单位阶跃响应临界阻尼=1
机械工程控制基础(复习要点)

1
1
2)峰值时间:响应曲线达到第一个峰值所需 的时间。
tp d 1 2 n
3)最大超调量 M p :常用百分比值表示为:
Mp x0 (t p ) x0 () x0 ( )
( / 1 2 )
第四章 频率特性分析
1、频率响应与频率特性
频率响应:线性定常系统对谐波输入的稳态响应。 幅频特性:线性定常系统在简谐信号激励下,其稳 态输出信号和输入信号的幅值比,记为A(ω); 相频特性:线性定常系统在简谐信号激励下,其稳 态输出信号和输入信号的相位差,记为φ(ω); 频率特性:幅频特性与相频特性的统称。即:线性 定常系统在简谐信号激励下,其稳态输出信号 和输入信号的幅值比、相位差随激励信号频率 ω变化特性。记为
G B s 1 Gk s G q s
第三章 时间响应分析
1、时间响应及其组成 时间响应:系统在激励作用下,系统输出随 时间变化关系。 时间响应可分为零状态响应和零输入响应或 分为自由响应和强迫响应。 零状态响应:“无输入时的系统初态”为零 而仅由输入引起的响应。 零输入响应:“无输入时的系统初态”引起 的自由响应。 控制工程所研究的响应往往是零状态响应。
K 增益 T 1Fra bibliotekn 时间常数 n 固有频率
阻尼比
6)一阶微分环节: G s s 1 7)二阶微分环节: G s s 2 s 1
2 2
8)延时环节: G s e s
7、系统各环节之间的三种连接方式:
串联:
G s Gi s
G ( j ) A e
j
频率特性又称频率响应函数,是激励频率ω的函数。 频率特性:在零初始条件下,系统输出y(t)的傅里叶 变换Y(ω)与输入x(t)的傅里叶变换X(ω)之比,即 Y j G ( j ) A e X
3.3.1 二阶系统的单位阶跃响应

1
是输出响应的单调和振荡过程的分界,通常称为临界
o
t
临界阻尼响应
(四)无阻尼( 0 )的情况
系统有一对共轭纯虚数极点 p1, 2 j n ,它们在S平面上的位置如 将 0 代入 图所示。
C (t ) 1 e nt (cos d t
C (t ) 1 cos n t
0
2
P 1 n n
1
系统具有实部为正的极点,
P2 n n 2 1
输出响应是发散的,此时系统已无法正常工作。
根据上面的分析可知,在不同的阻尼比时,二阶系统的响应具有不同的特
点。因此阻尼比
是二阶系统的重要特征参数。
若选取
n t为横坐标,可作出不同阻尼比时二阶系统单位阶跃响应曲线。
j
1
2
sin d t )
系统的输出响应是无阻尼的等幅振荡过程,其振荡频率为 [s] C(t) 1 o
n
n
P 1
o
P2
(a)
0
(b)
t
无阻尼时的极点分布和响应
综上所述,不难看出频率
n 和
的物理意义。 d
——无阻尼自然振荡频率,此时系统输出为等幅振荡 n 阻尼振荡频率。系统输出为衰减正弦振荡过程。 —— d 分析
如图所示,此时曲线只和阻尼比
有关。
C (t )
0.1
0.3 0.5 0.7
越小,响应特性振荡得越厉害, 随着 增大到一定程度,响应特
性变成单调上升的。
系统无振荡时,以临界阻尼时过 渡过程的时间最短,此时,系统 具有最快的响应速度。
机械工程控制基础-----填空简答题知识点

1、反馈:输出信号被测量环节引回到输入端参与控制的作用。
2、开环控制系统与闭环控制系统的根本区别:有无反馈。
3、线性及非线性系统的定义及根本区别:当系统的数学模型能用线性微分方程描述时,该系统的称为线性系统。
非线性系统:一个系统,如果其输出不与其输入成正比,则它是非线性的。
根本区别:线性系统遵从叠加原理,而非线性系统不然。
4、传递函数的定义及特点:零初始条件下,系统输出量的拉斯变换与输入量的拉斯变换的比值。
用G〔s〕表示。
特点:1〕、传递函数是否有量纲取决于输入与输出的性质,同性质无量纲。
2〕、传递函数分母中S的阶数必n不小于分子中的S的阶数m,既n=>m ,因为系统具有惯性。
3〕、假设输入已给定,则系统的输出完全取决于其传递函数。
4〕、物理量性质不同的系统,环节和元件可以具有相同类型的传递函数。
5〕、传递函数的分母与分子分别反映系统本身与外界无关的固有特性和系统同外界的关系。
5、开环函数的定义:前向通道传递函数G〔s〕与反馈回路传递函数H(s)之积。
6、时间响应的定义和组成:系统在激励信号作用下,输出随时间的变化关系。
按振动来源分为:零状态响应和零输入响应。
按振动性质:自由响应和强迫响应。
7、瞬态性能指标以及反映系统什么特性:性能指标:上升时间tr、峰值时间tp、最大超调量Mp、调整时间ts、振荡次数N。
