软磁材料及应用

合集下载

什么是软磁材料

什么是软磁材料

什么是软磁材料软磁材料是一类具有良好磁性能和磁导率的材料,广泛应用于电力电子、通信、医疗设备等领域。

软磁材料具有低磁滞、低铁损、高饱和磁感应强度和高导磁率等特点,能够有效地转换和传输电能和磁能,是电磁器件中不可或缺的重要材料。

软磁材料主要分为铁素体材料和非晶合金材料两大类。

铁素体材料包括硅钢、镍铁合金等,具有良好的导磁性能和机械性能,广泛应用于变压器、电感器、电机等领域。

非晶合金材料是一种由非晶态微晶相组成的非晶态材料,具有极高的导磁率和低磁滞,适用于高频变压器、传感器等领域。

软磁材料的磁性能取决于其晶粒结构、化学成分和热处理工艺等因素。

通过合理设计材料配方和优化工艺参数,可以获得具有良好磁性能的软磁材料。

目前,随着材料科学和工艺技术的不断发展,新型软磁材料如非晶合金、纳米晶合金等材料不断涌现,为提高电磁器件的性能和降低能耗提供了新的可能。

软磁材料在电力电子领域具有重要应用,如变压器、电感器、电机等设备中都需要大量的软磁材料。

在变压器中,软磁材料能够有效地传输和转换电能,提高能效和稳定性;在电机中,软磁材料能够产生良好的磁场,提高电机的输出功率和效率;在电感器中,软磁材料能够减小磁滞损耗,提高传感器的灵敏度和稳定性。

除了电力电子领域,软磁材料还在通信、医疗设备等领域有重要应用。

在通信设备中,软磁材料用于制造高频变压器、滤波器等元器件,提高设备的传输速率和稳定性;在医疗设备中,软磁材料用于制造医疗磁共振设备、医疗电子器件等,提高设备的成像质量和稳定性。

总之,软磁材料是一类具有重要应用前景的材料,在电力电子、通信、医疗设备等领域发挥着重要作用。

随着材料科学和工艺技术的不断发展,相信软磁材料将会在更多领域展现其重要价值,为人类社会的发展和进步做出更大的贡献。

软磁材料概要及其应用

软磁材料概要及其应用

软磁材料概要及其应用作者:高利芳李巍冯涛张成军来源:《中国科技博览》2015年第04期中图分类号:TD43 文献标识码:A 文章编号:1009-914X(2015)04-0231-01材料一直是人类社会发展的先导和物质基础,新材料则是人类社会进步的里程碑。

