排队等待的顾客数

合集下载

排队论模型

排队论模型

排队论模型随机服务系统理论是研究由顾客、服务机构及其排队现象所构成的一种排队系统的理论,又称排队论。

排队现象是一种经常遇见的非常熟悉的现象,例如:顾客到自选商场购物、乘客乘电梯上班、汽车通过收费站等。

随机服务系统模型已广泛应用于各种管理系统,如生产管理、库存管理、商业服务、交通运输、银行业务、医疗服务、计算机设计与性能估价,等等。

随机服务系统模拟,如存储系统模拟类似,就是利用计算机对一个客观复杂的随机服务系统的结构和行为进行动态模拟,以获得系统或过程的反映其本质特征的数量指标结果,进而预测、分析或估价该系统的行为效果,为决策者提供决策依据。

排队论模型及其在医院管理中的作用每当某项服务的现有需求超过提供该项服务的现有能力时,排队就会发生。

排队论就是对排队进行数学研究的理论。

在医院系统内,“三长一短”的现象是司空见惯的。

由于病人到达时间的随机性或诊治病人所需时间的随机性,排队几乎是不可避免的。

但如何合理安排医护人员及医疗设备,使病人排队等待的时间尽可能减少,是本文所要介绍的。

一、医院系统的排队过程模型医院是一个复杂的系统,病人在医院中的排队过程也是很复杂的。

如图1中每一个箭头所指的方框都是一个服务机构,都可构成一个排队系统,可见图2。

图1 医院系统的多级排队过程模型二、排队系统的组成和特征一般的排队系统都有三个基本组成部分:1. 输入过程其特征有:顾客源(病人源)的组成是有限的或无限的;顾客单个到来或成批到来;到达的间隔时间是确定的或随机的;顾客的到来是相互独立或有关联的;顾客相继到达的间隔时间分布和所含参数(如期望值、方差等)都与时间无关或有关。

2. 排队规则其特征是对排队等候顾客进行服务的次序有下列规则:先到先服务,后到先服务,有优先权的服务(如医院对于病情严重的患者给予优先治疗,在此不做一般性的讨论),随机服务等;还有具体排队(如在候诊室)和抽象排队(如预约排队)。

排队的列数还分单列和多列。

3. 服务机构其特征有:一个或多个服务员;服务时间也分确定的和随机的;服务时间的分布与时间有关或无关。

排队模型——精选推荐

排队模型——精选推荐

排队模型一 1. 一般的排队过程为:顾客由顾客源出发,到达服务机构(服务台、服务员)前,按排队规则排队等待接受服务,服务机构按服务规则给顾客服务,顾客接受完服务后就离开。

排队过程的一般过程可用下图表示。

我们所说的排队系统就是指图中方框所包括的部分:在现实生活中的排队现象是多种多样的,对上面所说的“顾客”和“服务员”要作广泛的理解。

它们可以是人,也可以是某种物质或设备。

排队可以是有形的,也可以是无形的。

尽管排队系统是多种多样的,但从决定排队系统进程的因素来看,它有三个基本的组成部分,这就是输入过程、排队规则及服务机构.1)输入过程:描述顾客来源以及顾客到达排队系统的规律。

包括:顾客源中顾客的数量是有限还是无限;顾客到达的方式是单个到达还是成批到达;顾客相继到达的间隔时间分布是确定型的还是随机型的,分布参数是什么,是否独立,是否平稳。

2)排队规则:描述顾客排队等待的队列和接受服务的次序。

包括:即时制还是等待制;等待制下队列的情况(是单列还是多列,顾客能不能中途退出,多列时各列间的顾客能不能相互转移);等待制下顾客接受服务的次序(先到先服务,后到先服务,随机服务,有优先权的服务)。

