土力学 库伦理论
莫尔—库伦理论

莫尔—库伦理论长期以来,人们根据对材料破坏现象的分析,提出了各种不同的强度理论。
其中适用于土的强度理论有多种,不同的理论各有其优缺点。
在土力学中被广泛采用的强度理论要推莫尔—库伦强度理论。
1773年,法国学者库伦(Coulomb)根据砂土的试验结果,提出土的抗剪强度τf在应力变化不大的范围内,可表示为剪切滑动面上法向应力σ的线性函数。
即后来库伦又根据粘性土的试验结果,提出更为普遍的抗剪强度公式:1936年,太沙基(Terzaghi)提出了有效应力原理。
根据有效应力原理,土中总应力等于有效应力与孔隙水压力之和,只有有效应力的变化才会引起强度的变化。
因此,土的抗剪强度可表示为剪切破坏面上法向有效应σ’的函数。
上述库仑公式应改写为1910年莫尔(Mohr)提出材料产生剪切破坏时,破坏面上的是该面上法向应力的函数,即该函数在直角坐标系中是一条曲线,如图1所示,通常称为莫尔包线。
土的莫尔包线多数情况下可近似地用直线表示,其表达式就是库伦所表示的直线方程。
由库伦公式表示莫尔包线的土体抗剪强度理论称为莫尔—库伦(Mohr—Coulomb)强度理论。
图1 莫尔包线1.土中某点的应力状态我们先来研究土体中某点的应力状态,以便求得实用的土体极限平衡条件的表达式。
为简单起见,下面仅研究平面问题。
在地基土中任意点取出一微分单元体,设作用在该微分体上的最大和最小主应力分别为σ1和σ3。
而且,微分体内与最大主应力σ1作用平面成任意角度α的平面mn上有正应力σ和剪应力τ[图2(a)]。
(a ) (b )图2 土中任意一点的应力(a )微分体上的应力;(b )隔离体上的应力为了建立σ、τ与σ1和σ3之间的关系,取微分三角形斜面体abc 为隔离体[图2(b )]。
将各个应力分别在水平方向和垂直方向上投影 根据静力平衡条件得310,sin 1.0sin 1.0cos 1.00()0,cos 1.0cos 1.0sin 1.00()x ds ds ds a y ds ds ds b σασατασασατα=⋅⋅⋅-⋅⋅⋅+⋅⋅⋅==⋅⋅⋅-⋅⋅⋅-⋅⋅⋅=∑∑联立求解以上方程(a)、(b),即得平面mn 上的应力13131311()()cos 222(1)1()sin 22σσσσσατσσα⎫=++-⎪⎪⎬⎪=-⎪⎭由以上两式可知,在σ1和σ3已知的情况下,斜截面mn 上的法向应力σ和剪应力τ仅与斜截面倾角α有关。
《库仑土压力理论》课件

库仑土压力理论是土力学中的重要理论之一,它为土压力的计算和挡土墙设计提供了基础。该理论通 过分析土的应力和应变关系,推导出土压力的分布规律,为解决实际工程问题提供了重要的理论支持 。
实践价值
在实际工程中,挡土墙的设计和建造是必不可少的。库仑土压力理论的应用可以帮助工程师更准确地 预测和控制土压力,从而设计出更加安全、经济、可靠的挡土墙。此外,该理论在岩土工程、地质工 程等领域也有广泛的应用。
主动土压力的计算公式
• 主动土压力的计算公式为:P = c + (σtan(θ) + kd) * H
主动土压力的计算公式
P为主动土压力; c为土壤粘聚力; σ为土壤内摩擦角;
主动土压力的计算公式
θ为剪切面与水平面的夹角; d为土壤压缩厚度;
k为土壤压缩系数; H为挡土墙高度。
被动土压力的计算公式
04
应用
挡土墙设计
挡土墙是利用土压力来平衡外力的结构物,库仑土压力理论在挡土墙设计 中具有重要应用。
根据库仑土压力理论,可以通过合理设计挡土墙的尺寸、倾斜角、埋深等 因素,使其能够承受来自土体的压力,保持稳定。