综观人类科学的发展和历史,可以清楚地看到,每一种重要新材料的发明和应用都会显著提高人类支配自然的能力。

而磁性材料是国民经济各个领域不可缺少的功能材料,它不但满足了传统工业的发展需求,而且在科技、电子信息等领域中也起着越来越重要的作用。

本文简述软磁材料的特性及发展状况,同时对软磁材料目前在发电机制造方面的应用进行阐述。

1 软磁材料的发展历程磁性材料,是一种用途广泛的基础功能材料,而软磁材料则是其中应用最广泛、种类最多的材料之一。

软磁材料主要有金属软磁材料,其中以硅钢片、坡莫(permalloy)合金、仙台(sendust)合金等为代表。

软磁材料在工业中的应用可以追溯至19世纪末。

随着电力及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。

到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。

直至现在硅钢片在电力工业用软磁材料中仍居首位。

到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等[1]。

从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。

进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。

最常用的软磁铁氧体主要是MnZn、NiZn和MgZn三大系列。

铁氧体虽在高频段损耗很低,但Bs仅为金属软磁的1/4左右。

50~80 年代为软磁铁氧体发展的黄金时代,除电力工业外(电力工业主要用硅钢片,即Fe-Si合金),各应用领域中铁氧体占绝对优势。

磁屏蔽材料

磁屏蔽材料

磁屏蔽材料磁屏蔽材料是一种能够阻挡、吸附和分散磁场的材料。

它们广泛应用于电子设备、通信设备、航空航天等领域,可以有效地阻挡外部磁场对设备和电子元件的干扰,保障设备和电子元件的正常运行。

磁屏蔽材料主要有软磁材料和硬磁材料两种。

软磁材料是一种具有高导磁率和低矫顽力的材料,它能够吸附和分散磁场,并将其导引至材料内部。

常见的软磁材料有铁氧体、双氧化锰、铁镍合金等。

铁氧体是一种非晶态材料,具有高导磁率、低矫顽力和良好的耐腐蚀性能,适用于高频磁场的屏蔽。

双氧化锰是一种陶瓷材料,具有高导磁率和低矫顽力,适用于低频磁场的屏蔽。

铁镍合金是一种金属材料,具有高导磁率和低矫顽力,适用于中频磁场的屏蔽。

硬磁材料是一种具有高矫顽力和高饱和磁感应强度的材料,它能够阻挡磁场的渗透并减小磁场的干扰。

硬磁材料常见的有钕铁硼、氢化钕等。

钕铁硼是一种稀土永磁材料,具有高矫顽力和高饱和磁感应强度,适用于高频磁场的屏蔽。

氢化钕是一种金属氢化物,具有高矫顽力和高饱和磁感应强度,适用于低频磁场的屏蔽。

磁屏蔽材料的屏蔽效果主要取决于材料的导磁率和矫顽力。

导磁率越高,材料对磁场的吸附和分散能力越强,屏蔽效果越好;矫顽力越低,材料对磁场的阻挡能力越强,屏蔽效果越好。

除了导磁率和矫顽力外,磁屏蔽材料还需要具有良好的耐热性、耐腐蚀性和机械强度。

耐热性是指材料能够在高温环境下保持其物理和化学性质的能力,耐腐蚀性是指材料能够抵抗外界化学物质的侵蚀的能力,机械强度是指材料在外力作用下不易破裂或变形的能力。

总之,磁屏蔽材料是一种能够阻挡、吸附和分散磁场的材料,它们能够有效地阻挡外部磁场对设备和电子元件的干扰,保障设备和电子元件的正常运行。

软磁材料技术发展趋势

软磁材料技术发展趋势

软磁材料技术发展趋势软磁材料是一种具有很高饱和磁感应强度和低磁导率的材料,广泛应用于电子产品、通信设备、汽车工业等领域。

随着科技的不断进步,软磁材料技术也在不断发展。

本文将从以下几个方面介绍软磁材料技术的发展趋势。

1. 新材料的研发随着科学技术的进步,新材料的研发成为软磁材料技术发展的重要方向。

科学家们正在不断探索新的材料,以提高软磁材料的性能和稳定性。

例如,石墨烯作为一种新型的二维材料,具有出色的导电性和热导率,有望应用于软磁材料领域,提高软磁材料的导磁性能。

2. 提高材料的磁性能软磁材料的磁性能对其应用性能至关重要。

当前,科学家们致力于提高软磁材料的饱和磁感应强度和磁导率,以满足不同领域对材料性能的需求。

研究人员通过改变材料的组成、结构和处理工艺等手段,不断提高软磁材料的磁性能。

3. 小型化和高集成度随着电子产品的不断发展,对软磁材料的需求越来越多样化。

尤其是在微电子器件和集成电路中,对软磁材料的要求更加严格。

因此,研究人员正在努力实现软磁材料的小型化和高集成度。

他们通过优化材料的结构和制备工艺,提高软磁材料的性能,并使其能够适应更复杂的电子器件需求。