这些性能指标主要反映系统对输入的响应的快速性。
8、稳态误差的定义及计算公式:系统进入稳态后的误差。
稳态误差反映稳态响应偏离系统希望值的程度。
衡量控制精度的程度。
稳态误差不仅取决于系统自身结构参数,而且与输入信号有关。
系统误差:输入信号与反馈信号之差。
9、减少输入引起稳态误差的措施:增大干扰作用点之前的回路的放大倍数K1,以及增加这一段回路中积分环节的数目。
10、频率响应的概念:线性定常系统对谐波输入的稳态响应称为频率响应。
11、频率特性的组成:幅频特性和相频特性。
12、稳定性的概念:系统在扰动作用下,输出偏离原平衡状态,待扰动消除后,系统能回到原平衡状态〔无静差系统〕或到达新的平衡状态〔有静差系统〕。
2. 实验二 二阶系统阶跃响应

实验二二阶系统阶跃响应一、实验目的1. 研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响,定量分析ζ和ωn与最大超调量σp和调节时间ts之间的关系。
2. 进一步学习实验系统的使用。
3. 学会根据系统的阶跃响应曲线确定传递函数。
4. 学习用MATLAB仿真软件对实验内容中的电路进行仿真。
二、实验原理典型二阶闭环系统的单位阶跃响应分为四种情况:1)欠阻尼二阶系统如图1所示,由稳态和瞬态两部分组成:稳态部分等于1,瞬态部分是振荡衰减的过程,振荡角频率为阻尼振荡角频率,其值由阻尼比ζ和自然振荡角频率ωn决定。
(1)性能指标:: 单位阶跃响应C(t)进人±5%(有时也取±2%)误差带,并且不再超出该误差带的调节时间tS最小时间。
超调量σ% ;单位阶跃响应中最大超出量与稳态值之比。
单位阶跃响应C(t)超过稳态值达到第一个峰值所需要的时间。
峰值时间tP :结构参数ξ:直接影响单位阶跃响应性能。
(2)平稳性:阻尼比ξ越小,平稳性越差长,ξ过大时,系统响应迟钝,(3)快速性:ξ过小时因振荡强烈,衰减缓慢,调节时间tS调节时间t也长,快速性差。
ξ=0.7调节时间最短,快速性最好。
ξ=0.7时超调量σ%<5%, S平稳性也好,故称ξ=0.7为最佳阻尼比。
2)临界阻尼二阶系统(即ξ=1)系统有两个相同的负实根,临界阻尼二阶系统单位阶跃响应是无超调的,无振荡单调上升的,不存在稳态误差。
3)无阻尼二阶系统(ξ=0时) 此时系统有两个纯虚根。
4)过阻尼二阶系统(ξ>1)时此时系统有两个不相等的负实根,过阻尼二阶系统的单位阶跃响应无振荡无超调无稳态误差,上升速度由小加大有一拐点。
三、 实验内容1. 搭建模拟电路典型二阶系统的闭环传递函数为:其中,ζ 和ωn 对系统的动态品质有决定的影响。
搭建典型二阶系统的模拟电路,并测量其阶跃响应:二阶系统模拟电路图其结构图为:系统闭环传递函数为:式中, T=RC ,K=R2/R1。
控制工程基础实验指导书(答案) 2讲解

实验二二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。
2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单位阶跃响应。
3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调整时间ts。
4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。
5、学会使用Matlab软件来仿真二阶系统,并观察结果。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。
图2-1 二阶系统原理框图图2-1 二阶系统的模拟电路由图2-2求得二阶系统的闭环传递函1222122112/() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为(1)(2), 对比式和式得n ωξ==12 T 0.2 , T 0.5 , n S S ωξ====若令则。
调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。
(1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为:图2-3 0 < ξ < 1时的阶跃响应曲线(2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为:如图2-4为二阶系统工作临界阻尼时的单位响应曲线。