3)服务机构:描述服务台(员)的机构形式和工作情况。

包括:服务台(员)的数目和排列情况;服务台(员)的服务方式;服务时间是确定型的还是随机型的,分布参数是什么,是否独立,是否平稳。

2.到达和服务过程的模型2.1 到达过程的模型用表示第i 个顾客到达的时间,.i t 称为第i 个到达时间间隔.1i i T t t +=−i 我们用的特征来刻画顾客到达过程. 最常见的情况是独立同分布. 用X 表示这样的随机变量.12,,T T 12,,T T 如果X 服从参数为λ的指数分布.这时1()()i E T E X λ==即平均每隔1λ来一个顾客.换句话说,单位时间理平均有λ个顾客到来.称λ为到达速率. 用表示到时刻t 为止到达的顾客总数,则在上面的假设下()N t ()()N t P t λ∼.除了指数分布外,常用的还有爱尔朗分布,其密度函数为1()(), 0.(1)!k RxR Rx e f x x k −−=≥− 这时2(), ()i i k k E T D T R R==. k 叫形状参数, R 叫速率参数.当取λ使得R k λ=, 则爱尔朗分布可以看成是k 个独立的服从参数为λ的指数分布随机变量的和的分布.2.2服务过程的模型一般总是认为不同顾客接受服务占用的时间长短是相互独立的. 用Y表示一个客户接受服务的时间长短, 它是一个随机变量.若Y的分布是参数为μ的指数分布, 意味着一个顾客的服务时间平均为1μ. 单位时间里可以完成的平均顾客数为μ.若Y服从形状参数为k, 速率参数为R kμ=的爱尔朗分布, 则平均服务时间为1μ, 根据爱尔朗分布的性质, 可以将Y看作是k个相继子服务的总时间, 每个子服务都服从参数为1kμ的指数分布且相互独立.在排队论中,我们常用如下字母表示特定的到达时间间隔或服务时间分布:M: i.i.d. 指数分布D: i.i.d. 的确定分布E k: i.i.d. 的形参为k的爱尔朗分布GI: 到达时间间隔是i.i.d. 的某种一般分布G: 服务时间是i.i.d. 的某种一般分布在处理实际排队系统时,需要把有关的原始资料进行统计,确定顾客到达间隔和服务时间的经验分布,然后按照统计学的方法确定符合哪种理论分布。

mm1n排队论模型参数

mm1n排队论模型参数

mm1n排队论模型参数
M/M/1 排队论模型是一种简单的排队系统模型,用于分析单一服务台、顾客到达服从泊松分布、服务时间服从指数分布的系统。

在M/M/1 模型中,有三个主要参数:
1. 到达率(λ):表示单位时间内到达系统的顾客数的期望值,服从参数为λ的泊松分布。

到达率决定了系统中的顾客数量变化速率。

2. 服务率(μ):表示单位时间内一个顾客被服务完成的期望值,服从参数为μ的指数分布。

服务率决定了系统中顾客等待服务的速度。

3. 顾客到达和服务时间是独立的:这个条件表明顾客的到达和服务的完成之间没有影响,使得模型更具有现实意义。

通过平衡方程法,可以对M/M/1 模型进行稳态分析,计算出以下几个重要性质:
1. 队长(Ls):表示系统中的顾客数(n)的期望值。

2. 排队长(Lq):表示系统中排队等待服务的顾客数(n)的期望值。

3. 逗留时间(Ws):指一个顾客在系统中的全部停留时间,为期望值。

4. 等待时间(Wq):指顾客在系统中等待服务的時間,为期望值。

了解这些参数后,可以对M/M/1 模型进行评估和优化,以提高系统的效率和服务质量。

M/M/1 模型虽然简单,但在实际应用中具有广泛的价值,如电话交换系统、计算机网络、银行窗口等。

掌握M/M/1 模型的基本原理和分析方法对于学习排队论和实际应用具有重要意义。

排队论方法讲解

排队论方法讲解


队 论 方 法
1. 基本概念
1.排队过程的一般模型 顾客服务过程分为四个步骤:
进入排队系统(输入) 等候服务 接受服务 离开系统(输出)
顾客接受服务后立即离开系统,因此输出 过程可以不用考虑,则


输入过程 排队系统排队规则 服务机构

队 论
①输入过程: I.顾客总体 (顾客源)

队 论
1.5.2 指数分布
当顾客流为泊松流时,用T表示两顾客相 继到达的时间间隔,则T是一个随机变量, 其分布函数为
FT (t ) P{T t} 1 P(T t ) 1 P0 (t )
t t 又P ( t ) e , 则 F ( t ) 1 e , 0 T
k 0 n