4. 节能环保节能环保是当前社会的一个重要议题,软磁材料的应用也需要符合节能环保的要求。

因此,软磁材料技术的发展趋势之一就是开发绿色环保的软磁材料。

研究人员正在探索使用可再生材料、低能耗制备工艺和环境友好的加工方法等途径,以减少对环境的影响。

5. 多功能集成随着科技的发展,电子产品的功能越来越复杂,对材料的要求也越来越高。

软磁材料技术的发展趋势之一就是实现多功能集成。

研究人员正在探索将软磁材料与其他功能材料集成在一起,实现多种功能的一体化设计。

例如,将软磁材料与传感器、储能器件等集成,实现智能化和高效能的电子产品。

软磁材料技术的发展趋势是多样化、高性能、节能环保和多功能集成。

随着科学技术的不断进步,相信软磁材料技术将会在各个领域发挥更重要的作用,并为人类的生活带来更多便利和创新。

软磁材料

软磁材料

软磁材料基本知识一、软磁材料的发展及种类1.软磁材料的发展软磁材料在工业中的应用始于十九世纪末。

随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。

到二十世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。

直至现在硅钢片在电力工业用软磁材料中仍居首位。

到二十年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。

从四十年代到六十年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。

进入七十年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。

2.常用软磁磁芯的种类铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。

按(主要成分, 磁性特点, 结构特点) 制品形态分类:1). 合金类:硅钢片、坡莫合金、非晶及纳米晶合金2). 粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)3). 铁氧体类:算是特殊的粉芯类, 包括:锰锌系、镍锌系常用软磁材料的分类及其特性(Soft Magnetic Materials)二、软磁材料的分类介绍(一). 合金类1.硅钢硅钢是一种合金,在纯铁中加入少量的硅(一般在 4.5%以下)形成的铁硅系合金称为硅钢,该类铁芯具有最高的饱和磁感应强度值为20000 高斯;由于它们具有较好的磁电性能,又易于大批生产,价格便宜,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯。

是软磁材料中产量和使用量最大的材料。

也是电源变压器用磁性材料中用量最大的材料。

特别是在低频、大功率下最为适用。

常用的有冷轧硅钢薄板DG3、冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式。

磁性材料及其应用

磁性材料及其应用

磁致伸缩可用于制备称重、测力、扭矩 传感器等
四、磁记录材料
我们已经进入信息社会?
“知识大爆炸”?
记忆靠人脑?
磁记录:是使用记录磁头在磁记录介质内写入磁化强度图纹 作为信息存储,用同一或另外记录磁头可从磁化强度图纹读 出所储存的信息。
磁 记 录 的 基 本 过 程
抹音磁头 录音磁头
放音磁头 驱动器
工作缝隙小、磁场分布陡河磁迹宽 度窄,故可提高记录速度和读出分 辨率
磁电阻磁头
利用磁电阻效应制成
磁头材料
合金磁头材料:含钼 坡莫合金和仙台斯特 合金 铁氧体磁头材料:镍锌铁 氧体和锰锌铁氧体
非晶态磁头材料: Co-(Zr, Hf,Nb,Ta,Ti) 二元系合 金薄膜和Co-Fe-B类金属非 晶态薄膜
• 3d过渡金属(T) -非金属系 • 3d过渡金属(T) -金属系 • 过渡金属(T) -稀土类金属(R) 系
软磁材料主要用于动力工程、高性能电子学、通信技术、 航空及空间技术等,来制造磁导体,增加磁路的磁通量,降低 磁阻。
二、永磁材料 永磁材料又称硬磁材料,是用于制造各种永久磁铁的磁性 M 材料。 1、性能特点
改善材料的显微结构,降低杂质和气 孔的含量,增大晶粒尺寸。 降低内应力σ
磁滞回线示意图
3、软磁材料的分类及其应用 软磁材料
金属软磁
铁氧体软磁
非晶及纳米晶软磁
• 电工纯铁 • 硅钢 • 坡莫合金 • 其它软磁合金 (Fe-Al、Fe-Si-Al、 Fe-Co)
• MnZn,NiZn, MgZn等尖晶石型 铁氧体 • Co2Y,Co2Z等平 面六角型铁氧体
有机粘接剂及润滑剂 磁性粉 Al2O3粉/铁丹粉/碳粉
记录层 带基 涂布型磁带结构示例