挡土墙设计时需要考虑土的性质、环境条件、荷载情况等因素,结合库仑 土压力理论进行计算和分析,以确保其安全性和经济性。
主动土压力
当墙后土体处于侧向极限平衡状态时 ,墙后土体对墙背产生的侧向压力, 称为主动土压力。
被动土压力
当墙后土体处于被动极限平衡状态时 ,墙后土体对墙背产生的侧向压力, 称为被动土压力。
静止土压力
• 静止土压力:当挡土墙静止不动 ,不产生任何位移和变形时,墙 后填土对墙背产生的侧向压力, 称为静止土压力。
• 被动土压力的计算公式为:P = c + (σtan(φ) - kd) * H
土力学 库伦理论

式中 KP —— 库仑被动土压力系数。
由上式可以看出,库仑被动土压力合力EP也是墙高的二次函 数,因此,被动土压力强度pp=γzKp,沿墙高仍呈三角形分布, 合力作用点在墙高1/3处,EP的作用方向与墙背法线成δ角, 在外法线的下侧。
三、挡土墙稳定性验算
1.挡土墙抗倾覆稳定性验算
图(a)表示一具有倾斜基底的挡土墙,设在挡土墙自重G和 主动土压力Ea作用下,可能绕墙趾O点倾覆,抗倾覆力矩与倾 覆力矩之比称为抗倾覆安全系数Kt
法国科学家
二、库仑主动土压力计算
当挡土墙向前移动或转
动时,墙后土体作用在 墙背上的土压力逐渐减 少。当位移量达到一定 值时,填土面出现过墙 踵的滑动面BC,土体处 于极限平衡状态,那么土楔体ABC有向下滑动的趋势,但由于挡 土墙的存在,土楔体可能滑动,二者之间的相互作用力即为主 动土压力。所以,主动土压力的大小可由土楔体的静力平衡条 件来确定。
将G和Ea分解为垂直和平
行于基底的分力,抗滑力 与滑动力之比称为抗滑安 全系数, 应符合下式要求
其中:Leabharlann 式中:μ—— 挡土墙基底对地基的摩擦系数
若验算结果不能满足上式要求时,可采取下列措施:
(1)增大挡土墙断面尺寸,增加墙身自重以增大抗滑力;
(2)在挡土墙基底铺砂石垫层,提高摩擦系数μ,增大抗滑力;
主动平衡状态相反,R和E的方向均处于相应法线的上方,三
力构成一闭合力矢三角形。
滑 面
Ep
ε
G
α
Rp
Ep
Rp
G
α+
Ψ=90°+δ-ε
土楔与墙背的相互作用力即为被动土压力,则被动土压力可由 土楔体的静力平衡条件来确定。 按上述求主动土压力同样的原理,可求得被动土压力的库仑公 式为:
土力学第七章土压力计算

土力学第七章土压力计算土力学是研究土体在外力作用下的力学性质与变形规律的学科。
而土压力是指土体受到外界施加的压力作用时所产生的抗力。
在土力学中,土压力计算是一个非常重要的内容,它涉及到土体在各种条件下的力学行为与变形。
本文将介绍土压力计算的相关知识。
土压力的计算一般分为两种情况,分别是水平荷载下的土压力和垂直荷载下的土压力。
对于水平荷载下的土压力,可以根据库仑理论进行计算。
库仑理论认为,土体受到的水平荷载越大,土体的抗力越大。
根据库仑理论,可以计算出土体单位面积上的土体水平抗力Fh,公式如下:Fh=Ka*γ*H*H/2其中,Fh为土体单位面积上的土体水平抗力,Ka为估计参数,γ为土体的体积重力,H为土面到超载面的水平距离。
对于垂直荷载下的土压力,可以根据黑力塔法进行计算。
黑力塔法认为,土体受到的垂直荷载越大,土体的抗力越大。
根据黑力塔法,可以计算出土体单位面积上的土体垂直抗力Fv,公式如下:Fv=γ*H*Kp其中,Fv为土体单位面积上的土体垂直抗力,γ为土体的体积重力,H为土面到超载面的垂直距离,Kp为垂直荷载的系数。
在实际的土压力计算中,需要考虑到土体的压缩性、土体的内摩擦角、土体的孔隙水压力等因素。
通过考虑这些因素的影响,可以更准确地计算出土体的压力。