(全概公式、独立性 ) Pn k (t ) Pk (t , t t )
k 0 n
Pn (t )(1 t ) Pn 1 (t )t o(t )
排 队 论
Pn (t , t t ) Pn (t ) o(t ) Pn (t ) Pn 1 (t ) t t



队 论
(1) 无后效性:在不相交的时间区 间内,顾客到达数相互独立,即在 [t,t+△t]时段内到达的顾客数,与 时刻t之前到达的顾客数无关; (2)平稳性:对于充分小的△t,在 [t,t+△t]内有1个顾客到达的概率, 只与△t有关,而与t无关,且 P1 (t , t t ) t o(t ),
t
实际中,多数问题都属于稳态情 况,且通常在经过某一时段后即可 到达稳态,而不需要t→∞

队 论

交通流理论—排队论

交通流理论—排队论

组成
排队系统的组成 (1) 输入过程:就是指各种类型的"顾客(车辆或行人)"按怎样的规律到 达。有各式各样的输入过程,例如: D—定长输入:顾客等时距到达。 M—泊松输入:顾客到达时距符合负指数分布。 Ek—爱尔朗输入:顾客到达时距符合爱尔朗分布。
组成
排队系统的组成
(2)排队规则:指到达的顾客按怎样的次序接受服务。 例如: • 损失制:顾客到达时,若所有服务台均被占,该顾客就自动消失,永不再来。 • 等待制:顾客到达时,若所有服务台均被占,他们就排成队伍,等待服务,
离去 1
到达
离去 2
到达 1
离去
2
...
n
单通道多服务台系统
到达
离去
1
到达
离去
(组1)成单通道服务系统
到达
离去
服务台的排列方式1
服务台
单通道单服务台系统
(2)多通道服务系统
(2) 多通道服务系统
离去
1
到达
离去 2
3
离去
可通的多通道系统
到达 1
离去
2
...
n
单通道多服务台系统
到达
离去
1
到达
离去
2
到达
M/M/1系统及其应用
其他参数
平均非零排队长度:
qw
1
1
(qw q ) (辆)
即排队不计算没有顾客的时间,仅计算有顾客时的平均排队长度, 即非零排队。如果把有顾客时计算在内,就是前述的平均排队长度。
M/M/1系统及其应用
其他参数
系统中顾客数超过k的概率:
P(n k) 1 P(n k)
k
1- Pi 1 (1 (1 ) ... k (1 )) i 0

排队论及其应用

排队论及其应用

排队系统的符号表述描述符号:①/②/③/④/⑤/⑥各符号的意义:①——表示顾客相继到达间隔时间分布,常用以下符号:M——表示到达的过程为泊松过程或负指数分布;D——表示定长输入;EK——表示K阶爱尔朗分布;G——表示一般相互独立的随机分布。

②——表示效劳时间分布,所用符号与表示顾客到达间隔时间分布一样。

③——表示效劳台(员)个数:“1〞表示单个效劳台,“s〞(s>1)表示多个效劳台。

④——表示系统中顾客容量限额,或称等待空间容量。

如系统有K个等待位子,那么,0<K<∞,当K=0时,说明系统不允许等待,即为损失制。

K=∞时为等待制系统,此时一般∞省略不写。

K为有限整数时,表示为混合制系统。

⑤——表示顾客源限额,分有限与无限两种,∞表示顾客源无限,一般∞也可省略不写。

⑥——表示效劳规那么,常用以下符号FCFS:表示先到先效劳的排队规那么;LCFS:表示后到先效劳的排队规那么;PR:表示优先权效劳的排队规那么。

二、排队系统的主要数量指标描述一个排队系统运行状况的主要数量指标有:1.队长和排队长(队列长)队长是指系统中的顾客数(排队等待的顾客数与正在承受效劳的顾客数之和);排队长是指系统中正在排队等待效劳的顾客数。