软磁材料有哪些

软磁材料有哪些

软磁材料有哪些软磁材料是一类具有优良软磁性能的材料,主要用于电磁设备、电子产品和通信设备中。

软磁材料的种类繁多,每种材料都有其特定的特性和应用领域。

下面将就软磁材料的种类进行介绍。

首先,铁氧体软磁材料是一类应用广泛的软磁材料,具有良好的软磁性能和热稳定性。

铁氧体软磁材料主要分为氧化铁、氧化锌和氧化镍等类型,其中氧化铁软磁材料具有较高的饱和磁感应强度和低的磁导率,适用于高频电子元器件和微波器件。

氧化锌软磁材料具有较高的电阻率和较低的涡流损耗,适用于高频变压器和电感器件。

氧化镍软磁材料具有较高的磁导率和较低的涡流损耗,适用于高频变压器和电感器件。

其次,非晶合金软磁材料是一类具有高饱和磁感应强度和低涡流损耗的软磁材料,主要包括铁基非晶合金和钴基非晶合金。

铁基非晶合金软磁材料具有较高的饱和磁感应强度和较低的磁滞回线,适用于高频变压器和电感器件。

钴基非晶合金软磁材料具有较高的饱和磁感应强度和较低的涡流损耗,适用于高频变压器和电感器件。

再次,硅钢是一种低碳含量的硅铁合金,具有良好的软磁性能和低涡流损耗,是目前应用最为广泛的软磁材料之一。

硅钢主要分为冷轧硅钢和热轧硅钢两种类型,其中冷轧硅钢具有较低的涡流损耗和较高的饱和磁感应强度,适用于电力变压器和电机设备。

热轧硅钢具有较高的磁导率和较低的涡流损耗,适用于高频电子元器件和微波器件。

最后,铁氧氮软磁材料是一类新型的软磁材料,具有较高的饱和磁感应强度和较低的涡流损耗,是未来软磁材料的发展方向之一。

铁氧氮软磁材料主要包括氮化铁、氮化镍和氮化铁镍等类型,其中氮化铁软磁材料具有较高的饱和磁感应强度和较低的涡流损耗,适用于高频变压器和电感器件。

氮化镍软磁材料具有较高的磁导率和较低的涡流损耗,适用于高频变压器和电感器件。

氮化铁镍软磁材料具有较高的饱和磁感应强度和较低的磁滞回线,适用于高频电子元器件和微波器件。

总的来说,软磁材料种类繁多,每种材料都有其特定的特性和应用领域。

随着科技的发展和工艺的进步,软磁材料的性能将会不断提高,应用领域也将会不断拓展。

非晶纳米晶软磁材料

非晶纳米晶软磁材料

非晶纳米晶软磁材料1、非晶纳米晶软磁材料非晶/纳米晶软磁材料一.应用领域非晶态软磁合金材料为20世纪70年月问世的一种新型材料,因具有铁芯损耗小、电阻率高、频率特性好、磁感应强度高、抗腐蚀性强等优点,引起了人们的极大重视,被誉为21世纪新型绿色节能材料。

其技术特点为:采纳超急冷凝固技术使合金钢液到薄带材料一次成型;采纳纳米技术,制成介于巨观和微观之间的纳米态(10-20nm)软磁物质。

非晶、纳米晶合金的优异软磁特性都来自于其特别的组织结构,非晶合金中没有晶粒和晶界,易于磁化;纳米晶合金的晶粒尺寸小于磁交换作用长度,导致平均磁晶各向异性很小,并且通过调整成分,可以使其磁致伸缩趋近于零。