此外,还可以根据实际工程的情况,选择适当的数值方法进行土压力计算,如有限差分法、有限元法等。
总结起来,土压力计算是土力学中的一个重要内容,它涉及到土体在各种条件下的力学行为与变形。
通过库仑理论和黑力塔法等方法,可以计算出土体单位面积上的土体水平抗力和垂直抗力。
在实际的土压力计算中,需要考虑到土体的压缩性、内摩擦角、孔隙水压力等因素,选择适当的数值方法进行计算。
希望本文对土压力计算的理解有所帮助。
库仑主动土压力计算

库仑主动土压力计算库仑主动土压力计算是土力学中的一个计算方法,用于计算土壤对墙体或其他结构体施加的主动土压力。
库仑主动土压力计算方法是土力学中最为常用的一种方法之一,适用于大部分土壤类型。
下面将详细介绍库仑主动土压力计算的原理和具体步骤。
首先,库仑主动土压力计算基于库伦摩擦力理论。
库仑摩擦力是土壤内摩尔塑性地层的一种力度,表征土壤颗粒间的摩擦力。
在土壤受到外部载荷作用时,土壤颗粒之间的摩擦力会增加,进而产生主动土压力。
库伦摩擦力可由下式表示:F=K*H*H/2其中,F表示主动土压力,K为活动土压力系数,H为土体的高度。
步骤一:确定土体类型和土壤参数首先需要确定土体的类型和土壤参数,如土壤的内摩擦角φ、土壤的重度γ,以及土壤的墙后压力u。
这些参数通常可以通过实验室试验或者现场勘测获得。
步骤二:确定活动土压力系数活动土压力系数K是库仑主动土压力计算中较为重要的一个参数,用于表示土壤的活动性和墙面的摩擦性质。
K的值一般可以在实验室试验中测定得到,也可以通过经验公式进行估算。
步骤三:计算土体的受力面积根据土壤受到的外部载荷和土壤的几何形状,可以计算出土壤的受力面积。
这个面积通常是根据土壤的几何形状进行计算,如墙体的长度L和宽度B。
步骤四:计算主动土压力根据上述公式,将确定的参数代入计算公式,即可得到主动土压力的数值。
将受力面积乘以活动土压力系数K,再乘以土体的高度H的平方的一半,即可得到主动土压力F的数值。
步骤五:计算最大主动土压力在实际工程中,通常需要计算土体受到的最大主动土压力。
最大主动土压力一般出现在土体受力高度最大的位置。
可以通过对土体的不同高度进行计算,找到最大主动土压力所对应的高度。
通过上述步骤,可以较为准确地计算土壤对墙体或其他结构体施加的主动土压力。
然而,需要注意的是,库仑主动土压力计算方法有一定的局限性,只适用于一定范围内的土壤类型和壁体形状。
在具体工程应用中,还需要综合考虑其他因素,并选取合适的土壤参数和活动土压力系数进行计算。
库仑土压力理论

库仑土压力理论1776年法国的库伦(C.A.Coulomb)根据极限平衡的概念,并假定滑动面为平面,分析了滑动楔体的力系平衡,从而求算出挡土墙上的土压力,成为著名的库伦土压力理论。
一、基本原理库伦研究了回填砂土挡土墙的土压力,把挡土墙后的土体看成是夹在两个滑动面(一个面是墙背,另一个面在土中,如图6-12中的AB和BC面)之间的土楔。
根据土楔的静平衡条件,可以求解出挡土墙对滑动土楔的支撑反力,从而可求解出作用于墙背的总土压力。
这种计算方法又称为滑动土楔平衡法。
应该指出,应用库伦土压力理论时,要试算不同的滑动面,只有最危险滑动面AB对应的土压力才是土楔作用于墙背的Pa或Pp库伦理论的基本假设:1.墙后填土为均匀的无粘性土(c=0),填土表面倾斜(β>0);2.挡土墙是刚性的,墙背倾斜,倾角为ε;3.墙面粗糙,墙背与土本之间存在摩擦力(δ>0);4.滑动破裂面为通过墙踵的平面。
二、主动土压力计算如图所示,墙背与垂直线的夹角为ε,填土表面倾角为β,墙高为H,填土与墙背之间的摩擦角为δ,土的内摩擦角为φ,土的凝聚力c=0,假定滑动面BC通过墙踵。
