级 D C B A人数 2 8得出结论:(3)用样本中的统计量估计该校学生每周用于课外阅读时间的等级情况,并说明理由.19.(6分)如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.20.(8分)在如图所示的平面直角坐标系中,已知一次函数y=x+3的图象与x轴交于点A,与y轴交于点B.(1)写出A点和B点的坐标;(2)在平面直角坐标系中画出一次函数=x+3的图象;(3)若C点的坐标为C(3,0),判断△ABC的形状,并说明理由.21.(10分)为传承中华文化,学习六艺技能,某中学组织初二年级学生到孔学堂研学旅行.已知大型客车每辆能坐60人,中型客车每辆能坐45人,现该校有初二年级学生375人.根据题目提供的信息解决下列问题:(1)这次研学旅行需要大、中型客车各几辆才能使每个学生上车都有座位,且每辆车正好坐满?(2)若大型客车租金为1500元/辆,中型客车租金为1200元/辆,请帮该校设计一种最划算的租车方案.参考答案一、选择题BACCB CADCD.二、填空题11.<.12..13.解:∵△ABO是关于y轴对称的轴对称图形,∴点A(﹣2,3)与点B关于y轴对称,∴点B坐标为(2,3),故答案为:(2,3).14.解:∵将△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF=26°,∴∠BAF=52°,∵∠B+∠BAF+∠AFB=180°,∴∠AFB=78°,∴∠AFC=102°,故答案为:102.三、解答题15.解:(1)原式=﹣+5﹣3=﹣2+2=;(2)∵数轴上点A和点B表示的数分别是1和,∴OA=1,AB=OB﹣OA=﹣1,∵点A是BC的中点.∴CA=BA=﹣1,∴OC=CA﹣OA=﹣1﹣1=﹣2,∴点C所表示的数为2﹣.16.解:(1)如图所示:△A1B1C1,即为所求;(2)△ABC的面积为:6﹣×3×1﹣×2×2﹣×1×1=2.17.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.18.解:(1)将20个学生每周用于课外阅读的时间的数据按大小顺序排列后,可得中位数为=90,故答案为:90;(2)由题可得,在40≤x<80范围内的数据有4个;在120≤x<160范围内的数据有6个;故答案为:4,6;(3)估计该校学生每周用于课外阅读时间的等级为B,理由:由于平均数为92.7,中位数为90,众数为81,这三个统计量均在80≤x<120范围内,次范围内的等级为B等.19.解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,内错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁内角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)20.解:(1)在y=x+3中,令x=0,则y=3;令y=0,则x=﹣3;∴A(﹣3,0),B(0,3);(2)一次函数=x+3的图象如图所示,(3)如图,依题意得AO=BO=CO=3,∴AB=BC==3,AC=6,∵AB2+BC2=36,AC2=36,∴AB2+BC2=AC2,∴△ABC是等腰直角三角形.21.解:(1)设需要大型客车x辆,中型客车y辆,根据题意,得:60x+45y=375,当x=1时,y=7;当x=2时,y=;当x=3时,y=;当x=4时,y=3;当x=5时,y=;当x=6时,y=;∵要使每个学生上车都有座位,且每辆车正好坐满,∴有两种选择,方案一:需要大型客车1辆,中型客车7辆;方案二:需要大型客车4辆,中型客车3辆.(2)方案一:1500×1+1200×7=9900(元),方案二:1500×4+1200×3=9600(元),∵9900>9600,∴方案二更划算.。

(汇总3份试卷)2018年贵州省名校八年级上学期数学期末统考试题

(汇总3份试卷)2018年贵州省名校八年级上学期数学期末统考试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知11x y =3,则代数式232x xy y x xy y+---的值是( ) A .72- B .112- C .92 D .34【答案】D【分析】由113x y -=得出3y x xy -=,即3x y xy -=-,整体代入原式()()23x y xy x y xy-+=--,计算可得. 【详解】 113x y-=, ∴ 3y x xy-=, ∴ 3x y xy -=-,则原式()()236333344x y xyxy xy xy x y xy xy xy xy -+-+-====-----. 故选:D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.2,3.1415926, 1.010010001…,227,2π-中,无理数有( ) A .1个B .2个C .3个D .4个 【答案】C【分析】根据无理数的定义,即可得到答案.,3.1415926, 1.010010001…,227,2π-中,,1.010010001…,2π-,共3个; 故选:C.【点睛】本题考查了无理数的定义,解答本题的关键是掌握无理数的三种形式. 3.在ABC 中,B 90∠=,若BC 3=,AC 5=,则AB 等于( )A .2B .3C .4D 【答案】C【解析】利用勾股定理计算即可.【详解】解:在Rt ABC 中,B 90∠=,AC 5=,BC 3=,2222AB AC BC 534∴--=,故选:C .【点睛】本题考查勾股定理,解题的关键是记住勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.4.下列各组线段,能构成三角形的是( )A .1,3,5cm cm cmB .2,4,6cm cm cmC .4,4,1cm cm cmD .8,8,20cm cm cm 【答案】C【分析】判断三条线段能否构成三角形,只需让两个较短的线段长度相加,其和若大于最长线段长度,则可以构成三角形,否则不能构成三角形.逐一判断即可.【详解】A 选项,1+3<5,不能构成三角形;B 选项,2+4=6,不能构成三角形;C 选项,1+4>4,可以构成三角形;D 选项,8+8<20,不能构成三角形,故选C.【点睛】本题考查了构成三角形的条件,掌握构成三角形的判断方法是解题的关键.5.若关于x 的分式方程3144x m x x ++=--有增根,则m 的值是( ) A . 0或3B . 3C . 0D .﹣1 【答案】D【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-4=0,得到x=4,然后代入化为整式方程的方程算出m 的值. 【详解】解:3144x m x x++=--方程两边同乘(x-4)得3()4x m x -+=-∵原方程有增根,∴最简公分母x-4=0,解得x=4,把x=4代入3()4x m x -+=-,得3(4)44m -+=-,解得m=-1故选:D【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.6.一个两位数的个位数字与十位数字的和为14,若调换个位数字与十位数字,所得的新数比原数小36,则这个两位数是( )A .86B .95C .59D .68【答案】B【分析】先设出原两位数的十位与个位分别为x 和y ,再用含x 和y 的式子表示出原两位数和新两位数,最后根据题意找到等量关系列出方程组求解即可.【详解】设这个两位数的十位数字为x ,个位数字为y则原两位数为10x y +,调换个位数字与十位数字后的新两位数为10+y x∵这个两位数的个位数字与十位数字的和为14∴=14x y +∵调换个位数字与十位数字后的新两位数比原两位数小36∴()()1010=36x y y x +-+ ∴联立方程得()()=141010=36x y x y y x +⎧⎨+-+⎩解得:=9=5x y ⎧⎨⎩∴这个两位数为95故选:B .【点睛】本题主要考查二元一次方程组的应用,解答本题的关键是读懂题意找出等量关系.7.如图,是我们学过的用直尺和三角板画平行线的方法示意图,画图的原理是( )A .两直线平行,同位角相等B .同位角相等,两直线平行C .内错角相等,两直线平行D .同旁内角互补,两直线平行【答案】B 【分析】由已知可知∠DPF=∠BAF ,从而得出同位角相等,两直线平行.【详解】解:如图:∵∠DPF=∠BAF ,∴a ∥b (同位角相等,两直线平行).故选:B .【点睛】本题考查了平行线的判定方法,熟练掌握平行线的判定方法,根据题意得出同位角相等是解决问题的关键. 8.某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x 个,可得方程150********x x-=-,则题目中用“……”表示的条件应是( ) A .每天比原计划多生产5个,结果延期10天完成B .每天比原计划多生产5个,结果提前10天完成C .