数值分析期末复习题
数值分析期末考试复习题及其答案

数值分析期末考试复习题及其答案1.已知都有6位有效数字,求绝对误差限.(4分)解:由已知可知,n=62分2分2.已知求(6分)解:1分1分1分= 2分1分3.设(6分)①写出f(x)=0解的Newton迭代格式②当a为何值时,(k=0,1……)产生的序列收敛于解:①Newton迭代格式为: 3分② 3分4.给定线性方程组Ax=b,其中:,用迭代公式(k=0,1……)求解Ax=b,问取什么实数,可使迭代收敛(8分)解:所给迭代公式的迭代矩阵为2分其特征方程为2分即,解得2分要使其满足题意,须使,当且仅当2分5.设方程Ax=b,其中,试讨论解此方程的Jacobi迭代法的收敛性,并建立Gauss—Seidel迭代格式(9分)解:3分2分即,由此可知Jacobi迭代收敛1分Gauss-Seidel迭代格式:(k=0,1,2,3 (3)6.用Doolittle分解计算下列3个线性代数方程组:(i=1,2,3)其中,(12分)解:①A= =LU 3分由Ly=b1,即y= 得y= 1分由Ux1=y,即x1= 得x1= 2分②x2=由Ly=b2=x1,即y= 得y= 1分由Ux2=y,即x2= 得x2= 2分③x3=由Ly=b3=x2,即y= 得y= 1分由Ux3=y,即x3= 得x3= 2分7.已知函数y=f(x)有关数据如下:要求一次数不超过3的H插值多项式,使(6分)解:作重点的差分表,如下:3分=-1+(x+1)-x(x+1)+2x。
x(x+1)= 3分8.有如下函数表:试计算此列表函数的差分表,并利用Newton前插公式给出它的插值多项式(7分)解:由已知条件可作差分表,3分(i=0,1,2,3)为等距插值节点,则Newton向前插值公式为:=4+5x+x(x—1)= 4分9.求f(x)=x在[—1,1]上的二次最佳平方逼近多项式,并求出平方误差(8分)解:令2分取m=1,n=x,k=,计算得:(m,m)==0 (m,n)= =1 (m,k)= =0(n,k)= =0。
山东交通学院数值分析期末复习题

数值分析A 卷复习题一、填空题(每题3分,共30分)1.已知 3.201,0.57a b ==是经过四舍五入后得到的近似值,则a b +有( 2 )位有效数字。
2.设()i l x 是以,(0,1,,9)k x k k ==为节点的Lagrange 插值基函数,则9()==∑ik kl k ( i )。
3.n 个求积节点的插值型求积公式的代数精度至少为( 1n - )。
4.设有矩阵2304A -⎡⎤=⎢⎥⎣⎦,则1A =( 7 )。
5.三次样条函数是在各个子区间上的( 3 )次多项式。
6.用牛顿下山法求解方程303x x -=的下山条件是( 1()()k k f x f x +≤ )。
7.已知3n =时的Newton-Cotes 系数(3)018C =,则(3)3C =( 1/8 )。
8.若线性代数方程组Ax b =的系数矩阵A 为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都 ( 收敛 )。
9.用Gauss-Seidel 迭代法解方程组1212423x ax ax x +=⎧⎨+=-⎩,其中a 为实数,方法收敛的充要条件是a 满足a <<。
二、单选题(每题3分,共30分)1.用1+x 近似表示xe 所产生的误差是( C )误差。
A.模型B.观测C.截断D.舍入 2.已知数21234721,0.721,0.700,710x x x x -====⨯是由四舍五入得到的,则它们的有效数字的位数应分别为( A )。
A.3,3,3,1B.3,3,3,3C.3,3,1,1D.3,3,3,2 3.设(1)1,(0)3,(2)4-===f f f ,则抛物线插值多项式中2x 的系数为( A )。
A.-0.5B.0.5C.2D.-24. 为求方程3210x x --=在区间[]1.3,1.6内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( A )。
A.2111,:k x x x +==-迭代公式1221111,:k kx x x x +=+=+迭代公式C.32213111/,:()k kx x x x +=+=+迭代公式 D.23212111,:k k kk xx x x x x +-==+++迭代公式5.线性方程组AXB =能用高斯消元法求解的充分必要条件为( D )。
《数值分析》A卷期末考试试题及参考答案