滑裂面与水平面的夹角为α,取滑动土楔ABC作为隔离体进行受力分析(图6-11b)。
土楔是作用有以下三个力:1.土楔ABC自重W,由几何关系可计算土楔自重,方向向下;2.破裂滑动面BC上的反力R,大小未知,作用方向与BC面的法线的夹角等于土的内摩擦角φ,在法线的下侧;3.墙背AB对土楔体的反力P(挡土墙土压力的反力),该力大小未知,作用方向与墙面AB的法线的夹角δ,在法线的下侧。
土楔体ABC在以上三个力的作用下处于极限平衡状态,则由该三力构成的力的矢量三角形必然闭合。
已知W的大小和方向,以及R、P的方向,可给出如图所示的力三角形。
按正弦定理可求得:求其最大值(即取dP/dα=0),可得主动土压力式中Ka为库伦主动土压力系数,可按下式计算确定沿墙高度分布的主动土压力强度pa可通过对式(6-21)微分求得:由此可知,主动土压力强度沿墙高呈三角形分布,主动土压力沿墙高的分布图形如图所示。
《库仑土压力理论》课件

实际工程中的静止土压力应用
总结词
静止土压力是库仑土压力理论中的一种特殊情况,是指土体处于静止状态时所受的压力,主要应用于 地下工程和隧道工程等领域。
详细描述
在地下工程和隧道工程中,静止土压力的大小直接关系到结构的稳定性和安全性。通过应用库仑土压 力理论,可以计算出静止土压力,从而设计出符合要求的支护结构。在施工中,合理利用静止土压力 ,可以有效控制土体的位移和变形,保证施工安全。
擦角。
静止土压力的计算
1
静止土压力是指挡土墙在静止状态下作用在墙背 上的土压力。
2
公式推导基于静止土压力的定义,通过分析墙后 土体的应力状态进行计算。
3
计算中需考虑墙后土体的内摩擦角和粘聚力,以 及墙背与土之间的摩擦角。
03
CATALOGUE
库仑土压力理论的应用实例
实际工程中的主动土压力应用
总结词
库仑土压力理论的局限性
假设限制
库仑土压力理论基于一系列假设,如土体为刚性、不可压缩等,与 实际情况可能存在差异。
精度有限
由于理论简化,库仑土压力理论的计算精度可能受到限制,无法准 确模拟复杂工况下的土压力分布。
对土性依赖较大
库仑土压力理论对土的物理性质依赖较大,对于不同土性,可能需要 调整参数或采用其他方法。
计算中需考虑墙后土体的内摩擦角和粘聚力,以 及墙背与土之间的摩擦角。
被动土压力的计算
01
02
03
被动土压力是指挡土墙 在外力作用下向后移动 ,作用在墙背上的土压
力。
公式推导同样基于库仑 理论,通过分析墙后土 体的应力状态,结合土 的抗剪强度指标进行计
算。
计算中需考虑墙后土体 的内摩擦角和粘聚力, 以及墙背与土之间的摩
莫尔-库伦理论

莫尔—库伦理论长期以来,人们根据对材料破坏现象的分析,提出了各种不同的强度理论。
其中适用于土的强度理论有多种,不同的理论各有其优缺点。
在土力学中被广泛采用的强度理论要推莫尔—库伦强度理论。
1773年,法国学者库伦(Coulomb)根据砂土的试验结果,提出土的抗剪强度τf在应力变化不大的范围内,可表示为剪切滑动面上法向应力σ的线性函数。
即后来库伦又根据粘性土的试验结果,提出更为普遍的抗剪强度公式:1936年,太沙基(Terzaghi)提出了有效应力原理。
根据有效应力原理,土中总应力等于有效应力与孔隙水压力之和,只有有效应力的变化才会引起强度的变化。
因此,土的抗剪强度可表示为剪切破坏面上法向有效应σ’的函数。
上述库仑公式应改写为1910年莫尔(Mohr)提出材料产生剪切破坏时,破坏面上的是该面上法向应力的函数,即该函数在直角坐标系中是一条曲线,如图1所示,通常称为莫尔包线。