每天比原计划少生产5个,结果延期10天完成D .每天比原计划少生产5个,结果提前10天完成【答案】B【解析】试题解析:实际每天生产零件x 个,那么5x -表示原计划每天生产的零件个数,实际上每天比原计划多生产5个,150********x x-=-表示原计划用的时间-实际用的时间=10天, 说明实际上每天比原计划多生产5个,提前10天完成任务.故选B.9.将数据0.0000025用科学记数法表示为( )A .72510-⨯B .80.2510-⨯C .72.510-⨯D .62.510-⨯【答案】D 【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:60.0000025 2.510-=⨯.故选:D .【点睛】此题考查科学记数法,解题关键在于掌握其一般形式.10.如图,90ACB ∠=︒,AC CD =,过D 作AB 的垂线,交AB 的延长线于E ,若2AB DE =,则BAC ∠的度数为( )A .45°B .30°C .22.5°D .15°【答案】C 【分析】连接AD ,延长AC 、DE 交于M ,求出∠CAB=∠CDM ,根据全等三角形的判定得出△ACB ≌△DCM ,求出AB=DM ,求出AD=AM ,根据等腰三角形的性质得出即可.【详解】解:连接AD ,延长AC 、DE 交于M ,∵∠ACB=90°,AC=CD ,∴∠DAC=∠ADC=45°,∵∠ACB=90°,DE ⊥AB ,∴∠DEB=90°=∠ACB=∠DCM ,∵∠ABC=∠DBE ,∴∠CAB=∠CDM ,在△ACB 和△DCM 中CAB CDM AC CDACB DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACB ≌△DCM (ASA ),∴AB=DM ,∵AB=2DE ,∴DM=2DE ,∴DE=EM ,∵DE ⊥AB ,∴AD=AM , 114522.522BAC DAE DAC ︒︒∴∠=∠=∠=⨯= 故选:C .【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM 是解此题的关键.二、填空题11.如图,将三角形纸片(△ABC )进行折叠,使得点B 与点A 重合,点C 与点A 重合,压平出现折痕DE ,FG ,其中D ,F 分别在边AB ,AC 上,E ,G 在边BC 上,若∠B =25°,∠C =45°,则∠EAG 的度数是_____°.【答案】40°【解析】依据三角形内角和定理,即可得到∠BAC 的度数,再根据折叠的性质,即可得到∠BAE=∠B=25°,∠CAG=∠C=45°,进而得出∠EAG 的度数.【详解】∵∠B=25°,∠C=45°,∴∠BAC=180°−25°−45°=110°,由折叠可得,∠BAE=∠B=25°,∠CAG=∠C=45°, ∴∠EAG=110°−(25°+45°)=40°, 故答案为:40°【点睛】此题考查三角形内角和定理,折叠的性质,解题关键在于得到∠BAC 的度数12. 如图,已知AB BC =,要使ABD CBD ∆≅∆,还需添加一个条件,则可以添加的条件是 .(只写一个即可,不需要添加辅助线)【答案】可添∠ABD=∠CBD 或AD=CD .【分析】由AB=BC 结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS 证明全等,也可以添加一对夹角相等,利用SAS 证明全等,据此即可得答案.【详解】.可添∠ABD=∠CBD 或AD=CD ,①∠ABD=∠CBD ,在△ABD 和△CBD 中,∵AB BC ABD CBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CBD (SAS );②AD=CD ,在△ABD 和△CBD 中,∵AB BC AD CD BD BD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CBD (SSS ),故答案为∠ABD=∠CBD 或AD=CD .【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS ,SAS ,ASA ,AAS .13.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.【答案】x≥1.【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵1y x =+与直线2I :y mx n =+相交于点(,2)P a ,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2);由图可知,x≥1时,1x mx n +≥+.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小. 14.如图,在菱形ABCD 中,若AC=6,BD=8,则菱形ABCD 的面积是____.【答案】1【详解】试题解析:∵菱形ABCD 的对角线AC=6,BD=8,∴菱形的面积S=12AC•BD=12×8×6=1. 考点:菱形的性质.15.命题“如果0a b +>,则0a >,0b >”的逆命题为____________.【答案】若0,0a b >>,则0a b +>【分析】根据逆命题的定义即可求解.【详解】命题“如果0a b +>,则0a >,0b >”的逆命题为若0a >,0b >,则0a b +>故填:若0a >,0b >,则0a b +>.【点睛】此题主要考查逆命题,解题的关键是熟知逆命题的定义.16.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.【答案】60°或120°【分析】分别从△ABC 是锐角三角形与钝角三角形去分析求解即可求得答案.【详解】解:如图(1),∵AB=AC ,BD ⊥AC ,∴∠ADB=90°,∵∠ABD=30°,∴∠A=60°;如图(2),∵AB=AC ,BD ⊥AC ,∴∠BDC=90°,∵∠ABD=30°,∴∠BAD=60°,∴∠BAC=120°;综上所述,它的顶角度数为:60°或120°.【点睛】此题考查了等腰三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.17.当x为_____时,分式3621xx-+的值为1.【答案】2【解析】分式的值是1的条件是,分子为1,分母不为1.【详解】∵3x-6=1,∴x=2,当x=2时,2x+1≠1.∴当x=2时,分式的值是1.故答案为2.【点睛】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.三、解答题18.如图所示,四边形OABC是长方形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,已知长方形OABC的周长为1.(1)若OA长为x,则B点坐标为_____;(2)若A点坐标为(5,0),求点D和点E的坐标.【答案】(1)B点坐标为(x,8-x);(2)D的坐标是(0,53),E的坐标是(1,3).【分析】(1)根据长方形的特点得到OA+AB=8,故OA=x,AB=8-x,即可写出B点坐标;(2)根据A点坐标为(5,0),得到OA=5,OC=3,由勾股定理得:BE=4,设OD=x,则DE=OD=x,DC=3-x,Rt△CDE中,由勾股定理得到方程求出x即可求解.【详解】(1)长方形OABC周长=1,则OA+AB=8OA=x,AB=8-xB 点坐标为(x ,8-x )(2)∵矩形OABC 的周长为1,∴2OA+2OC=1,∵A 点坐标为(5,0),∴OA=5,∴OC=3,∵在Rt △ABE 中,∠B=90°,AB=3,AE=OA=5,由勾股定理得:BE=4, ∴CE=5-4=1,设OD=x ,则DE=OD=x ,DC=3-x ,在Rt △CDE 中,由勾股定理得:x 2=12+(3-x )2,解得:x=53 即OD=53∴D 的坐标是(0,53),E 的坐标是(1,3). 【点睛】此题主要考查矩形的折叠问题,解题的关键是熟知矩形的性质及勾股定理的应用. 19.先化简,再求值:()()()21212x y x y y y x ⎛⎫⎡⎤-++--÷- ⎪⎣⎦⎝⎭,其中11.2x y ,== 【答案】-2【分析】先利用完全平方式展开化简,再将x,y 的值代入求解即可.【详解】解:原式=(222x xy y -++2x -2xy +y -2y -y )12x ⎛⎫÷- ⎪⎝⎭=(2x -4xy +2x)12x ⎛⎫÷- ⎪⎝⎭=-2x +8y -4, 代入112x y =,=得该式=-2. 【点睛】本题主要考察整式化简,细心化简是解题关键.20.(1)如图,已知ABC ∆的顶点在正方形方格点上每个小正方形的边长为1.写出ABC ∆各顶点的坐标(2)画出ABC ∆关于y 轴的对称图形111A B C ∆【答案】(1)A (-2,2),B (-3,-1),C (-1,1);(2)见解析【分析】(1)利用坐标可得A 、B 、C 三点坐标;(2)首先确定A 、B 、C 三点关于y 轴的对称点,然后再连接即可.