队长和排队长一般都是随机变量。

2.等待时间和逗留时间从顾客到达时刻起到他开场承受效劳止这段时间称为等待时间。

等待时间是个随机变量。

从顾客到达时刻起到他承受效劳完成止这段时间称为逗留时间,也是随机变量。

3. 忙期和闲期忙期是指从顾客到达空闲着的效劳机构起,到效劳机构再次成为空闲止的这段时间,即效劳机构连续忙的时间。

这是个随机变量,是效劳员最为关心的指标,因为它关系到效劳员的效劳强度。

与忙期相对的是闲期,即效劳机构连续保持空闲的时间。

在排队系统中,忙期和闲期总是交替出现的。

4.数量指标的常用记号(1)主要数量指标L——平均队长,即稳态系统任一时刻的所有顾客数的期望值;L q——平均等待队长,即稳态系统任一时刻等待效劳的顾客数的期望值;W——平均逗留时间,即(在任意时刻)进入稳态系统的顾客逗留时间的期望值;W q——平均等待时间,即(在任意时刻)进入稳态系统的顾客等待时间的期望值。

(完整word版)《运筹学》_第六章排队论习题及_答案

(完整word版)《运筹学》_第六章排队论习题及_答案

《运筹学》第六章排队论习题转载请注明1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。

2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。

排队论公式推导过程

排队论公式推导过程

排队论公式推导过程排队论是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法。

在咱们生活中,排队的现象随处可见,比如在超市结账、银行办业务、餐厅等座位等等。

咱们先来说说排队论中的一些基本概念。

想象一下,你去一家热门的奶茶店买奶茶,顾客就是“输入”,奶茶店的服务员就是“服务台”,制作奶茶的过程就是“服务时间”,而排队等待的队伍就是“队列”。

排队论中的一个重要公式就是 M/M/1 排队模型的平均排队长度公式。

咱们来一步步推导一下。

假设平均到达率为λ,平均服务率为μ。

如果λ < μ,系统是稳定的,也就是队伍不会无限长下去。

首先,咱们来求一下系统中的空闲概率P₀。

因为没有顾客的概率,就等于服务台空闲的概率。

P₀ = 1 - λ/μ接下来,咱们算一下系统中的平均顾客数 L。

L = λ/(μ - λ)那平均排队长度 Lq 怎么算呢?这就要稍微动点脑筋啦。

Lq = λ²/(μ(μ - λ))推导过程是这样的:咱们先考虑一个时间段 t 内新到达的顾客数 N(t),它服从参数为λt的泊松分布。

在这个时间段内完成服务离开的顾客数 M(t) 服从参数为μt 的泊松分布。

假设在时刻 0 系统为空,经过时间 t 后系统中的顾客数为 n 的概率Pn(t) 满足一个微分方程。

对这个微分方程求解,就能得到上面的那些公式啦。

我记得有一次,我去一家新开的面包店,人特别多,大家都在排队。

我站在那里,心里就琢磨着这排队的情况,不就和咱们学的排队论很像嘛。

我看着前面的人,计算着大概的到达率,再瞅瞅店员的动作,估计着服务率。

那时候我就在想,要是店家能根据这些数据合理安排人手,大家等待的时间就能大大缩短啦。

总之,排队论的公式推导虽然有点复杂,但只要咱们耐心琢磨,就能搞明白其中的道理。

而且这些公式在实际生活中的应用可广泛啦,能帮助我们优化各种服务系统,让大家的生活更加便捷高效!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M/M/1/k系统
平均队长分两种情况:
1 k L = n = k +1 2 n=0
k
续一
ρ =1时 ρ ≠1 时
ρ (k +1)ρk+1 L = npn = k+1 1 ρ 1 ρ n=0
k
平均等待队长
k (k -1) , ρ =1 2(k +1) Lq = L - (1 - p0 ) = k ρ ρ ( 1+ k ρ ) , ρ 1 k+1 1 - ρ 1 - ρ
M/M/1/k系统
续二
pk 是个重要的量,它称为损失概率,单位时间平均 损失顾客数为 λ
