正方体截面总结(最全,适用于公务员图形推理)
公务员考试行测图形推理题目附答案

公务员考试行测图形推理题目附答案在公务员行测考试中,图形推理都是必考的一类题型,想要拿到高分试题练习是必不可少的,以下就由本人为你提供公务员考试行测图形推理题目帮助你练习提分。
公务员考试行测图形推理题目(一)1、将左边的图形从任意面剖开,下面哪一项不可能是该图形的截面?( )2、A、B、C、D、3、A、B、C、D、4、A、如图所示B、如图所示C、如图所示D、如图所示5、公务员考试行测图形推理题目答案1、答案: D解析:正方体共有6个面,故其截面不可能为八边形,答案为D。
A、B、C图形的剖开方式分别如下图所示:2、答案: D解析:元素组成相同,考元素。
观察可发现,奇数项的图形和偶数项的图形形状分别相同,依此规律,第五个图形的形状应与第一、第三个图形相同,只有D项符合。
注意B项和C项的图形中,与竖线端点相连的小横线的方向与已知图形是相反的。
故正确答案为D。
3、答案: B解析:第一组中,第一幅图和第二幅图叠加后去同存异可以得到第三幅图。
根据此规律,第二组中,第一幅图和第二幅图叠加后去同存异可以得到选项B中的图。
故正确答案为B。
4、答案: C解析:第一组图形和第二组图形的汉字都由直线构成,因此,答案为C项。
5、答案: D解析:本题考察的是颜色变化的规律,即黑色+黑色=黑色,白色+白色=白色,白色+黑色=白色。
因此本题选择D选项。
公务员考试行测图形推理题目(二)1、2、A、B、C、D、3、A、B、C、D、4、A、B、C、D、5、A、B、C、D、公务员考试行测图形推理题目答案1、答案: B解析:本题考察的是图图间的变化规律,即左边第一幅图的正上方的横线变为竖线,左右两根竖线向中间移动,变为第二幅图;第二幅图的中间竖线变为横线,下部的横线向上移动,变为第三幅图;右边图形有相似的变化规律,即三角形的底部横线变为竖线,三角形的两边向中间移动,然后再反向变化就可以得B项。
2、答案: D解析:数交点的个数。
第一组图形交点的个数分别为3个、4个、5个,第二组图形交点的个数分别为5个、4个、3个,故正确答案为D。
正方体截面总结(最全-适用于公务员图形推理)

正方体截面的形状tf O结论如下:1、可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。
若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。
三:猜想及其他可能的证明:1•正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:由图示可知,水平方向截取正方体,得到的截面为正方形由图示可知,竖直方向截取正方体,得到的截面为正方形。
2. 矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。
》》》其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。
例如,正方体的六个对角面都是矩形。
3. 平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。
4. 三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下由上图可知,正方体可以截得三角形截面。
但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:》得到: 正三棱锥5. 猜想之外的截面形状:(1)菱形:女口下图所示,f A,B为所在棱的中点时,该截面为菱形:当(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:(4 )六边形:如图所示,可以截得六边形截面:==》》》(3 )五边形:如图所示,可以截得五边形截面:通过实践及资料查询可知,无法得到正五边形。
正方体的截面问题

正方体的截面问题作者:陈斌来源:《读与写·教师版》2018年第12期摘要:近几年高考全国数学试卷涉及正方体的截面问题的试题,本文就正方体的截面形状及性质进行了归纳整理,并对几道高考试题提出了解法。
关键词:高考;理数;正方体;截面中图分类号:G634.6 文献标识码:A 文章编号:1672-1578(2018)12-0237-01正方体的截面就是用一个平面去截正方体,正方体的表面与这个平面的交线围成的平面图形。
1.正方体的截面形状正方体的截面可以是三角形,四边形,五边形或六边形,具体说:(1)截面三角形一定是锐角三角形;其中可以是等边三角形、等腰三角形、不等边三角形;但不能是直角三角形、钝角三角形;(2)截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;并且四边形中至少有一组对边平行;截面不能是直角梯形;(3)截面可以是五边形;截面五边形必有两组分别平行的边,同时有两个角相等;截面五边形不可能是正五边形(因为必有两组对边平行);(4)截面可以是六边形;截面六边形必有分别平行的边,同时有两个角相等;截面六边形可以是等角(均为1200)的六边形,特别地,可以是正六边形。
2.正方体的截角面的性质所谓正方体的截角面就是沿正方体的某三个顶点截去它的一个角后的三角形截面。
如右图中的△A'BD。
(1)每个正方体都有八个截角面;(2)正方体的截角面垂直于它的一条体对角线,垂足是这条体对角线的一个三等分点。
(3)正方体的截角面与它的12条棱所成的角相等,也与它的六个面所成角相等。
由于截去的是正三棱锥,结合线面平行或面面平行的有关性质容易证明上述结论。
3.有关试题解法浅析(1)把正方体截去一个角,求证:截面三角形是锐角三角形。
分析:如图,应该从截去的部分入手,关注被截去棱的部分长AE、AF,AG对△EFG形状的影响。
解答:如图,设AE=a,AF=b,AG=c,则所以所以∠EFG所以为锐角;同理∠FGE,∠GEF都为锐角;故ΔEFG为锐角三角形。
(完整版)正方体的截面图形