一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。
数值分析期末试题及答案

数值分析期末试题及答案试题一:1. 简答题(共10分)a) 什么是数值分析?它的主要应用领域是什么?b) 请简要解释迭代法和直接法在数值计算中的区别。
2. 填空题(共10分)a) 欧拉方法是一种______型的数值解法。
b) 二分法是一种______法则。
c) 梯形法则是一种______型的数值积分方法。
3. 计算题(共80分)将以下函数进行数值求解:a) 通过使用二分法求解方程 f(x) = x^3 - 4x - 9 = 0 的近似解。
b) 利用欧拉方法求解微分方程 dy/dx = x^2 + 2x + 1, y(0) = 1 在 x = 1 处的解。
c) 使用梯形法则计算积分∫[0, π/4] sin(x) dx 的近似值。
试题二:1. 简答题(共10分)a) 请解释什么是舍入误差,并描述它在数值计算中的影响。
b) 请解释牛顿插值多项式的概念及其应用。
2. 填空题(共10分)a) 数值稳定性通过______号检查。
b) 龙格-库塔法是一种______计算方法。
c) 零点的迭代法在本质上是将方程______转化为______方程。
3. 计算题(共80分)使用牛顿插值多项式进行以下计算:a) 已知插值节点 (-2, 1), (-1, 1), (0, 2), (1, 4),求在 x = 0.5 处的插值多项式值。
b) 已知插值节点 (0, 1), (1, 2), (3, 7),求插值多项式,并计算在 x = 2 处的值。
c) 使用 4 阶龙格-库塔法求解微分方程 dy/dx = x^2 + 1, y(0) = 1。
答案:试题一:1. a) 数值分析是研究使用数值方法解决数学问题的一门学科。
它的主要应用领域包括数值微积分、数值代数、插值和逼近、求解非线性方程、数值积分和数值解微分方程等。
b) 迭代法和直接法是数值计算中常用的两种方法。
迭代法通过反复迭代逼近解,直到满足所需精度为止;而直接法则通过一系列代数运算直接得到解。
数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。
答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。
答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。
答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。
答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。
解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。
拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。
数值分析期末复习题答案

数值分析期末复习题答案一、选择题1. 以下哪个算法是用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 共轭梯度法D. 辛普森积分法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的主要区别是什么?A. 插值点的选取不同B. 插值多项式的构造方式不同C. 计算复杂度不同D. 适用的函数类型不同答案:B3. 在数值积分中,梯形法则和辛普森法则的主要区别是什么?A. 精度不同B. 适用的积分区间不同C. 计算方法不同D. 稳定性不同答案:A二、简答题1. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性指的是数值方法在计算过程中对于舍入误差的敏感程度。
例如,在求解线性方程组时,如果系数矩阵的条件数很大,则该方程组的数值解对舍入误差非常敏感,即数值稳定性差。
2. 说明数值微分与数值积分的区别。
答案:数值微分是估计函数在某一点的导数,而数值积分是估计函数在某个区间上的积分。
数值微分通常用于求解函数的局部变化率,而数值积分用于求解函数在一定区间内的累积效果。
三、计算题1. 给定一组数据点:(1, 2), (2, 3), (3, 5), (4, 6),请使用拉格朗日插值法构造一个三次插值多项式。
答案:首先写出拉格朗日插值基函数,然后根据数据点构造插值多项式。
具体计算过程略。
2. 给定函数 f(x) = x^2,使用牛顿-科特斯公式中的辛普森积分法在区间 [0, 1] 上估计积分值。
答案:首先确定区间划分,然后应用辛普森积分公式进行计算。
具体计算过程略。
四、论述题1. 论述数值分析中误差的来源及其控制方法。
答案:误差主要来源于舍入误差和截断误差。
舍入误差是由于计算机在进行浮点数运算时的精度限制造成的,而截断误差是由于数值方法的近似性质导致的。
控制误差的方法包括使用高精度的数据类型、选择合适的数值方法、增加计算步骤等。
五、综合应用题1. 给定一个线性方程组 Ax = b,其中 A 是一个 3x3 的矩阵,b 是一个列向量。
《数值分析》期末复习题(1)