【表1】列出了非晶/纳米晶软磁材料的典型性能及主要应用领域。

近年来,随着信息处理和电力电子技2、术的快速进展,各种电器设备趋向高频化、小型化、节能化。

在电力领域,非晶、纳米晶合金均得到大量应用。

其中铁基非晶合金的最大应用是配电变压器铁芯。

由于非晶合金的工频铁损仅为硅钢的1/5~1/3,利用非晶合金取代硅钢可使配电变压器的空载损耗降低60﹪~70﹪。

因此,非晶配电变压器作为换代产品有很好的应用前景。

纳米晶合金的最大应用是电力互感器铁芯。

电力互感器是特地测量输变电线路上电流和电能的特种变压器。

近年来高精度等级〔如0.2级、0.2S级、0.5S级〕的互感器需求量快速增加。

传统的冷轧硅钢片铁芯往往达不到精度要求,虽然高磁导率玻莫合金可以满足精度要求,但价格高。

而采纳纳米晶铁芯不但可以到达精度要求、而且价格低于玻莫合金。

在电力电子领域,随着高频逆变技术的成3、熟,传统大功率线性电源开始大量被高频开关电源所取代,而且为了提高效率,减小体积,开关电源的工作频率越来越高,这就对其中的软磁材料提出了更高的要求。