正方体的截面问题
七年级数学教研组
一、截面是三角形
一、截面是三角形
常见的截图为三角形的图形 演 示
二、截面是四边形
二、截面是四边形
二、截面是四边形
常见的截图为四边形的图形
二、截面是四边形
演 示
三、截面是五边形
三、截面是五边形
四、截面是六边形
特 当平面与正方体 别 各棱的交点为中 注 点时,截面为正 意 六边形
四、截面是六边形
形状 三角形 四边形 五边形 六边形
特殊情形
等
等
腰
边
三
三
角
角
形
形
长
正
梯
四
方
方
形
边
形
形
形
立体几何正方体常用结论

立体几何正方体常用结论在立体几何的学习中,正方体是一个非常重要的几何图形,它具有许多独特的性质和结论。
掌握这些常用结论,对于解决与正方体相关的几何问题以及深入理解立体几何的概念和原理都具有重要意义。
一、棱长与面对角线正方体的棱长都相等,设棱长为\(a\)。
面对角线是连接正方体同一个面上两个不相邻顶点的线段。
面对角线的长度可以通过勾股定理计算得出,为\(\sqrt{2}a\)。
例如,在一个棱长为\(5\)的正方体中,一个面上的面对角线长度就是\(\sqrt{2}×5 = 5\sqrt{2}\)。
二、体对角线体对角线是连接正方体两个相对顶点的线段。
体对角线的长度可以通过两次勾股定理计算得出,为\(\sqrt{3}a\)。
假设正方体的棱长是\(8\),那么体对角线的长度就是\(\sqrt{3}×8 = 8\sqrt{3}\)。
三、表面积正方体的表面积等于六个正方形面积之和。
由于每个面的面积都是\(a^2\),所以正方体的表面积为\(6a^2\)。
比如说,一个棱长为\(6\)的正方体,其表面积就是\(6×6^2 =216\)。
四、体积正方体的体积等于棱长的立方,即\(V = a^3\)。
若正方体的棱长为\(10\),则体积为\(10^3 = 1000\)。
五、相邻面的关系正方体的相邻面互相垂直。
这意味着相邻面的两条交线也互相垂直。
在实际解题中,如果知道了一个面上的某些条件,结合相邻面垂直的关系,可以通过构建直角三角形来求解其他量。
六、正方体中的直角三角形正方体中有许多直角三角形。
例如,以一个顶点出发的三条棱构成的直角三角形,其三条边长度分别为\(a\)、\(\sqrt{2}a\)、\(\sqrt{3}a\)。
或者由面对角线和棱构成的直角三角形,以及由体对角线、面对角线和棱构成的直角三角形等。
七、正方体的截面用一个平面去截正方体,可以得到不同的截面形状。
平行于一个面去截,得到的是正方形截面。
正方体截面总结

结论如下:1、可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。
若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。
三:猜想及其他可能的证明:1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:====》》》由图示可知,水平方向截取正方体,得到的截面为正方形。
====》》》由图示可知,竖直方向截取正方体,得到的截面为正方形。
2.矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。
其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。
例如,正方体的六个对角面都是矩形。
3.平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:==》由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。
4.三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下:==》》》由上图可知,正方体可以截得三角形截面。
但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:==》得到:正三棱锥5.猜想之外的截面形状:(1)菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》(3)五边形:如图所示,可以截得五边形截面:=》通过实践及资料查询可知,无法得到正五边形。
(4)六边形:如图所示,可以截得六边形截面:=》特别的,当平面与正方体各棱的交点为中点时,截面为正六边形,如图所示:拓展探究:1.正方体最大面积的截面三角形 2.正方体最大面积的截面四边形3.最大面积的截面形状4.截面五边形、六边形性质1.正方体最大面积的截面三角形:如该图所示可证明,由三角面对角线构成的三角形。
正方体截面总结(最全-适用于公务员图形推理)

正方体截面的形状.可能出现锐角三角型、等边、等腰三角形,但不可能出现直角和钝角三角形结论如下:1、可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。
若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。
三:猜想及其他可能的证明:1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:====》》》由图示可知,水平方向截取正方体,得到的截面为正方形。
====》》》由图示可知,竖直方向截取正方体,得到的截面为正方形。
2.矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。
其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。
例如,正方体的六个对角面都是矩形。
3.平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:==》由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。
4.三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下:==》》》由上图可知,正方体可以截得三角形截面。
但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:==》得到:正三棱锥5.猜想之外的截面形状:(1)菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》(3)五边形:如图所示,可以截得五边形截面:=》通过实践及资料查询可知,无法得到正五边形。
正方体截面问题题型汇总