, ρ =1 k +1 λL = λpk = k λ ( 1 ρ ) ρ , ρ 1 k+1 1- ρ
单位时间内平均真正进入系统的顾客数为
kλ , ρ =1 k +1 λe = λ - λpk = k λ ( 1 ρ ) , ρ 1 k+1 1- ρ
M/M/1/k系统
续三
k +1 , ρ =1 2λ L W = = kρk+1 λe 1 , ρ 1 k μ - λ λ(1 - ρ ) k -1 , ρ =1 Lq 2λ Wq = = kρk+1 λe ρ , ρ 1 k μ - λ λ(1 - ρ )
当ρ≠0时,W=Wq+1/μ
例一 例二
M/M/c/∞系统
ρc pc 平均等待队长 Lq = 2 (1 - ρc ) λ 平均忙的服务台数 c = npn + c pn = μ n=0 n=c ρc pc 平均逗留的顾客数 L = c + Lq = ρ + 2 (1 - ρc ) Lq pc 平均等待时间 Wq = = λ cμ(1- ρc )2
M/M/1/k系统
用 N(t) 表 示 时 刻 t 系 统 中 的 顾 客 数 , 系 统 的 状 态 集 合 为 S={0,1,2,…},则{N(t);t≥0}是个有限生灭过程,有
λn = λ, n = 0,1,2,...,k -1 n =1,2,...,k μn = μ λ λ ρ = , pn = ( )n p0 , n = 0,1,2,...,k μ μ 1 , ρ =1 1 k +1 p0 = k = 1- ρ n , ρ 1 ρ k+1 n=0 1 - ρ 1 , ρ =1 k +1 pn = n 0,1,2,...,k n (1 - ρ)ρ , ρ 1 k+1 1 ρ
M/M/1/∞系统
续三
由以上公式,得到这四个指标之间的关系 Lq=L-(1-p0) λW=L,λWq=Lq 第二个公式通常称为Little公式 上面两组关系式,可以作这样直观解释:当系统内有顾客时, 平均等待队长Lq应该是平均队长L减1,当系统内没有顾客时, 平均等待队长Lq与平均队长L相等,所以 Lq=L-[(1-p0)*1+p0*0]=L-(1-p0) 单位时间内平均进入系统的顾客为λ个,每个顾客在系统内 平均逗留W单位时间。因此系统内平均有λW个顾客。同样 理由,系统内平均有λWq个顾客在等待服务 例一 例二
M/M/1/∞系统
由生灭过程求平稳解公式,得
由假设ρ=λ/μ <0,则
λ n pn = ( ) p0 = ρn p0 μ
续一
1 - ρ
从而平稳分布为pn=(1-ρ)ρn,n≥0 利用平稳分布可以求统计平衡条件下的平均队长 L 、 平均等待队长Lq、顾客的平均等待时间Wq、平均逗 留时间W等
c-1
平均逗留时间 W = L =
λ

pc 1 + 2 cμ(1 - ρc ) μ
排队系统费用优化决策
排队系统中涉及的有关费用往往可以分为两 类:顾客的等待损失费用以及与服务设施相 关的费用。排队系统的优化通常是为了使上 述两种费用的总和或者其中之一尽可能小。

M/M/1/∞系统
续二
用N表示在统计平衡下系统的顾客数,平均队长L是 N的数学期望 ρ
L = E (N ) = 1- ρ
用 Nq表示在统计平衡时,排队等待的顾客数,它的 数学期望Lq=E(Nq)就是在等待服务的平均顾客人数
ρ2 Lq = E(Nq ) = 1- ρ λ Wq = μ( μ - λ ) 1 1 W = Wq + = μ μ- λ
第二节 无限源的排队系统
M/M/1/∞系统
M/M/1/k系统
M/M/c/∞系统
排队系统费用优化决策
M/M/1/∞系统
设顾客流是参数为λ的最简单流,λ是单位时间内平 均到达的顾客人数,即顾客到达的时间间隔相互独 立并且服从期望为1/λ的负指数分布。
只有一个服务台,服务一个顾客的服务时间v服从参 数为μ的负指数分布。平均服务时间为E(v)=1/μ,在 服务台忙时,单位时间平均服务完的顾客数为 μ 。 称ρ=λ/μ为服务强度。 用 N(t) 表示在时刻 t 顾客在系统中的数量,则系统 {N(t);t≥0}组成生灭过程
相关文档
最新文档