【详解】解:(1)由图可知:A (-2,2),B (-3,-1),C (-1,1);(2)如图,△A 1B 1C 1即为所画图形.【点睛】此题主要考查了作图—轴对称变换,关键是正确确定组成图形的关键点关于y 轴的对称点位置. 21.如图,∠D =∠C =90°,点E 是DC 的中点,AE 平分∠DAB ,∠DEA =28°,求∠ABE 的大小.【答案】28°【分析】过点E 作EF ⊥AB 于F ,根据角平分线上的点到角的两边距离相等可得DE=EF ,根据线段中点的定义可得DE=CE ,然后求出CE=EF ,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE 平分∠ABC ,即可求得∠ABE 的度数.【详解】如图,过点E 作EF ⊥AB 于F ,∵∠D=∠C=90°,AE平分∠DAB,∴DE=EF,∵E是DC的中点,∴DE=CE,∴CE=EF,又∵∠C=90°,∴点E在∠ABC的平分线上,∴BE平分∠ABC,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠AEB=90°,∴∠BEC=90°-∠AED=62°,∴Rt△BCE中,∠CBE=28°,∴∠ABE=28°.【点睛】考查了平行线的性质与判定、角平分线上的点到角的两边距离相等的性质、到角的两边距离相等的点在角的平分线上的性质,解题关键是熟记各性质并作出辅助线.22.某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?最大利润是多少?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为12760元?请说明理由.【答案】(1)y=-20x+14000;(2)商店购进25台A型电脑和75台B型电脑的销售利润最大;最大利润为13500元;(3)不能,理由见解析.【分析】(1)据题意即可得出y=-20x+14000;(2)利用不等式求出x的范围,又因为y=-20x+14000是减函数,所以得出y的最大值,(3)据题意得,y=-40x+14000 (25≤x≤60),y随x的增大而减小,进行求解.【详解】解:(1)由题意可得:y=120x+140(100-x)=-20x+14000;(2)据题意得,100-x≤3x,解得x≥25,∵y=-20x+14000,-20<0,∴y随x的增大而减小,∵x为正整数,∴当x=25时,y 取最大值,则100-x=75,y=-20×25+14000=13500即商店购进25台A 型电脑和75台B 型电脑的销售利润最大;最大利润为13500元;(3)据题意得,y=120x+140(100-x ),即y=-20x+14000 (25≤x≤60)当y=12760时,解得x=62,不符合要求所以这100台电脑的销售总利润不能为12760元.【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据题意确定一次函数x 的取值范围.23.(1)化简:2112x x x x x ⎛⎫++÷- ⎪⎝⎭; (2)化简分式:2221121x x x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,并从13x -≤≤中选一个你认为适合的整数x 代人求值. 【答案】(1)21x -;(2)1x x +,x=3时,34【分析】(1)根据分式的减法和除法法则即可化简题目中的式子;(2)根据分式的减法和除法可以化简题目中的式子,再从13x -≤≤中选取一个使得原分式有意义的整数代入即可解答本题.【详解】解:(1)原式221212x x x x x=+--÷ ()()122111x x x x x x +⨯=+--=; (2)原式()()()()()()()22111111111x x x x x x x x x x x x x x x +---⨯=⨯=+--+-+, 当3x =时,原式33314==+. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.如图,AB CD ∥,点E 为CD 上点,射线EF 经过点A ,且EC EA =,若30CAE ∠=︒,求BAF ∠的度数.【答案】60︒【分析】先根据等腰三角形的性质得出∠C=30°,再根据三角形外角性质得到∠DEA=60°,最后根据平行线的性质得到BAF AED =∠∠即可.【详解】EC EA =,30CAE ∠=︒,30C CAE ∴∠=∠=︒,DEA ∠是ACE △的外角,AED C CAE ∴∠=∠+∠303060+︒=︒=︒,AB CD ∥,60BAF AED ∴∠=∠=︒.【点睛】椙主要考查了等腰三角形的性质、三角形外角的性质以及平行线的性质,熟练掌握这些性质是解题的关键. 25.张明和李强两名运动爱好者周末相约进行跑步锻炼,周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的体育场入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,(1)求张明和李强的速度分别是多少米/分?(2)两人到达体育场后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m 倍,两人在同起点,同时出发,结果李强先到目的地n 分钟.①当m =1.2,n =5时,求李强跑了多少分钟?②直接写出张明的跑步速度为多少米/分(直接用含m ,n 的式子表示)【答案】(1)李强的速度为80米/分,张明的速度为1米/分;(2)①李强跑了2分钟;②张明的速度为6000(1)m mn-米/分. 【分析】(1)设李强的速度为x 米/分,则张明的速度为(x+220)米/分,根据时间=路程÷速度结合两人同时到达,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)①设张明的速度为y 米/分,则李强的速度为1.2y 米/分,根据李强早到5分钟,即可得出关于y 的分式方程,解方程即可;②设张明的速度为y 米/分,则李强的速度为my 米/分,根据李强早到n 分钟,即可得出关于y 的分式方程,解方程即可.【详解】解:(1)设李强的速度为x 米/分,则张明的速度为(x+220)米/分, 依题意,得:1200x =4500220x +, 解得:x =80,经检验,x =80是原方程的解,且符合题意,∴x+220=1.答:李强的速度为80米/分,张明的速度为1米/分.(2)①设张明的速度为y 米/分,则李强的速度为1.2y 米/分, 依题意,得:6000y -60001.2y=5,解得:y=200,经检验,y=200是原方程的解,且符合题意,∴60001.2y=2.答:李强跑了2分钟.②设张明的速度为y米/分,则李强的速度为my米/分,依题意,得:6000y-6000my=n,解得:y=6000(1)mmn-,经检验,y=6000(1)mmn-是原方程的解,且符合题意,答:张明的速度为6000(1)mmn-(米/分).【点睛】本题考查了分式方程的应用,熟悉路程问题的数量关系是列出方程的关键.注意分式方程要检验.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各式从左边到右边的变形中,是因式分解的是( )A .()2983(3)8x x x x x -+=+-+B .()24444x x x x -+=-+ C .()-=-ax ay a x yD .2(32)(32)49a a a ---=-【答案】C【分析】根据因式分解的定义即可得. 【详解】A 、()2983(3)8x x x x x -+=+-+不是因式分解,此项不符题意; B 、()24444x x x x -+=-+不是因式分解,此项不符题意; C 、()-=-ax ay a x y 是因式分解,此项符合题意;D 、2(32)(32)49a a a ---=-不是因式分解,此项不符题意;故选:C .【点睛】本题考查了因式分解的定义,熟记定义是解题关键.2.我国古代数学名著《孙子算经》记载一道题,大意为100个和尚吃了100个馒头,已知1个大和尚吃3个馒头,3个小和尚吃1个馒头,问有几个大和尚,几个小和尚?若设有m 个大和尚,n 个小和尚,那么可列方程组为( )A .10033100m n m n +=⎧⎨+=⎩B .1003100m n m n +=⎧⎨+=⎩C .10031003m n n m +=⎧⎪⎨+=⎪⎩D .1003100m n m n +=⎧⎨+=⎩【答案】C 【分析】设有m 个大和尚,n 个小和尚,题中有2个等量关系:1个和尚吃了1个馒头,大和尚吃的馒头+小和尚吃的馒头=1.【详解】解:设有m 个大和尚,n 个小和尚, 根据数量关系式可得:10031003m n n m +=⎧⎪⎨+=⎪⎩, 故选C.