正方体截面问题题型汇总开高 张文伟2019.11.28答案:B分析:12题除了直观解题法之外,还有另一种解法:(1)正方体的十二条棱长度相等,与平面的夹角相等,必有在平面上投影的长度相等。
(2)一个封闭的平面图形中有十二条相等的线段,必然想到正六边形的顶点与其中心的连线。
(3)所以说,投影是一个正六边形。
分析:面D1B1C与各个棱所处角相等,面A1DB与各个棱所处角相等,所以两个面与已知的平面α平行。
根据正方体的特性,体对角线AC1与两个面垂直,交点分别是M、N,且M、N是体对角线的三等分点,所以,棱与面所成角的正弦值为:三分之根号三。
向平面做投影,本质是几何体的顶点向射影面做垂线。
所以,点C1D1B1C向平面α做垂线,得到的是△D1B1C,点AA1DB向平面α做垂线,得到的是△A1DB,两个三角形重叠到一个平面,得到的就是右图,再连接端点直线,就得到一个正六边形。
由题意可得B1D1的长为根号二,所以高B1E就是二分之根号六,所以半径就是三分之根号六,即正六变形的边长是三分之根号六。
总结:1. 三条面对角线构成等边三角形所在的平面与正方体的每一个棱所成角都相等,2.正方体在体对角线垂直于投影面上的投影是一个正六面形;3.体对角线垂直于投影面,三条面对角线构成等边三角形,投影面积是这个等边三角形面积的两倍。
12.【2018全国一卷12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A B C D【答案】A【分析】最大是正六边形首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.【详解】根据相互平行的直线与平面所成的角是相等的,所以在正方体1111ABCD A B C D −中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的,同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,,所以其面积为26S ,故选A. 点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.8.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P ,Q ,R 分别为棱AA 1,BC ,C 1D 1的中点,经过P ,Q ,R 三点的平面为α,平面α被此正方体所截得截面图形的周长为A B . C D .分析:【解析】 是正六边形 11.棱长为2的正方体1111ABCD A B C D −中,E 为棱AD 中点,过点1B ,且与平面1A BE 平行的正方体的截面面积为( )A. 5B.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形:
可能出现正方形、矩形、非矩形的平行四边形、菱形、梯形、等腰梯形
不可能出现直角梯形
结论如下: 1、可能出现的:
锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形
2、不可能出现:
钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形
正方体的截面形状
一:问题背景
在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。
若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?
二:研究方法
先进行猜想,再利用土豆和萝卜通过切割实验研究。
三:猜想及其他可能的证明:
1.正方形:
因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:
====》》》
由图示可知,水平方向截取正方体,得到的截面为正方形。
====》》》
由图示可知,竖直方向截取正方体,得到的截面为正方形。
2.矩形:
因为正方形也属于矩形,所以对正方形的证明同适用于矩形。
其次,当长宽不等的矩形截面的图示如下:
由上图所示可知,按不同角度截取正方体可以得到矩形。
例如,正方体的六个对角面都是矩形。
3.平行四边形:
当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:
==》
由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。
4.三角形:
根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下:
==》》》
由上图可知,正方体可以截得三角形截面。
但一定是锐角三角形,包括等腰和等边三角形
特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:
==》得到:正三棱锥
5.猜想之外的截面形状:
(1)菱形:
如下图所示,当A,B为所在棱的中点时,该截面为菱形:
(2)梯形:
如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:
==》》》
(3)五边形:
如图所示,可以截得五边形截面:
=》
通过实践及资料查询可知,无法得到正五边形。
(4)六边形:
如图所示,可以截得六边形截面:
=》
特别的,当平面与正方体各棱的交点为中点时,截面为正六边形,如图所示:
拓展探究:1.正方体最大面积的截面三角形2.正方体最大面积的截面四边形3.最大面积的截面形状4.截面五边形、六边形性质
1.正方体最大面积的截面三角形:
如该图所示可证明,由三角面对角线构成的三角形。
2.正方体最大面积的截面四边形:
通过猜想及查询资料可知,正方体截面可能得到的四边形有:正方形、矩形、梯形、平行四边形。
根据四边形的面积公式:面积=长*宽
联系正方体图形:
得到:当由两条平行的面对角线和两对平行棱构成的四边形的长最大,又因为在各个情况下的宽不变。
则由猜想得到:“最大面积的截面四边形:由两条平行的面对角线和两对平行棱构成的四边形。
”
3.最大面积的截面形状:
正方体的截面可以分为:三角形、正方形、梯形、矩形、平行四边形、五边形、六边形、正六边形。
其中三角形还分为锐角三角型、等边、等腰三角形。
梯形分位非等腰梯形和等腰梯形。
首先比较三角形与五边形和六边形,所得这三种截面的情况有一共同特点:不能完整在该截面所在平面在正方体内所截的范围的最大值,有部分空间空出。
因此可以得到:最大面积一定是四边形。
所以最大面积的截面形状:即最大截面四边形(猜想)。
初步推断为如图所示的矩形:
4.截面五边形、六边形性质
通过课本及资料查询知:截面五边形:有两组边互相平行.截面六边形:三组对边平行的六边形.
精选文库
正方体的截面图
四:结论如下:
1、可能出现的:
锐角三角型、等边、等腰三角形,正方形、矩形、
非矩形的平行四边形、非等腰梯形、等腰梯形、
五边形、六边形、正六边形
2、不可能出现:
钝角三角形、直角三角形、直角梯形、正五边形、
七边形或更多边形
—11。