(2) +2+=222nn nS S )S (G ωξωω1()1sin( 2-3n to d d u t t tgξωωωω--=+=式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线etn o n t t u ωω-+-=)1(1)(图2-4 ξ=1时的阶跃响应曲线(3)当K < 0.625时,ξ> 1,系统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢。
控制工程基础实验指导书[答案解析]
![控制工程基础实验指导书[答案解析]](https://img.taocdn.com/s3/m/bfe832f80508763231121290.png)
控制工程基础实验指导书自控原理实验室编印(内部教材)实验项目名称:(所属课程:)院系:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:(以下为实验报告正文)一、实验目的简述本实验要达到的目的。
目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。
二、实验仪器设备列出本实验要用到的主要仪器、仪表、实验材料等。
三、实验内容简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。
四、实验步骤简述实验操作的步骤以及操作中特别注意事项。
五、实验结果给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。
六、讨论分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。
七、参考文献列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资料。
格式如下:作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码实验一 控制系统典型环节的模拟一、实验目的1、掌握比例、积分、实际微分及惯性环节的模拟方法;2、通过实验熟悉各种典型环节的传递函数和动态特性;3、了解典型环节中参数的变化对输出动态特性的影响。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。
图中Z1和Z2为复数阻抗,它们都是R 、C 构成。
图1-1 运放反馈连接基于图中A 点为电位虚地,略去流入运放的电流,则由图1-1得:21()o i u ZG s u Z ==-(1-1) 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
1、比例环节实验模拟电路见图1-2所示图1-2 比例环节传递函数:21()R G s K R =-=- 阶跃输入信号:-2V 实验参数:(1) R 1=100K R 2=100K (2) R 1=100K R 2=200K 2、 惯性环节实验模拟电路见图1-3所示图1-3 惯性环节传递函数:2212211211()11R CS R Z R K CS G s Z R R R CS TS +=-=-=-=-++阶跃输入:-2V 实验参数:(1) R 1=100K R 2=100K C=1µ f23、积分环节实验模拟电路见图1-4所示图1-4 积分环节传递函数:21111()Z CS G s Z R RCS TS=-=-=-= 阶跃输入信号:-2V 实验参数:(1) R=100K C=1µ f (2) R=100K C=2µ f 4、比例微分环节实验模拟电路见图1-5所示图1-5 比例微分环节传递函数:22211111()(1)(1)1D Z R R G S R CS K T S R Z R CS R CS =-=-=-+=-++ 其中 T D =R 1C K=12R R 阶跃输入信号:-2V 实验参数:12(2)R1=100K R2=200K C=1µ f四、实验内容与步骤1、分别画出比例、惯性、积分、比例微分环节的电子电路;2、熟悉实验设备并在实验设备上分别联接各种典型环节;3、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性测试,观察并记录其单位阶跃响应波形。
控制工程基础实验指导书(答案)-2

实验二二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。
2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单位阶跃响应。
3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调整时间ts。