土的莫尔包线多数情况下可近似地用直线表示,其表达式就是库伦所表示的直线方程。
由库伦公式表示莫尔包线的土体抗剪强度理论称为莫尔—库伦(Mohr—Coulomb)强度理论。
图1 莫尔包线1.土中某点的应力状态我们先来研究土体中某点的应力状态,以便求得实用的土体极限平衡条件的表达式。
为简单起见,下面仅研究平面问题。
在地基土中任意点取出一微分单元体,设作用在该微分体上的最大和最小主应力分别为σ1和σ3。
而且,微分体内与最大主应力σ1作用平面成任意角度α的平面mn上有正应力σ和剪应力τ[图2(a)]。
(a)(b)图2 土中任意一点的应力(a)微分体上的应力;(b)隔离体上的应力为了建立σ、τ与σ1和σ3之间的关系,取微分三角形斜面体abc为隔离体[图2(b )]。
将各个应力分别在水平方向和垂直方向上投影根据静力平衡条件得310,sin 1.0sin 1.0cos 1.00()0,cos 1.0cos 1.0sin 1.00()x ds ds ds a y ds ds ds b σασατασασατα=⋅⋅⋅-⋅⋅⋅+⋅⋅⋅==⋅⋅⋅-⋅⋅⋅-⋅⋅⋅=∑∑联立求解以上方程(a)、(b),即得平面mn 上的应力 13131311()()cos 222(1)1()sin 22σσσσσατσσα⎫=++-⎪⎪⎬⎪=-⎪⎭由以上两式可知,在σ1和σ3已知的情况下,斜截面mn 上的法向应力σ和剪应力τ仅与斜截面倾角α有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中 KP —— 库仑被动土压力系数。
由上式可以看出,库仑被动土压力合力EP也是墙高的二次函 数,因此,被动土压力强度pp=γzKp,沿墙高仍呈三角形分布, 合力作用点在墙高1/3处,EP的作用方向与墙背法线成δ角, 在外法线的下侧。
三、挡土墙稳定性验算
1.挡土墙抗倾覆稳定性验算
图(a)表示一具有倾斜基底的挡土墙,设在挡土墙自重G和 主动土压力Ea作用下,可能绕墙趾O点倾覆,抗倾覆力矩与倾 覆力矩之比称为抗倾覆安全系数Kt
(3)将挡土墙基底做成逆坡,利用滑动面上部分反力抗滑; (4)在墙踵后加钢筋混凝土拖板,利用拖板上的填土自重增大 抗滑力。
四、Rankine理论与Coulomb理论的比较
1. 分析方法
极限平衡状态 朗肯 土体内各点均处 于极限平衡状态 极限应力法 库仑 刚性楔体,滑面处 于极限平衡状态 滑动楔体法
此式即为朗肯主动土压力系数的表达式。由此可见,在这种特
定条件下,两种土压力理论得到的结果是一致的。
同时可以看出,主动土压力合力Ea是墙高的二次函数。将上 式中的Ea对z求导,可求得离墙顶深度z处的主动土压力强度 pa,即
可见,主动土压力pa沿墙高呈三角形分布,如下图所示。
墙背土压力合力Ea作用点在墙高1/3处,Ea作用方向与墙背法 线成δ角,与水平面成θ角。 若将Ea分解为水平分力Eax与竖向分力Eaz两个部分,则Eax
(3)墙背对土楔体的反力E
它是面上的摩擦力T2与法向反力N2的合力,因摩擦阻力沿
BA 向上,所以E位于法线N2的下方,且与法线方向的夹
角为墙土间的外摩擦角δ。它的反作用力即为填土对墙背的 土压力。
2. E与α的关系 滑动土楔体在以上三力作用下处于静力平衡状态,因此三力必 形成一闭合的力矢三角形,如上所示。由正弦定理可知
为求得E的极大值,可令dE/dα=0,从而解得最危险滑动面的 倾角α(过程略),再将此角度代入上式,整理后可得库仑主 动土压力计算公式为:
其中,
称为库仑主动土压力系数,由上式见,库仑主动土压力系数与