【点睛】本题考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.3.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为A.9⨯D.113.410-⨯3.410-0.3410-⨯C.10⨯B.93.410-【答案】C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.000 000 000 34第一个有效数字前有10个0(含小数点前的1个0),从而100.00000000034 3.410=⨯-.故选C.4.下列命题中,是假命题的是()A.三角形的外角大于任一内角B.能被2整除的数,末尾数字必是偶数C.两直线平行,同旁内角互补D.相反数等于它本身的数是0【答案】A【解析】分析:利用三角形的外角的性质、偶数的性质、平行线的性质及相反数的定义分别判断后即可确定正确的选项.详解:A.三角形的外角大于任何一个不相邻的内角,故错误,是假命题;B.能被2整除的数,末位数字必是偶数,故正确,是真命题;C.两直线平行,同旁内角互补,正确,是真命题;D.相反数等于它本身的数是0,正确,是真命题.故选A.点睛:本题考查了命题与定理的知识,解题的关键是能够了解三角形的外角的性质、偶数的性质、平行线的性质及相反数的定义,属于基础题,难度不大.5.下列图形是轴对称图形的为()A.B.C.D.【答案】D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.下列各组数不是勾股数的是()A.3,4,5B.6,8,10C.4,6,8D.5,12,13【答案】C【分析】根据勾股数的定义:有a、b、c三个正整数,满足a2+b2=c2,称为勾股数.由此判定即可.【详解】解:A、32+42=52,能构成勾股数,故选项错误;B、62+82=102,能构成勾股数,故选项错误C、42+62≠82,不能构成勾股数,故选项正确;D、52+122=132,能构成勾股数,故选项错误.故选:C.【点睛】本题考查勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.7.如图,中,,点在边上,且,则的度数为()A.30°B.36°C.45°D.72°【答案】D【解析】利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠C的度数.【详解】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得,解得:x=36°,则,故选:D.【点睛】此题考查了等腰三角形的性质,以及三角形内角和定理,熟练掌握等腰三角形的性质是解本题的关键.8.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形【答案】B【解析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.9.等腰三角形的两边长分别为8cm和4cm,则它的周长为()A.12cm B.16cm C.20cm D.16cm或20cm【答案】C【分析】根据等腰三角形的两腰相等,可知边长为8,8,4或4,4,8,再根据三角形三边关系可知4,4,8不能组成三角形,据此可得出答案.【详解】∵等腰三角形的两边长分别为8cm和4cm,∴它的三边长可能为8cm,8cm,4cm或4cm,4cm,8cm,∵4+4=8,不能组成三角形,∴此等腰三角形的三边长只能是8cm,8cm,4cm8+8+4=20cm故选C.【点睛】本题考查等腰三角形的性质与三角形的三边关系,熟练掌握三角形两边之和大于第三边是解题的关键.10.若代数式13x在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3D.x=3 【答案】C【分析】分式有意义时,分母x﹣3≠0,据此求得x的取值范围.【详解】依题意得:x ﹣3≠0,解得x≠3,故选C .【点睛】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.二、填空题11.若关于x 的不等式组2020x k x ->⎧⎨-≤⎩有且只有五个整数解,则k 的取值范围是__________. 【答案】64k -≤<-【分析】先求出不等式组的解集,根据不等式组有且只有五个整数解,列出关于k 的不等式即可得到答案.【详解】解不等式组2020x k x ->⎧⎨-≤⎩得22k x <≤, ∵不等式组有且只有五个整数解,∴ 322k -≤<-, ∴64k -≤<-,故答案为:64k -≤<-.【点睛】此题考查不等式组的整数解问题,能根据不等式组的解集列出k 的不等式是解题的关键.12.已知实数a ,b 满足3a b -=,2ab =,则+a b 的值为_________.【答案】【分析】根据公式()()224a b a b ab +=-+即可求出()2a b +,从而求出+a b 的值.【详解】解:∵3a b -=,2ab =∴()()224a b a b ab +=-+=2342+⨯=17∴a b +=故答案为:【点睛】此题考查的是完全平方公式的变形,掌握完全平方公式的特征是解决此题的关键.13.当x ________时,分式1x x -无意义.【答案】x =1【解析】分式的分母等于0时,分式无意义.【详解】解:当10x -=即1x =时,分式无意义.故答案为:1x =【点睛】本题考查了分式无意义的条件,理解分式有意义无意义的条件是解题的关键.14.如图,在ABC ∆中,D 为边BC 的中点,DE AB ⊥于点E ,DF AC ⊥于点F ,且BE CF =.若30BDE ∠=︒,则A ∠的大小为__________度.【答案】60【分析】根据题意,点D 是BC 的中点,BE CF =,可证明Rt △BDE ≌Rt △CDF ,可得∠B=∠C=60°,利用三角形内角和180°,计算即可得.【详解】∵D 为边BC 的中点,DE AB ⊥于点E ,DF AC ⊥于点F ,∴BD=CD ,∠DEB=∠DFC=90°,又BE CF =,∴ Rt △BDE ≌Rt △CDF (HL ),∴30BDE ∠=︒∠CDF=,∴∠B=∠C=60°,∠A=180°-60°-60°=60°,故答案为:60°.【点睛】考查了垂直的定义,直角三角形全等的证明方法(HL ),三角形内角和定理,熟记几何图形的定理和性质是解题的关键.15.已知一次函数的图象经过点A (2,-1)和点B ,其中点B 是另一条直线132y x =-+与y 轴的交点,求这个一次函数的表达式___________【答案】y=-2x+1【分析】利用一次函数图象上点的坐标特征可求出点B 的坐标,再根据点A 、B 的坐标,利用待定系数法即可求出该一次函数的表达式.【详解】解:当x=0时,132y x =-+=1, ∴点B 的坐标为(0,1).设这个一次函数的表达式为y=kx+b (k≠0),将点A (2,-1)、B (0,1)代入y=kx+b ,213k b b +=-⎧⎨=⎩,解得:23k b =-⎧⎨=⎩, ∴该一次函数的表达式y=-2x+1.故答案为:y=-2x+1.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征求出点B 的坐标是解题的关键.16.如图,把一张三角形纸片(△ABC )进行折叠,使点A 落在BC 上的点F 处,折痕为DE ,点D ,点E 分别在AB 和AC 上,DE ∥BC ,若∠B =75°,则∠BDF 的度数为_____.【答案】30°【分析】利用平行线的性质求出∠ADE =75°,再由折叠的性质推出∠ADE =∠EDF =75°即可解决问题.【详解】解:∵DE ∥BC ,∴∠ADE =∠B =75°,又∵∠ADE =∠EDF =75°,∴∠BDF =180°﹣75°﹣75°=30°,故答案为30°.【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.17.如图,AB=AC ,BD=BC,若∠A=40°,则∠ABD 的度数是_________.【答案】30°;【分析】利用三角形的内角和、外角性质与等腰三角形的“等边对等角”定理计算.【详解】由AB=AC 、BD=BC 得∠ABC=∠ACB 、∠C=∠BDC ,在△ABC 中,∠A=40°,∠C=∠ABC ,∴∠C=∠ABC=12 (180°−∠A)= 12(180°−40°)=70°; 在△ABD 中,由∠BDC=∠A+∠ABD 得∠ABD=∠BDC−∠A=70°−40°=30°故答案为30°【点睛】此题考查三角形内角和定理,等腰三角形的性质,三角形的外角性质,解题关键在于利用等边对等角三、解答题18.列二元一次方程组解决问题:某校八年级师生共466人准备参加社会实践活动,现已预备了,A B两种型号的客车共10辆,每辆A种型号客车坐师生49人,每辆B种型号客车坐师生37人,10辆客车刚好坐满,求,A B两种型号客车各多少辆?