硅钢高频损耗太大,已不能满足使用要求。

铁氧体虽然高频损耗较低,但在大功率条件下仍旧存在许多问题,一是饱和磁感低,无法减小变压器的体积;二是居礼温度低,热稳定性差;三是制作大尺寸铁芯成品率低,本钱高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方案
提高磁性能 方法、措施
配方、工艺
技术 途径
2.1 概述
能够迅速响应外磁场的变化,且能低损耗地获得高磁感应强度的材料。
软磁材料分类及特性要求
软磁材料的磁滞回线窄而长,起始磁
导率μi高,矫顽力Hc小,既容易获
得也容易失去磁性,是极其重要的一 类磁性材料。
按电阻率的不同,软磁材料可分为
金属软磁材料和铁氧体软磁材 料两大类,金属软磁材料由于其电
Part 2 软磁磁材料
2.1 概述 2.2 软磁材料理论基础 2.3 金属软磁材料 2.4 非晶、纳米晶软磁材料 2.5 铁氧体软磁材料
软磁材料: 金属软磁 铁氧体软磁
特性要求
理论基础
磁性、结构 磁化机制
目标
起始磁导率(μi)、 磁损耗(tgδ)、 温度稳定性(α)、 减落(D)、 磁老化(Ia) 截止频率(fr)。
稀土化合物中3d-4f电子磁矩是亚铁磁性耦合。
3 固溶体的结构和磁性
磁性合金,大部分为无序固溶体、有限固溶体和间隙固溶体;少数有 序固溶体;相当多的金属间化合物。
形成 置换固溶体时,磁性组元间存在同种原子对和异种原子对两种不 同的交换作用,和非磁性组元间不存在交换作用,致使固溶体中交换 相互作用的综合结果改变,材料基本磁特性就改变。另一方面,由于 溶质、溶剂原子尺寸的差别,引起晶格畸变,存在应力,使材料的二 次磁特性改变,特别对软磁不利。
点和钐、铕、镱的高蒸气压表现出稀土金属的物理性质有极大
差异。钐、铕、钇的热中子吸收截面比广泛用于核反应堆控制
材料的镉、硼还大。稀土金属具有可塑性,以钐和镱为最好。
除镱外,钇组稀土较铈组稀土具有更高的硬度。
稀土元素已广泛应用于电子、石油化工、冶金、机械、能
源、轻工、环境保护、农业等领域。应用稀土可生产荧光材料、
稀土金属氢化物电池材料、电光源材料、永磁材料、储氢材料、
催化材料、精密陶瓷材料、激光材料、超导材料、磁致伸缩材
料、磁致冷材料、磁光存储材料、光导纤维材料等。
常用的氯化物体系为KCl-RECl3他们在工农业生产和科研中
有广泛的用途,在钢铁、铸铁和合金中加入少量稀土能大大改
善性能。用稀土制得的磁性材料其磁性极强,用途广泛。在化
1、3d过渡族合金的结构和磁性
– 多为无序固溶体,且多显示铁磁性; – 合金的自发磁化与平均外层电子数(3d+4s)
成函数关系(p215)
2.稀土族合金的结构和磁性
– 多为固溶体和金属间化合物。目前开发的稀土永磁 材料都是以金属间化合物为基的材料。
– 晶体结构多为复杂的四方结构和六方结构。 – 轻稀土化合物中3d-4f电子磁矩是属铁磁耦合,而重
r
率fr不同,其应用频率上限显然与fr有
关,fr越高则应用频率的上限越高。
除了上述六个参数以外,软磁材料在不同的应
用场合还会有一些特殊的要求,如在高频大功
率下工作时,要求材料的饱和磁感应强度Bs和最
大磁导率m要高,并且衡量软磁材料性能的其
它参数还有饱和磁致伸缩系数s,居里点Tc,密
度d,电阻率以及介电常数等,都会因特定的
处于交变磁场中的软磁材料,其磁导率成为复数,其中μ表征储能特性, 而μ″表征能量损耗特征。对于环形软磁样品,可等效为串联电路,则电 感量Lx及表征磁损耗的等效电阻Rx可分别写为:
Lx
4N 2 A
l
107 (H)
Rx
4N 2 A
l
107 ()
式中 l:磁芯有效长度,N:线圈匝数,A:磁芯有效截面积,ω:工作 角频率
形成间隙固溶体时,产生的应力比置换固溶体的大,对二次磁特性影 响很大。
有序化对磁性的影响很大,一方面是有序和无序固溶体原子环境不同, 其交换相互作用不同,使基本磁特性变化;另一方面,在有序核形成 初期,晶格畸变,而有序化后,有、无序共存都会产生应力,使二次 磁特性也改变。
本征磁特性;二次磁特性
§2.2.2 提高软磁特性的措施
⑵ 温度>450 ℃至熔点 面心立方γ - Co
[0001] [1120] [1010]
Fe、Ni、Co铁磁金属小结
体心立方 面心立方 轴 <1120>和1010>简单六方
Fe 2.2μB
Ni 0.7μB
Co 1.7μB
3d过渡族元素的磁性来源
Fe、Ni、Co :
3d电子的交换相互作用,铁磁性 (2.2μB,0.6μB,1.7μB)
影响磁导率的因素;提高磁导率的措施;损耗 (一)、影响磁导率的因素
机理:
可逆磁畴转动 可逆畴壁位移
µi = µi 转+ µi位
– 动力:饱和磁化强度
– 阻力:内应力、参杂、空泡、晶界