内摩擦角φ,墙背倾角ε,外摩擦角δ,以及填土面倾角β有关, 参见P182表9---1。
若填土面水平,墙背竖直光滑,即β=0、ε=0、δ=0,由式 上式可得,
和Eaz分别为
式中:θ—— Ea与水平面的夹角θ=ε+δ
二、库仑被动土压力计算
当挡土墙在外力作用下推向土体时,墙后填土作用在填背上的
压力随之增大,当位移量达到一定值时,填土中出现过墙踵的
滑动面BC,形成三角形土楔体,此时,土体处于极限平衡状 态。
此时土楔ABC在自重G、反力R及E三力作用下静力平衡,与
法国科学家
二、库仑主动土压力计算
当挡土墙向前移动或转
动时,墙后土体作用在 墙背上的土压力逐渐减 少。当位移量达到一定 值时,填土面出现过墙 踵的滑动面BC,土体处 于极限平衡状态,那么土楔体ABC有向下滑动的趋势,但由于挡 土墙的存在,土楔体可能滑动,二者之间的相互作用力即为主 动土压力。所以,主动土压力的大小可由土楔体的静力平衡条 件来确定。
式中则 Nhomakorabea上式中γ、H、ε、β和φ、δ均为常数,因此,E只随滑动面的 倾角α而变化,即E是α的函数。当α=φ以及α=900+ε时,均有 E=0,可以推断,当滑动面在α=φ和α=900+ε之间变化时,E
必然存在一个极大值EMax。这个极大值的大小即为所求的主动
土压力Ea,其对应的滑动面为最危险滑动面。
C
A
滑 面
Ea
ε
H
Ea
G
α
B
D
Ra
G
Ra
α-
Ψ=90°-δ-ε
1. 作用在土楔体ABC上的力
假设滑动面AC与水平面夹角为α,取滑动土楔体ABC为脱离 体,则作用在土楔体ABC上的力有:
(1)土楔体自重
在三角形ABC中,利用正弦定理可得:
(2)滑动面 BC 上的反力R
R是 BC 面上的摩擦力T1与法向反力N1的合力,因摩擦阻 力沿向上,所以R位于法线N1的下方,且与法线方向的夹角 为土的内摩擦角φ。
第十二讲 土压力
-------库伦理论
§ 库仑土压力理论
一、假设
(1)当墙后填土达到极限平衡状态 时,其滑动面为一平面; (2)填土面为坡角β的平面,且无超载; (3)墙后填土为C=0的无粘性均质土体; (4)墙背粗糙,有摩擦力,墙与土的摩 擦角为δ(称为外摩擦角); Charles- Auguste de Coulomb (1736~1806)
主动平衡状态相反,R和E的方向均处于相应法线的上方,三
力构成一闭合力矢三角形。
滑 面
Ep
ε
Ep
G
α
Rp
Rp
G
α+
Ψ=90°+δ-ε
土楔与墙背的相互作用力即为被动土压力,则被动土压力可由 土楔体的静力平衡条件来确定。 按上述求主动土压力同样的原理,可求得被动土压力的库仑公 式为:
将G和Ea分解为垂直和平
行于基底的分力,抗滑力 与滑动力之比称为抗滑安 全系数, 应符合下式要求
其中:
式中:μ—— 挡土墙基底对地基的摩擦系数
若验算结果不能满足上式要求时,可采取下列措施:
(1)增大挡土墙断面尺寸,增加墙身自重以增大抗滑力;
(2)在挡土墙基底铺砂石垫层,提高摩擦系数μ,增大抗滑力;
18
2. 应用条件
朗肯
墙背光滑 墙背垂直 填土水平
库仑
墙背无限制 填土表面形状无限制 填土为砂性土
19
3. 计算误差 朗肯
朗肯主动土压力偏大 朗肯被动土压力偏小
库伦
主动土压力偏小 被动土压力偏大
20
应符合下式要求
其中:
若验算结果不能满足上式要求时,可采取下列措施:
(1)增大断面尺寸,增加挡土墙自重,使抗倾覆力矩增大,但 同时工程量随之加大; (2)将墙背仰斜,以减小土压力;
(3)选择衡重式挡土墙或带卸荷台的挡土墙,如下图所示,均 可起到减小总土压力,增大抗倾覆能力的作用。 2.挡土墙抗滑动稳定性验算