【答案】A种型号客车8辆,B种型号客车2辆【分析】设A型号客车用了x辆,B型号客车用了y辆,根据两种客车共10辆正好乘坐466人,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】设A种型号客车x辆,B种型号客车y辆,依题意,得10 4937466 x yx y+=⎧⎨+=⎩解得82 xy=⎧⎨=⎩答:A种型号客车8辆,B种型号客车2辆.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)被抽样调查的学生有______人,并补全条形统计图;(2)每天户外活动时间的中位数是______(小时);(3)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?【答案】(1)500;(2)1;(3)该校每天户外活动时间超过1小时的学生有800人.【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,ABC ∆中,40A ∠=︒,20ABO ∠=︒,30ACO ∠=︒,则BOC ∠等于( )A .80︒B .90︒C .100︒D .110︒【答案】B 【分析】延长BO 交AC 于D ,直接利用三角形的一个外角等于与它不相邻的两内角之和,即可得出结论.【详解】如图,延长BO 交AC 于D∵∠A =40°,∠ABO =20°,∴∠BDC =∠A +∠ABO =40°+20°=60°,∵∠ACO =30°,∴∠BOC =∠ACO +∠BDC =30°+60°=90°,故选:B .【点睛】此题主要考查了三角形外角的性质,熟记三角形的外角的性质是解本题的关键.2.若a=10,则实数a 在数轴上对应的点的大致位置是( )A .点EB .点FC .点GD .点H 【答案】C 【解析】根据被开方数越大算术平方根越大,可得答案. 91016∴310<4,∵a=10,∴3<a <4, 故选:C .【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<10<4是解题关键.3.如图,在ABC ∆中,D E ,分别是边BC AC ,上的点,若EAB ∆≌EDB ∆≌EDC ∆,则C ∠的度数为( )A .15B .20C .25D .30【答案】D 【分析】根据全等三角形的性质求得∠BDE=∠CDE=90°,∠AEB=∠BED=∠CED=60°,即可得到答案.【详解】∵EDB ∆≌EDC ∆,∴∠BDE=∠CDE ,∵∠BDE+∠CDE=180°,∴∠BDE=∠CDE=90°,∵EAB ∆≌EDB ∆≌EDC ∆,∴∠AEB=∠BED=∠CED ,∵∠AEB+∠BED+∠CED=180°,∴∠AEB=∠BED=∠CED=60°,∴∠C=90°-∠CED=30°,故选:D .【点睛】此题考查了全等三角形的性质:全等三角形的对应角相等,以及平角的性质.4.某通讯公司就上宽带网推出A ,B ,C 三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是( )A .每月上网时间不足25h 时,选择A 方式最省钱B .每月上网费用为60元时,B 方式可上网的时间比A 方式多C .每月上网时间为35h 时,选择B 方式最省钱D .每月上网时间超过70h 时,选择C 方式最省钱【答案】D【分析】A 、观察函数图象,可得出:每月上网时间不足25 h 时,选择A 方式最省钱,结论A 正确; B 、观察函数图象,可得出:当每月上网费用≥50元时,B 方式可上网的时间比A 方式多,结论B 正确; C 、利用待定系数法求出:当x≥25时,y A 与x 之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A 的值,将其与50比较后即可得出结论C 正确;D 、利用待定系数法求出:当x≥50时,y B 与x 之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B 的值,将其与120比较后即可得出结论D 错误.综上即可得出结论.【详解】A 、观察函数图象,可知:每月上网时间不足25 h 时,选择A 方式最省钱,结论A 正确; B 、观察函数图象,可知:当每月上网费用≥50元时,B 方式可上网的时间比A 方式多,结论B 正确; C 、设当x≥25时,y A =kx+b ,将(25,30)、(55,120)代入y A =kx+b ,得: 253055120k b k b +⎧⎨+⎩==,解得:345k b ⎧⎨-⎩==, ∴y A =3x-45(x≥25),当x=35时,y A =3x-45=60>50,∴每月上网时间为35h 时,选择B 方式最省钱,结论C 正确;D 、设当x≥50时,y B =mx+n ,将(50,50)、(55,65)代入y B =mx+n ,得:50505565m n m n +⎧⎨+⎩== , 解得:3100m n ==⎧⎨-⎩, ∴y B =3x-100(x≥50),当x=70时,y B =3x-100=110<120,∴结论D错误.故选D.【点睛】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.5.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A.2003503x x=-B.2003503x x=+C.2003503x x=+D.2003503x x=-【答案】B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程6.以下列各组数为边长,能组成直角三角形的是()A.5,6,7 B.4,5,6 C.6,7,8 D.5,12,13【答案】D【分析】根据勾股定理的逆定理可知,当三角形中三边的关系为a2+b2=c2时,则三角形为直角三角形. 【详解】解:A、52+62≠72,不符合勾股定理的逆定理,不能组成直角三角形,故错误;B、42+52≠62,不符合勾股定理的逆定理,不能组成直角三角形,故错误;C、62+72≠82,不符合勾股定理的逆定理,不能组成直角三角形,故错误;D、52+122=132,符合勾股定理的逆定理,能组成直角三角形,故正确.故选:D.【点睛】此题考查的知识点是勾股定理的逆定理:已知三角形的三边满足:a2+b2=c2时,则该三角形是直角三角形.解答时只需看两较小数的平方和是否等于最大数的平方.7.方程组2x yx y3+=⎧⎨+=⎩的解为x2y=⎧⎨=⎩●,则被遮盖的两个数分别为()A.5,1 B.3,1 C.3,2 D.4,2 【答案】A【分析】把x=2代入x+y=3中求出y的值,确定出2x+y的值即可.【详解】解:把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,故选:A.【点睛】此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.8.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④【答案】B 【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x 为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111x x x -=++. 又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②. 故选B .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.9.如图,直线//,160a b ︒∠=,则2∠=( )A .60︒B .100︒C .150︒D .120︒【答案】D 【分析】由//,160a b ︒∠=得到∠3的度数为60︒,再根据邻补角即可计算得到∠2的度数.【详解】∵//,160a b ︒∠=,∴∠3=∠1=60︒,∴∠2=180︒-60︒=120︒,故选:D.【点睛】此题考查平行线的性质,邻补角的定义,正确理解题中角度的关系,由此列式计算得出角度值是解题的关键.10.若等腰三角形的周长为40,一边为16,则腰长为()A.16B.12C.16或12 D.以上都不对【答案】C【分析】分两种情况:腰长为12和底边长为12,分别利用等腰三角形的定义进行讨论即可.-⨯=【详解】若腰长为1,则底边为401628此时,三角形三边为16,16,8,可以组成三角形,符合题意;-÷=若底边长为1,则腰长为(4016)212此时,三角形三边为12,12,16,可以组成三角形,符合题意;综上所述,腰长为12或1.故选:C.【点睛】本题主要考查等腰三角形的定义,掌握等腰三角形的定义并分情况讨论是解题的关键.二、填空题11.如图,已知△ABC是等边三角形,D是AC边上的任意一点,点B,C,E在同一条直线上,且CE=CD,则∠E=_____度.【答案】1.【分析】根据等边三角形的性质得出∠ACB=60°,然后根据等腰三角形的性质以及三角形外角的性质即可求得∠E.