《数值分析》期末复习题一、单项选择题1. 数值x *的近似值x =0.32502×10-1,若x 有5位有效数字,则≤-*x x ( ).(A)21×10-3 (B) 21×10-4 (C) 21×10-5 (D) 21×10-6 2. 设矩阵A =10212104135⎡⎤⎢⎥⎢⎥⎣⎦,那么以A 为系数矩阵的线性方程组A X =b 的雅可比迭代矩阵为( )(A)00.20.10.200.40.20.60--⎡⎤⎢⎥--⎢⎥--⎣⎦(B)10.20.10.210.40.20.61⎡⎤⎢⎥⎢⎥⎣⎦(C) 00.20.10.200.40.20.60⎡⎤⎢⎥⎢⎥⎣⎦ (D)021204130⎡⎤⎢⎥⎢⎥⎣⎦3. 已知(1)1,(2)4,(3)9f f f ===,用拉格朗日2次插值,则(2.5)f =( )(A) 6.15 (B) 6.25 (C) 6.20 (D) 6.10 4. 抛物形求积公式的代数精度是( )A. 1,B. 2 ,C. 3,D. 45. 改进欧拉格式的 局部截断误差是( ). (),A O h 2. (),B O h 3. (),C O h 4. ().D O h二、填空题1、以722作为π的近似值,它有( )位有效数字; 2、经过)1,2( ),2,1( ),1,0(C B A 三个节点的插值多项式为( ); 3、用高斯-赛德尔迭代法解方程组⎩⎨⎧-=+-=+,10,232121x bx bx x 其中b 为实数,则方法收敛的充分条件是b 满足条件( );4、取步长为1.0=h ,用欧拉法计算初值问题22',(0)0,y x y y ⎧=+⎨=⎩的解函数)(x y ,它在3.0=x 的近似值为( );5、已知方程0sin 1=--x x 在)1,0(有一个根,使用二分法求误差不大于41021-⨯的近似解至少需要经过( )次迭代。
数值分析期末考试题及答案