4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。
5、学会使用Matlab软件来仿真二阶系统,并观察结果。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。
图2-1 二阶系统原理框图图2-1 二阶系统的模拟电路由图2-2求得二阶系统的闭环传递函1222122112/() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为(1)(2), 对比式和式得12214n K TT T T K ωξ==12 T 0.2 , T 0.5 , 100.625n S S K K ωξ==若令则。
调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。
(1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为:图2-3 0 < ξ < 1时的阶跃响应曲线(2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为:如图2-4为二阶系统工作临界阻尼时的单位响应曲线。
(2) +2+=222nn n S S )S (G ωξωω2221 ()1sin(1 1 . 2-3n to d d u t t tgξωξωξωωξ---=-+-=-式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线etn o n t t u ωω-+-=)1(1)(图2-4 ξ=1时的阶跃响应曲线(3)当K < 0.625时,ξ> 1,系统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢。
自动控制原理第3章

arctan 9 3
1.25rad
则响应为 y(t) 1 2 e 3t 0.95e j1.25e (1 j)t 0.95e j1.25e (1 j)t 5
1 2 e 3t 0.95e t e j(t1.25) e j(t1.25) 5 1 2 e 3t 1.9e t cos(t 1.25)
平衡位置:力学系统中,当系统外的作 D
用力为零时,位移保持不变的位置。
此时位移对时间的各阶导数为零。 A点和D点是平衡位置, B点和C点不是平衡位置。
O
B
C
A
稳定的平衡位置:若在外力作用下,系统偏离了平衡位置,但 当外力去掉后,系统仍能回到原来的平衡位置,则称这一个平 衡位置是稳定的平衡位置。
所以A点是稳定的平衡位置,而D点不是稳定的平衡位置。
注意:输入信号为非单位阶跃信号时,依齐次性,响应 只是沿纵轴拉伸或压缩,基本形状不变。所以ts 、 tr、 tp 、 σ并不发生变化。
当t < ts时,称系统处于动态;当t > ts时,称系统处于稳态。
3.2 一阶系统的单位阶跃响应
一阶系统(惯性环节)
G(s) 1 Ts 1
单位阶跃响应为
t
y(t) 1 e T
设零初始状态,y(0)=0 r (t)=1(t)时,y(t)的响应曲线为
y(t)
1.05 y(∞)
ym
y(∞)
0.95 y(∞)
tr tp
ts
ym:单位阶跃响应的最大偏离量。 y(∞):单位阶跃响应的稳态值。并非期望值。 ts:调节时间。y(t)进入0.5*y(∞)或0.2* y(∞)构成的误差带 后不再超出的时间。 tr:上升时间。 y(t) 第一次达到 y(∞)的时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
100%
20 10 0 0.2 0.4 0.6 0.8 1.0
§3-3 二阶系统的时域分析
一、数学模型 微分方程
d 2c (t ) dt 2
C (s)
+ 2z w n
dc (t ) dt
+ w n 2c (t ) = w n 2 r (t )
1 Kw n2 = 2 2 = F (s) = 2 传递函数 2 T s + 2z Ts + 1 R (s) s + 2z w n s + w n
1 s 2 1 s 2 s ( s jd )( s jd ) s ( s )2 d 2
d 1 s 2 2 2 2 s ( s ) d ( s ) d d
h( t ) 1 e (cos d t sin d t ) d t h( t ) 1 e (cos d t sin d t ) 2 1 - zw t
j
w d = w n 1- z 2 ——阻尼振荡角频