【详解】解:∵△ABC是等边三角形,∴∠ACB=60°,∵CE =CD ,∴∠E =∠CDE ,∵∠ACB =∠E+∠CDE ,∴∠E =12ACB ∠=1°,故答案为1.【点睛】本题考查等边三角形的性质,关键在于牢记基础知识,通过题目找到关键性质. 12.化简: 222222105x y ab a b x y +•-的结果是_____. 【答案】4.(()b a x y - 【解析】原式=2220()45()()()ab x y b a b x y x y a x y +=+-- ,故答案为4()b a x y -. 13.已知一次函数3y kx =+与2y x b =+的图像交点坐标为(−1,2),则方程组32y kx y x b=+⎧⎨=+⎩的解为____. 【答案】12x y =-⎧⎨=⎩. 【分析】直接根据一次函数和二元一次方程组的关系求解.【详解】解:∵一次函数3y kx =+与2y x b =+的图象的交点的坐标为(−1,2),∴方程组32y kx y x b =+⎧⎨=+⎩的解是12x y =-⎧⎨=⎩. 【点睛】本题考查了一次函数和二元一次方程(组)的关系:要准确的将一次函数问题的条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义.14.一次函数()25y m x =++,若y 随x 的增大而减小,则点()1,3A m m --在第______象限.【答案】二【分析】根据y 随x 增大而减小可得m 的范围,代入点A 坐标,得到点A 的横、纵坐标的范围,从而可以判断点A 所在象限.【详解】解:∵()25y m x =++中y 随x 增大而减小,∴m+2<0,解得:m <-2,∴m-1<-3,3-m >5,∴点()1,3A m m --在第二象限.故答案为:二.【点睛】本题考查了一次函数的增减性,解题的关键是根据y 随x 的增大的变化情况得出m 的取值范围. 15.计算:(3×10﹣5)2÷(3×10﹣1)2=_____. 【答案】8110. 【分析】首先把括号里的各项分别乘方,再根据单项式除法进行计算,最后把负整数指数化为正整数指数即可.【详解】解:原式=(9×10﹣10)÷(9×10﹣2)=(9÷9)×(10﹣10÷10﹣2)=10﹣8 =8110. 故答案为:8110. 【点睛】此题主要考查了单项式的除法以及负整数指数幂,题目比较基础,关键是掌握计算顺序.16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7 cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 1.【答案】2【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【详解】解:如图,∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A 的面积=a 1,正方形B 的面积=b 1,正方形C 的面积=c 1,正方形D 的面积=d 1,又∵a 1+b 1=x 1,c 1+d 1=y 1,∴正方形A 、B 、C 、D 的面积和=(a 1+b 1)+(c 1+d 1)=x 1+y 1=71=2cm 1.故答案为:2.【点睛】本题考查了勾股定理,注意掌握直角三角形中,两直角边的平方和等于斜边的平方是解答本题的关键.17.当x时,分式43xx+-有意义.【答案】3≠【分析】根据分式有意义的条件:分母不等于0即可求解.【详解】根据题意得:x﹣1≠0,解得:x≠1.故答案为:≠1.【点睛】本题考查了分式有意义的条件,是一个基础题目.三、解答题18.某中学要印制期末考试卷,甲印刷厂提出:每套试卷收0.6元印刷费,另收400元制版费;乙印刷厂提出:每套试卷收1元印刷费,不再收取制版费.(1)分别写出两个厂的收费y(元)与印刷数量x(套)之间的函数关系式;(2)请在上面的直角坐标系中分别作出(1)中两个函数的图象;(3)若学校有学生2000人,为保证每个学生均有试卷,则学校至少要付出印刷费多少元?【答案】(1)y甲=0.6x+400;y乙=x;(2)见解析;(3)学校至少要付出印刷费1600元【解析】(1)直接根据题意列式即可;(2)分别找到两个函数与x轴y轴的交点坐标作两个函数的图象即可;(3)当x=2000时,分别求出y甲与y乙,就可得确定学校至少要付出印刷费的数额.【详解】解:(1)y甲=0.6x+400;y乙=x(2)如图所示:(3)当x=2000时y 甲=0.6×2000+400=1600(元).y 乙=2000(元).答:学校至少要付出印刷费1600元.【点睛】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.19.已知:如图,AB=DE ,AB ∥DE ,BE=CF ,且点B 、E 、C 、F 都在一条直线上,求证:AC ∥DF .【答案】详见解析【解析】首先利用平行线的性质∠B=∠DEF ,再利用SAS 得出△ABC ≌△DEF ,得出∠ACB=∠F ,根据平行线的判定即可得到结论.【详解】证明:∵AB ∥DE ,∴∠B=∠DEC ,又∵BE=CF ,∴BC=EF ,在△ABC 和△DEF 中,AB DE B DEF BC EF ⎧⎩=⎪==⎪⎨∠∠, ∴△ABC ≌△DEF (SAS ),∴∠ACB=∠F ,∴AC∥DF.【点睛】本题考查了平行线的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.20.已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.【答案】见解析【分析】由于EF⊥AC,DB⊥AC得到EF∥DM,进而可证∠1=∠CDM,根据平行线的判定得到MN∥CD,再由∠3=∠C,可证AB//CD,然后根据平行线的判定即可得到AB∥MN.【详解】证明:∵EF⊥AC,DB⊥AC,∴EF∥DM,∴∠2=∠CDM,∵∠1=∠2,∴∠1=∠CDM,∴MN∥CD,∵∠3=∠C,∴AB//CD,∴AB∥MN.【点睛】本题主要考查了平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21.如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=100°,求∠ABE的度数.【答案】(1)证明见解析;(2)∠ABE=40°.【分析】(1)由四边形ABCD是平行四边形,点E为AD的中点,易证得△DEC≌△AEF(AAS),继而可证得DC =AF ,又由DC =AB ,证得结论;(2)由(1)可知BF =2AB ,EF =EC ,然后由∠BCD =100°求得BE 平分∠CBF ,继而求得答案.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD =100°,∴∠FBC =180°﹣100°=80°,∵BC =2AB ,∴BF =BC ,∴BE 平分∠CBF ,∴∠ABE =12∠FBC =12×80°=40° 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC ≌△AEF 和△BCF 是等腰三角形是关键.22.如图,在长方形ABCD 中,AB =CD =6cm ,BC =10cm ,点P 从点B 出发,以2cm/秒的速度沿BC 向点C 运动,设点P 的运动时间为t 秒:(1)PC = cm .(用t 的代数式表示)(2)当t 为何值时,△ABP ≌△DCP ?(3)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm/秒的速度沿CD 向点D 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.【答案】(1)(10﹣2t );(2)t =2.5;(3)2.4或2【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC ﹣BP 即可得到CP 的长;(2)当t =2.5时,△ABP ≌△DCP ,根据三角形全等的条件可得当BP =CP 时,再加上AB =DC ,∠B =∠C 可证明△ABP ≌△DCP ;(3)此题主要分两种情况①当BA =CQ ,PB =PC 时,再由∠B =∠C ,可得△ABP ≌△QCP ;②当BP =CQ ,AB =PC 时,再由∠B =∠C ,可得△ABP ≌△PCQ ,然后分别计算出t 的值,进而得到v 的值.【详解】解:(1)点P 从点B 出发,以2cm/秒的速度沿BC 向点C 运动,点P 的运动时间为t 秒时,BP =2t ,则PC =(10﹣2t )cm ;故答案为:(10﹣2t );(2)当t =2.5时,△ABP ≌△DCP ,∵当t =2.5时,BP =2.5×2=5,∴PC =10﹣5=5,∵在△ABP 和△DCP 中,90AB DC B C BP CP =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABP ≌△DCP (SAS );(3)①如图1,当BA =CQ ,PB =PC 时,再由∠B =∠C ,可得△ABP ≌△QCP ,∵PB =PC ,∴BP =PC =12BC =5, 2t =5,解得:t =2.5,BA =CQ =6,v×2.5=6,解得:v =2.4(秒).