数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。
答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。
它包括三个基本操作:行交换、行乘以非零常数、行相加。
2. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。
例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。
三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。
答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。
2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题
1.设真值x=983350,则其近似值y=98000的有效数字的位数 ,绝对误差为 , 相对误差为 。
2.x=0.1062,y=0.947,计算x+y 其有效数字的位数为 。
3.对f(x)=x 3
+x+1,差商f[0,1,2,3]= ;f[0,1,2,3,4]= 。
4.设f(x)可微,求方程x=f(x)根的牛顿迭代法格式是 。
5.设方程x=ϕ(x)有根x *
,且设ϕ(x)在含x *
的区间(a,b)内可导,设x 0∈(a,b)则迭代格式x k+1=ϕ(x k )收敛的充要条件为 。
6.求解线性方程组Ax=b 的迭代格式x (k+1)=Jx (k)+f 收敛的充要条件为 。
7.⎪⎪⎭
⎫
⎝⎛=01100
1001001....A ,||A||∝= ,cond(A)∝= 。
8.n 次Legendre 多项式的最高次项系数为 。
9.中矩形公式:)()2(
)(a b b a f dx x f b
a -+=⎰的代数精度为 。
10.求积公式:)1(2
1)0()(10
f f dx x f '+
≈⎰的代数精度为 。
11.在区间[1,2]上满足插值条件⎩
⎨⎧==3)2(1
)1(P P 的一次多项式P(x)= 。
12.设∑
==
n
k k k n x f A f I 0
)()(是函数f(x)在区间[a,b]上的插值型型求积公式,则
∑=n
k k
A
= 。
13.梯形公式和改进的Euler 公式都是 阶精度的。
二、计算题
1.利用矩阵的高斯消元法,解方程组⎪⎩⎪
⎨⎧=++=++=++20
53182521432321
321321x x x x x x x x x
2.设有函数值表
试求各阶差商,并写出Newton 插值多项式。
3.求解超定方程组⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫
⎝
⎛4323121
1121x x 的最小二乘解。
求3次自然样条插值函数 5.给定x x f =
)(在x=100, 121, 144 三点处的值,试以这三点建立f(x)的
二次(抛物)插值公式,利用插值公式求115的近似值并估计误差。
6.试分别写出用Jacobi 迭代法和Gauss-Seidel 迭代法解方程组 ⎪
⎪⎪⎪
⎭
⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛
--
212112
121121x x 的第k 次迭代公式,并讨论它们的收敛性。
7.利用积分4ln 18
2
=⎰
dx x
计算ln4时,若采用复化梯形公式,问应取多少节点
才能使其误差绝对值不超过4
10
2
1
-⨯。
8.建立计算dx x f ⎰8
2
)(的Gauss 求积公式,使其具有3次代数精度。
9.应用Newton 法导出方程
f(x)=x 2-a=0
的根a 的迭代格式,并求
2
1)/()(lim k k k x a x a --+→∞。
10.设f(x)=e x ,x ∈[0,1]。
求f(x)的二次最佳平方逼近多项式2
2102)(x c x c c x p ++=
11.求拟合三点A(0,1),B(1,3),C(2,2)的直线方程。
12.用Euler 预测-校正格式求解初值问题
⎩
⎨
⎧=+='0)0(12
y y y 在0.3,0.4处的数值解。
要求写出格式,步长h=0.3,小数点后至少保留5位数字。
13.利用Euler 公式计算积分
⎰
=
x
t
dt
e x y 0
2
)(在点x=0.5,1,1.5,2的近似值。
14.试分别写出用Jacobi 迭代法和Gauss-Seidel 迭代法解方程组
⎪⎪⎪⎭
⎫
⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝
⎛--32012103
224112532
1
x x x 的第k 次迭代公式,并讨论它们的收敛性。
15.用简单迭代法求解02.03=--x x 的所有实根,精确至3位有效数。
16.试用Gauss 消元法解下列方程组,计算过程按5位小数进行: ⎪⎪⎪
⎭
⎫
⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝
⎛---08.255.190.05.11
.40.10.15.26.15.05.12
.33
2
1
x x x (写出详细过程!
) 例17 求积公式
⎰1
0)(dx x f ≈)0(0f A +)1(1f A +)0(0f B '
已知其余项的表达式为)(f R =)(ξf k ''',)1,0(∈ξ.试确定系数0A ,1A ,0B 使该求积公式具有尽可能高的代数精度,并给出该求积公式的余项和代数精度的次数.
解:
当)(x f =1时,⎰1
0)(dx x f =1 ⇒0A +1A =1
当)(x f =x 时,⎰1
0)(dx x f =
21 ⇒1A +0B =2
1
当)(x f =2x 时,⎰10
)(dx x f =3
1 ⇒1A =
3
1
代入求得:
0A =
3
2,1A =
3
1,0B =
6
1,从而
⎰1
)(dx x f ≈
)0(3
2f +)1(3
1f +
)0(6
1f ',且求积公式的代数精度至少为2,能否更高有待
验证.为此取 当)(x f =3
x 时,
⎰
1
)(dx x f =⎰1
3
dx x =
4
1,而
)0(3
2f +
)1(3
1f +
)0(6
1f '=3
1
说明当)(x f =3
x 时不能使求积公式准确成立,因而该公式只有2次代数精度. 下面考虑余项,设 ⎰1
0)(dx x f =
)0(3
2f +
)1(3
1f +
)0(6
1f '+)(ξf k '''
将)(x f =3
x 代入,得到
4
1=
3
1+3!k ⇒ k =72
1-
,即余项为
)(f R =)(72
1ξf '''-
,)1,0(∈ξ.
例18 设给定数据
(1) 作出函数f (x )的均差表;(2) 写出牛顿3次插值多项式)(3x N . 解:(1)
(2))(3x N =1+21)0(-x +)1)(0(--x x +
2
3)2
3)(1)(0(---x x x
=1+2
1x +)1(-x x +
2
3)23)(1(-
-x x x
三、证明题
1.证明1-2x-sinx=0在[0,1]内有唯一根。
使用二分法求误差不大于4
10
2
1-⨯的根要迭代多
少次?
2.证明:证明方程01)(=-=x
xe x f 在(0,1)内有唯一根x *。
并证明迭代格式:
)1,0(,01∈∀=-+x e
x k
x k 是收敛的。
3.给定方程组)0,(,221122221
211
212111≠⎩⎨
⎧=+=+a a b x a x a b x a x a 试证明Jacobi 迭代法收敛的充要条件为122
112112<=a a a a r
4.设f(x)∈C 2[a,b],且f(a)=f(b)=0,求证:
|)(|max )(8
1|)(|max 2
x f a b x f b
x a b
x a ''-≤
≤≤≤≤。
5.设A ∈R n ⨯n ,证明当ρ(A)<1时,矩阵序列
S k =I+A+…+A k
(k=0,1,2,…) 收敛,并求其极限。
6.设n x x x ,...,,
10,f(x)为一个不超过n 次的多项式,证明:
(1)∑
==
n
k k k x l x f x f 0
)()()(;
(2)1)(0
=∑=n
k k x l 。
7.设f(x)∈C 2[a,b],写出梯形求积公式,并证明其截断误差为 ),(),(12
)()()
2(3
b a f
a b f R S ∈--
=ηη
8.设函数f(x)∈C[a,b],在Gauss 公式⎰∑
=≈
b
a
n
k k k x f A dx x f 0
)()(中,证明Gauss 系数。
n k dx x l A b
a
k k ,...,2,1,0,)(2
==
⎰
其中)(x l k 为Lagrange 插值基函数。
9.Euler 公式的截断误差为)(),
(2
112
1++<<''=
i i i i i x x y h R ξξ。