1、可逆磁畴转动
2、可逆畴壁位移
i
0 M s 2
K eff
畴壁厚度 杂质体积浓度
其中
i
0 M s2
K eff
1 3
d
阻率较低而主要应用于频率较低的场 合,铁氧体软磁材料则在频率较高的 场合被广泛采用。
衡量软磁材料性能优劣的主要参数:
起始磁导率(μi)、 磁损耗(tgδ)、 温度稳定性(α)、 减落(D)、 磁老化(Ia) 截止频率(fr)。
起始磁导率(μi)
一般情况下,μi高的材料,其μe、μm、μΔ也较高。因此,通常把μi作为软 磁材料的基本特性参数之一,它是一个没有量纲的系数。
(3) 减落因子DF:定义为减落系数与开始测量时间(t1)测 得的磁导率之比
DF d
1
磁老化
软磁材料的磁性能随时间增长而不断下降, 其原因除减落之外,还可能出现由于材料结 构变化而引起的不可逆变化,称为磁老化,
用老化系数Ia表示。式中1、2分别为老化
前后测得的磁导率。
Ia
1 2 1
老化系数的大小与材料值和制造工艺有关,一般地说高
稀土元素和过渡元素可以形成许多金属间化合物,其中许 多是强磁性化合物,著名的高性能永磁合金SmCo5、 Sm2Co17 、Nd2Fe14B就是典型的例子。
金属 间化合物可以大约写出其分子式,但不一定满足正常 化合价平衡的规律。
三、合金的磁性
3d过渡族合金的结构和磁性 稀土族合金的结构和磁性 固溶体的结构和磁性
学工业中广泛用作催化剂。稀土氧化物是重要的发光材料、激
光材料。
二、合金的组成
1、基本概念
合金:由一种金属元素与其它金属元素或非金 属元素组成的具有金属特性的物质。
组元:组成合金最基本的、独立的单元。可以 是金属元素,也可以是化合物。
相: 合金中具有相同的化学成分和结构并有界 面隔开的独立均匀部分。
磁损耗
处于交变磁场中的软磁材料由于存在不可逆磁化, 使得磁感应强度B滞后于外加交变磁场H,滞后角为 δ,从而导致软磁材料在储存能量的同时也会损耗能 量,用tgδ来表征这种磁损耗
H=H0sinωt
B=B0sin(ωt-δ)
μ=B/μ0H
tg
温度稳定性
软磁材料的温度稳定性用温度系数表示,定义为由于温度的改变而引
§2.2.1 铁磁金属和合金的结构和磁性
一、铁磁金属的结构和磁性 (一)铁、镍、钴的晶体结构和磁性
铁Fe(常压下):
⑴ 温度<912℃
体心立方(bcc),
铁磁性的α-Fe,
居里温度为770 ℃ ,
易磁化方向为<100>,
[111]
难磁化方向为<111>
⑵ 912 ℃ <温度<1394℃ 面心立方, 顺磁性的γ-Fe
Cr、Mn:
3d电子的直接交换相互作用,反铁磁性
Cr、Mn的合金或化合物:
3d电子的超交换相互作用,亚铁磁性或铁磁性
㈡、稀土族元素的结构和磁性
⑴ 结构 主要指原似的Y和Sc;晶体结构大都为密排六方结构。
⑵ 磁性 Gd从0K到居里温度239K只表现出纯粹的铁磁性,但磁矩 的取向随温度而变。 Gd以前的轻稀土Ce、Nd、Sm具有反铁磁性。 重稀土金属Tb、Dy、Ho、Er、Tm表现为铁磁性或亚铁 磁性。 Y、Sc、La、Yb、Lu为非磁性稀土元素,但Y、Sc、 Yb 的离子具有磁矩。
组织:材料内部的微观形貌图象。
2、合金的基本相
根据结构的 基本特点分为
{ 固溶体 金属间化合物
(1) 固溶体:固溶体是溶质组元溶于溶剂点阵中而组 成的单一均匀固体(合金相)。 溶质只能以原子状态溶解,在结构上必 须保持溶剂组元的点阵类型。
工业上所使用的金属材料,绝大部分是以固溶体为基体的, 有的甚至完全由固溶体所组成。例如,广泛用的碳钢和合金 钢,均以固溶体为基体相,其含量占组织中的绝大部分。
⑶ 温度>1394℃ 体心立方 顺磁性的δ-Fe
[100]
熔点: 1538℃
镍 Ni (常压下):
在常压下,在熔点以温
范围内,均是面心立结
构(fcc);
镍为铁磁性金属
[111]
居里点为358℃
易磁化方向为<111> 难磁化方向为<100>
[100]
熔点: 1453℃
钴Co (常压下):
⑴ 温度<450 ℃ 简单六方结构 铁磁性的ε- Co 居里点为1117℃ 易磁化方向为<0001> 难磁化方向为<1120>和1010>
磁导率的减落
软磁材料尤其是铁氧体软磁材料在受到外加的电、磁、光、热和机械 等冲击后,畴壁易于移动,表现出较高的磁导率,当冲击停止后一段 时间内,离子或空位在自发磁化的影响下将逐渐向低能态的稳定状态 迁移,从而导致磁导率下降,这种磁导率随时间的减落是一种可逆变 化,它是材料的不稳定性之一,可以用下面三个参数来表示材料的减 落特征:
材料的老化系数较大,而如果采用高温淬火工艺制造的软 磁材料,则由于保持了高温状态下的一些结构,故有一个 向稳定状态过渡的过程,从而造成老化现象较严重。
相关文档
最新文档