②如图2,当BP =CQ ,AB =PC 时,再由∠B =∠C ,可得△ABP ≌△PCQ ,∵AB =6,∴PC =6,∴BP =10﹣6=4,2t =4,解得:t =2,CQ =BP =4,2v =4,解得:v =2;综上所述:当v =2.4秒或2秒时△ABP 与△PQC 全等.【点睛】此题主要考查了全等三角形的判定,关键是掌握全等三角形全等的条件,找准对应边.23.如图,已知在Rt ABC ∆中,90ACB ∠=︒,8AC =,16BC =,D 是AC 上的一点,3CD =,点P 从B 点出发沿射线BC 方向以每秒2个单位的速度向右运动.设点P 的运动时间为t .连结AP .(1)当3t =秒时,求AP 的长度(结果保留根号);(2)当ABP ∆为等腰三角形时,求t 的值;(3)过点D 做DE AP ⊥于点E .在点P 的运动过程中,当t 为何值时,能使DE CD =?【答案】(1)41(2)516或2;(3)2或1.【分析】(1)根据题意得BP=2t ,从而求出PC 的长,然后利用勾股定理即可求出AP 的长;(2)先利用勾股定理求出AB 的长,然后根据等腰三角形腰的情况分类讨论,分别列出方程即可求出t 的值;(3)根据点P 的位置分类讨论,分别画出对应的图形,根据勾股定理求出AE ,分别利用角平分线的性质和判定求出AP ,利用勾股定理列出方程,即可求出t 的值.【详解】(1)根据题意,得BP=2t ,∴PC=16-2t=16-2×3=10,∵AC=8,在Rt △APC 中,根据勾股定理,得22AC +PC 16441答:AP的长为241.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB=22+=320=85AC BC若BA=BP,则2t=85,解得:t=45;若AB=AP,∴此时AC垂直平分BP则BP=32,2t=32,解得:t=16;若PA=PB=2t,CP=16-2t∵PA2= CP2+AC2则(2t)2=(16-2t)2+82,解得:t=2.答:当△ABP为等腰三角形时,t的值为45、16、2.(3)若P在C点的左侧,连接PDCP=16-2t⊥,DC⊥PC∵DE=DC=3,AC=8,DE AP∴PD平分∠EPC,AD=AC-DC=2根据勾股定理可得224AD DE-=,∴∠EPD=∠CPD∴∠EDP=90°-∠EPD=90°-∠CPD=∠CDP∴DP平分∠EDC∴PE=CP=16-2t∴AP=AE+EP=20-2t∵PA2= CP2+AC2则(20-2t)2=(16-2t)2+82,解得:t=2;若P在C点的右侧,连接PDCP=2t-16⊥,DC⊥PC∵DE=DC=3,AC=8,DE AP∴PD平分∠EPC,AD=AC-DC=2根据勾股定理可得AE=224-=AD DE∴∠EPD=∠CPD∴∠EDP=90°-∠EPD=90°-∠CPD=∠CDP∴DP平分∠EDC∴PE=CP=2t-16∴AP=AE+EP=2t-12∵PA2= CP2+AC2则(2t-12)2=(2t-16)2+82,解得:t=1;答:当t为2或1时,能使DE=CD.【点睛】此题考查的是勾股定理的应用、等腰三角形的定义、角平分线的性质和判定,掌握利用勾股定理解直角三角形、根据等腰三角形腰的情况分类讨论和角平分线的性质和判定是解决此题的关键.24.平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD =∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.∠=∠+∠+∠;(3)【答案】(1)不成立.结论是∠BPD=∠B+∠D,证明见解析;(2)BPD BQD B D 360°.【分析】(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;(2)作射线QP,根据三角形的外角性质可得;(3)根据四边形的内角和以及(2)的结论求解即可.【详解】解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.作射线QP,∵∠BPE是△BPQ的外角,∠DPE是△PDQ的外角,∴∠BPE=∠B+∠BQE,∠DPE=∠D+∠DQP,∴∠BPE+∠DPE=∠B+∠D+∠BQE+∠DQP,即∠BPD=∠BQD+∠B+∠D;(3)在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,又∵∠AGB=∠CGF,∴∠AGB +∠C+∠D+∠F=360°,由(2)知,∠AGB=∠B+∠A+∠E,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点睛】本题考查的是平行线的性质,三角形的内角,三角形外角的性质,以及多边形的内角和,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.25.已知在平面直角坐标系中有三点A(﹣2,1),B(3,1),C(2,3),请解答下列问题:(1)在坐标系内描出A,B,C的位置;(2)画出△ABC关于x轴对称的图形△A1B1C1,并写出顶点A1,B1,C1的坐标;(3)写出∠C的度数.【答案】(1)见解析;(2)见解析;A1(﹣2,﹣1),B1(3,﹣1),C1(2,﹣3);(3)∠C=90°.【分析】(1)根据坐标确定位置即可;(2)首先确定A,B,C关于x轴对称的点的位置,再连结即可;(3)利用勾股定理和勾股定理逆定理进行计算即可.【详解】解:(1)如图所示:(2)如图所示:A1(﹣2,﹣1),B1(3,﹣1),C1(2,﹣3)(3)∵CB2=22+12=5,AC2=42+22=20,AB2=52=25,∴CB2+AC2=AB2,∴∠C=90°.【点睛】本题主要考查了作图—轴对称变换,勾股定理以及勾股定理逆定理,掌握画轴对称图形的方法是解答本题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,一副三角板叠在一起,最小锐角的顶点D 恰好放在等腰直角三角板的斜边AB 上,AC 与DE 交于点M ,如果105BDF ∠=︒,则AMD ∠的度数为( )A .80︒B .85︒C .90︒D .95︒【答案】C 【分析】先根据平角的概念求出ADM ∠的度数,然后利用三角形内角和定理即可得出答案.【详解】105,30BDF EDF ∠=︒∠=︒1801803010545ADM EDF BDF ∴∠=︒-∠-∠=︒-︒-︒=︒45CAB ∠=︒180180454590AMD CAB ADM ∴∠=︒-∠-∠=︒-︒-︒=︒故选:C .【点睛】本题主要考查三角形内角和定理及平角的概念,掌握三角形内角和定理是解题的关键.2.下列计算正确的是( )A .x 2•x 3=x 6B .(xy )2=xy 2C .(x 2)4=x 8D .x 2+x 3=x 5【答案】C【分析】根据同底数幂的乘法法则、积的乘方、幂的乘方、合并同类项.【详解】解:A .x 2•x 3=x 5,故原题计算错误;B .(xy )2=x 2y 2,故原题计算错误;C .(x 2)4=x 8,故原题计算正确;D .x 2和x 3不是同类项,故原题计算错误.故选C .【点睛】本题主要考查了同底数幂的乘法、积的乘方、幂的乘方、合并同类项,关键是掌握计算法则. 3.下列一次函数中,y 随x 的增大而增大的是( )A .y=-xB .y=1-2xC . y=-x -3D .y=2x -1 【答案】D【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:∵y=kx+b 中,k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小, A 、k=-1<0,y 的值随着x 值的增大而减小;B 、k=-2<0,y 的值随着x 值的增大而减小;C 、k=-1<0,y 的值随着x 值的增大而减小;D 、k=2>0,y 的值随着x 值的增大而增大;故选D.【点睛】本题考查了一次函数的性质,属于基础题,关键是掌握在直线y=kx+b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.4.在3π-,227-,中,无理数的个数是( ) A .1个B .2个C .3个D .4个 【答案】B【分析】根据无理数的定义判断即可.【详解】解:3π-1-3 ,227-可以化成分数,不是无理数. 故选 B【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数. 5.