率 h(t ) = 1- e- z w t (cos wd t +
n
z 1- z
2
sin wd t )
×
s1
w d = w n 1- z 2
n
= 1= 1-
e-
z wnt
1- z 2 e- z w n t
1- z
2
( 1- z 2 cos w d t + z sin w d t )
j
0<<1
0
jjຫໍສະໝຸດ 欠阻尼=10临界阻尼
>1
0
过阻尼
s1,2 n jn 1 2
s1,2 = - w n
s1,2 n n 2 1
3
三、二阶系统的单位阶跃响应 欠阻尼(0< < 1)
s1,2 n jn 1 2 jd
0 1 2 3 4 5 6 7 8 9 10
二阶系统单位阶跃响应曲线
nt
过阻尼(>1)
e- t / T1 e- t / T2 h(t ) = 1+ + T2 / T1 - 1 T1 / T2 - 1
9
四、欠阻尼性能分析(0<<1)
h( t ) = 1延迟时间 td
h( t d ) = 1e-
t
n
= 1-
e
n
1- z 2
( 1- z 2 cos w d t + z sin w d t )
5
h( t ) = 1-
e-
z wnt 2
1- z
sin(w d t + b )
——有超调,衰减振荡
稳态分量 无阻尼(=0)
暂态分量
s1,2 jn
h(t ) = 1- cos w n t
sin(w d t r + b ) = 1
p- b tr » wd
10
峰值时间 tp
d h( t ) = 0 dt t= t p
%
100 90
p tp = wd
超调量 %
%
h( t p ) h( ) h( )
100%
80 70
60
50 40 30
% e
1
2
——有超调,等幅振荡
1
0
t
6
临界阻尼(=1)
s1,2 = - w n
——单调增,无超调
h(t ) = 1- e- wnt (1+ wnt )
过阻尼(>1)
T1 = 1 w n (z z 2 - 1)
s1,2 n n 2 1
T2 =
1 w n (z + z 2 - 1)
s1,2 jn
2
2 s 1 特征根: 1,2 n n
欠阻尼(0< < 1) : Re [s1,2]<0
s1=s2,Re [s1,2]<0,Im [s1,2]=0。 临界阻尼( =1): 过阻尼( > 1) : Re [s1,2]<0,Im [s1,2]=0。
h(t) 1.8 1.6 1.4 1.2 0.8 1.0 0.8 0.6 0.4 0.2
z= 0
0.1 0.2 0.4 1.0 2.0
h(t ) = 1- cos w n t
欠阻尼(0<<1)
h( t ) = 1ez wnt 2
1- z
sin(w d t + b )
临界阻尼(=1)
h(t ) = 1- e- wnt (1+ wd t )
——阻尼比;
n>0 ——自然振荡角频率(无阻尼振荡角频率);
T>0 ——自然周期(=1/n)。
动态结构图
R(s)
2 wn s( s + 2z w n )
C(s)
1
二、二阶系统的特征根在复平面的分布 w n2 F (s) = 2 传递函数: s + 2z w n s + w n 2 特征方程: 特征根:
sinβ
cosβ
- s = - z wn 0
sin(w d t + b )
b = arctan( 1- z 2 / z ) = arccos z ——阻尼角
4
s 2n 1 n 2 1 2 H ( s ) R( s )( s) 2 2 s s 2n s n 2 s s 2n s n
——过阻尼的
时间常数, 且T1>T2
e- t / T1 e- t / T2 h(t ) = 1+ + ——单调增,无超调 T2 / T1 - 1 T1 / T2 - 1
7
两种单调递增的曲线与一阶系统的不同,起始斜率为0。
c(t)
1
一阶系统
二阶临界阻尼系统 二阶过阻尼系统 t
0
8
无阻尼(=0)
s2 + 2zwn s + wn2 = 0
s1,2 n n 2 1
无阻尼(=0):Re [s1,2]=0
j
Re [s1,2]>0 不稳定(<0):
j
不稳定1
0
1<<0
不稳定2
0
<1
j
无阻尼
0
=0
s1,2 n j n 1 2
s1,2 n n 2 1
e
- z wnt 2
1- z
z w n td 2
sin(w d t + b )
×
n
s1
j
w d = w n 1- z 2
1- z
sin(w d t d + b ) = 0.5
- s = - z wn
0
td »
1+ 0.7z wn
ez w n tr 2
上升时间 tr
h( t r ) = 1-
1- z