下列各式不是最简二次根式的是( ).AB .CD .2 【答案】A【分析】最简二次根式:分母没有根号;被开方数不能再进行开方;满足以上两个条件为最简二次根式,逐个选项分析判断即可.【详解】A.B. 是最简二次根式;C.D.2是最简二次根式; 故选A【点睛】本题考查最简二次根式,熟练掌握最简二次根式的要求是解题关键.6.要使分式1x x -有意义,则x 的取值范围是 ( ) A .x≠1B .x >1C .x <1D .x≠1-【答案】A【分析】根据分式有意义,分母不等于0列不等式求解即可.【详解】由题意得,x-1≠0,解得x ≠1.故答案为:A .【点睛】本题考查了分式有意义的条件:分式有意义⇔分母不为零,比较简单.7.在△ABC 中,∠A=20°,∠B=60°,则△ABC 的形状是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形 【答案】D【解析】试题分析:根据三角形的内角和定理求出∠C ,即可判定△ABC 的形状.解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A ﹣∠B=180°﹣20°﹣60°=100°,∴△ABC 是钝角三角形.故选D .点评:本题考查了三角形的内角和定理,比较简单,求出∠C 的度数是解题的关键.8.如图,在ABC 中,9AB =, 15BC =,12AC =.沿过点D 的直线折叠这个三角形,使点A 落在BC 边上的点E 处,折痕为CD .则BDE 的周长是( )A .15B .12C .9D .6【答案】B 【分析】先根据勾股定理的逆定理判断△ABC 是直角三角形,从而可得B 、E 、C 三点共线,然后根据折叠的性质可得AD=ED ,CA=CE ,于是所求的BDE 的周长转化为求AB+BE ,进而可得答案.【详解】解:在ABC 中,∵22222291222515AB AC BC +=+===,∴ABC 是直角三角形,且∠A=90°,∵沿过点D 的直线折叠这个三角形,使点A 落在BC 边上的点E 处,折痕为CD ,∴B、E、C三点共线,AD=ED,CA=CE,∴BE=BC-CE=15-1=3,∴BDE的周长=BD+DE+BE=BD+AD+3=AB+3=9+3=1.故选:B.【点睛】本题考查了勾股定理的逆定理和折叠的性质,属于常见题型,熟练掌握上述基本知识是解题关键.9.下列交通标志是轴对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选:C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.10.若分式方程1244x ax x+=+--无解,则a的值为()A.5 B.4 C.3 D.0【答案】A【分析】解分式方程,用含a的式子表示x,根据分式方程无解,得到x-4=0,得到关于a的方程,即可求解.【详解】解:1244x ax x+=+--,方程两边同时乘以(x-4)得()124x x a+=-+,9x a∴=-,由于方程无解,40x∴-=,940a∴--=,5a∴=,故选:A .【点睛】本题考查根据分式方程解的情况求字母的取值,解题关键是熟练解分式方程.二、填空题11.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.12.已知,x 、y 为实数,且y =21x -﹣21x -+3,则x+y =_____.【答案】2或2.【分析】直接利用二次根式有意义的条件求出x 好y 的值,然后代入x+y 计算即可.【详解】解:由题意知,x 2﹣2≥0且2﹣x 2≥0,所以x =±2.所以y =3.所以x+y =2或2故答案是:2或2.【点睛】此题主要考查了二次根式有意义的条件以及平方根,正确得出x ,y 的值是解题关键.13.若关于x 的分式方程=3的解是负数,则字母m 的取值范围是 ___________ .【答案】m>-3且m≠-2【解析】先解关于x 的分式方程,求得x 的值,然后再依据“解是负数”建立不等式求m 的取值范围.【详解】原方程整理得:2x-m=3(m+1),解得:x=-(m+3),∵x<0,∴-(m+3)<0,即m>-3,∵原方程是分式方程,∴x≠-1,即-(m+3)≠-1,解得:m≠-2,综上所述:m 的取值范围是m>-3,且m ≠-2,故答案为:m>-3,且m ≠-2【点睛】此题考查了分式方程的解,解答本题时,易漏掉分母不等于0这个隐含的条件,熟练掌握解分式方程的方法及分式有意义的条件是解题关键.14.一次函数y=7-4x和y=1-x的图象的交点坐标为(2,-1),则方程组471x yx y+=⎧⎨+=⎩的解为_______.【答案】21 xy=⎧⎨=-⎩【分析】一次函数的交点坐标即是两个一次函数解析式组成的方程组的解,由此即可得到方程组的解. 【详解】∵一次函数y=7-4x和y=1-x的图象的交点坐标为(2,-1),∴方程组471x yx y+=⎧⎨+=⎩的解为21xy=⎧⎨=-⎩,故答案为:21 xy=⎧⎨=-⎩.【点睛】此题考查两个一次函数的交点坐标与方程组的解的关系,正确理解方程组与依次函数的关系是解题的关键.15.一个多边形的内角和是外角和的72倍,那么这个多边形的边数为_______.【答案】1【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=72×360°,解得:n=1.故答案为:1.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.16.一个等腰三角形的内角为80°,则它的一个底角为_____.【答案】50°或80°【分析】分情况讨论,当80°是顶角时,底角为(18080)250︒-︒÷=︒;当80°是底角时,则一个底角就是80°.【详解】在等腰三角形中,若顶角是80°,则一个底角是(18080)250︒-︒÷=︒;若内角80°是底角时,则另一个底角就是80°,所以它的一个底角就是50°或80°,故答案为:50°或80°.【点睛】本题考查了等腰三角形的性质,分类讨论思想的应用,三角形内角和的定理,熟记等腰三角形的性质以及内角和定理是解题关键.17.如图,直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b 交x轴于点C,正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,则点G的坐标是____.【答案】(32,0).【分析】根据轴对称求得直线AC的解析式,再根据正方形的性质以及轴对称的性质设G(m,0),则F(m,2m),代入直线AC的解析式,得到关于m的方程,解得即可.【详解】解:由直线y=2x+6可知A(0,6),B(﹣3,0).∵直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b交x轴于点C,∴直线AC为y=﹣2x+6,设G(m,0),∵正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,∴F(m,2m),代入y=﹣2x+6得:2m=﹣2m+6,解得:m32 ,∴G的坐标为(32,0).故答案为:(32,0).【点睛】本题考查了一次函数图象与几何变换,正方形的性质,对称轴的性质,表示出F点的坐标是解题的关键.三、解答题18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD.(1)求证:OP=OF ;(2)求AP 的长.【答案】(1)证明见解析;(2)4.1.【分析】(1)由折叠的性质得出∠E=∠A=90°,从而得到∠D=∠E=90°,然后可证明△ODP ≌△OEF ,从而得到OP=OF ;(2)由△ODP ≌△OEF ,得出OP=OF ,PD=FE ,从而得到DF=PE ,设AP=EP=DF=x ,则PD=EF=6-x ,DF=x ,求出CF 、BF ,根据勾股定理得出方程,解方程即可.【详解】(1)∵四边形ABCD 是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1.由翻折的性质可知:EP=AP ,∠E=∠A=90°,BE=AB=1,在△ODP 和△OEF 中,D E OD OEDOP EOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ODP ≌△OEF (ASA ).∴OP=OF .(2)∵△ODP ≌△OEF (ASA ),∴OP=OF ,PD=EF .∴DF=EP .设AP=EP=DF=x ,则PD=EF=6-x ,CF=1-x ,BF=1-(6-x )=2+x ,在Rt △FCB 根据勾股定理得:BC 2+CF 2=BF 2,即62+(1-x )2=(x+2)2,解得:x=4.1,∴AP=4.1.19.已知ABC ∆在平面直角坐标系中的位置如图所示,将ABC ∆向右平移5个单位长度,再向下平移3个单位长度得到111A B C ∆.(图中每个小方格边长均为1个单位长度)。

相关文档
最新文档