行列式论文

合集下载

范德蒙行列式及应用论文

范德蒙行列式及应用论文

范德蒙行列式及应用论文范德蒙行列式,又称范德蒙行列,是数学中的一个重要概念,它在线性代数、向量空间、微积分等领域有着广泛的应用。

范德蒙行列式由荷兰数学家范德蒙(Vandermonde)首先提出,它的定义和性质在很多数学分支中都发挥了重要的作用,特别是在矩阵理论、数论、代数学等领域,范德蒙行列式都有着深远的影响。

范德蒙行列式的定义是:对于给定的n个不同的数a1,a2,...,an,范德蒙行列式定义为:a1 a2 ... ana1^2 a2^2 ... an^2a1^3 a2^3 ... an^3... ... ... ...a1^n a2^n ... an^n即为由这些数按照一定顺序排列而成的矩阵行列式,其中ai^k表示ai的k次幂。

范德蒙行列式的值可以通过列主元化简为非零值,从而成为一个n阶矩阵行列式。

范德蒙行列式的应用非常广泛,下面我们来谈谈范德蒙行列式在数学中的一些重要应用。

首先,在线性代数中,范德蒙行列式是矩阵的一个重要特征,它可以用来描述矩阵的性质和结构。

通过范德蒙行列式,我们可以判断矩阵的秩、可逆性、行列式值等信息,进而用于解线性方程组、矩阵变换、特征值特征向量的求解等问题。

其次,在微积分中,范德蒙行列式也有着重要的应用。

在多元函数的求导、积分、微分方程的求解过程中,常常需要用到雅可比行列式,而雅可比行列式与范德蒙行列式有着密切的关系。

通过范德蒙行列式,我们可以求解多元函数的偏导数、雅可比行列式的值,从而解决相关的微分方程和积分问题。

另外,在数论中,范德蒙行列式也有着重要的应用。

由于范德蒙行列式的特殊性质,它经常出现在数论中的不同问题中,例如组合数学、数列求和、多项式插值等方面。

通过范德蒙行列式,我们可以推导出一些数学定理和结论,解决一些数论问题。

除了以上提到的领域外,范德蒙行列式还在代数学、几何学、概率论、信号处理、图论等领域有着重要的应用。

它不仅是数学理论研究的基础,还是许多工程技术问题的解决工具。

浅析行列式的计算技巧 毕业论文

浅析行列式的计算技巧  毕业论文

浅析行列式的计算技巧摘要:本文通过引用例题来对一些特殊行列式的求解技巧进行归纳分析,主要演示了化三角形法,降阶法,递推法,数学归纳法,辅助行列式法,拉普拉斯定理的应用,范德蒙得行列式的应用以及方阵特征值和行列式的关系的应用等方法。

引言:在平常的学习及其考试中经常能遇见有关特殊行列式计算的题目,如果不能掌握正确的方法和思维方式,此类型的题将会是考生的一个障碍,本人希望通过对若干经典考题的解析,使得学生对行列式求解类型的题目有章可循。

下面是对一些特殊行列式求解技巧的浅析,前两种方法是相对基本的方法,应用的范围较广,后面几种方法针对性较强,要对行列式的特征进行准确的判断。

方法一 化三角形法化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。

这是计算行列式的基本方法重要方法之一。

因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。

原则上,每个行列式都可利用行列式的性质化为三角形行列式。

但对于阶数高的行列式,在一般情况下,计算往往较繁。

因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。

例题:计算下列行列式的值:12312341345121221n n n n D n n n -=--[分析]显然若直接化为三角形行列式,计算很繁,所以我们要充分利用行列式的性质。

注意到从第1列开始;每一列与它一列中有n-1个数是差1的,根据行列式的性质,先从第n-1列开始乘以-1加到第n 列,第n-2列乘以-1加到第n-1列,一直到第一列乘以-1加到第2列。

然后把第1行乘以-1加到各行去,再将其化为三角形行列式,计算就简单多了。

解:11(2,,)(2,,)11111111111211111000311112011111000100000010000020011(1)200020000101(1)()2i in n i n r r i n r r n n n D n n n n n n nn n n n n n nn n n nn nn n n n ===+--=-----++----+=⋅-----+=⋅⋅-()(1)(2)12(1)12(1)(1)12n n n n n n n -----⋅-+=⋅⋅-[问题推广]例1中,显然是1,2,…,n-1,n 这n 个数在循环,那么如果是a 0,a 1,…,a n-2,a n-1这n 个无规律的数在循环,行列式该怎么计算呢?把这种行列式称为“循环行列式”。

行列式的性质及应用论文

行列式的性质及应用论文

行列式的性质及应用论文行列式是线性代数中的重要概念,它具有许多重要的性质和广泛的应用。

本文将从性质和应用两个方面来探讨行列式的相关内容。

首先,我们来讨论行列式的性质。

行列式是一个标量,它可以表示矩阵所围成的平行四边形的面积或者体积。

行列式的计算可以通过拉普拉斯展开定理、三角矩阵法和克拉默法则等方法来进行。

下面是行列式的一些重要性质:1. 行列式的性质一:行列式的值与行列式的转置值相等。

即,对于一个n阶方阵A,有det(A) = det(A^T)。

2. 行列式的性质二:行列式的值等于它的任意两行(或两列)互换后的值的相反数。

即,如果将矩阵A的第i行和第j行进行互换,那么有det(A) = -det(A'),其中A'是矩阵A进行行互换后的矩阵。

3. 行列式的性质三:如果矩阵A的某一行(或某一列)的元素全为零,则行列式的值为零。

即,如果A的某一行(或某一列)所有元素都为零,则有det(A) = 0。

4. 行列式的性质四:行列式的某一行(某一列)的元素都乘以一个常数k,等于用该行(该列)的元素乘以k的行列式的值。

即,如果将矩阵A的第i行的所有元素都乘以k,那么有det(A) = k * det(A'),其中A'是矩阵A进行行数乘k后的矩阵。

行列式的这些性质使得我们可以通过简单的操作来计算复杂矩阵的行列式,从而简化线性代数的运算。

接下来,我们来探讨行列式的应用。

行列式在数学和工程中有广泛的应用,下面举几个例子:1. 线性方程组的解:行列式可以用来求解线性方程组的解。

对于一个n阶方阵A和一个n维向量b,如果det(A)≠0,那么方程组有唯一解;如果det(A) = 0,那么方程组无解或有无穷多解。

2. 矩阵的逆:行列式可以用来判断一个矩阵是否可逆。

对于一个n阶方阵A,如果det(A)≠0,那么A是可逆的,且其逆矩阵的行列式为1/det(A)。

3. 平面和体积的计算:行列式可以用来计算平面和体积的面积或体积。

行列式的计算方法研究毕业论文

行列式的计算方法研究毕业论文

昆明学院2010 届毕业设计(论文)设计(论文)题目行列式的计算方法研究姓名学号 S006054127所属系数学系专业年级数学与应用数学2006级数学<1>班指导教师2010年 5 月摘要在线性代数中,行列式是个函数。

在本质上,行列式描述的是在n维空间中一个线性变换所形成的“平行多面体”的“体积”。

行列式的概念出现的根源是解线性方程组。

本论文首先,对行列式的计算方法进行总结,并对计算方法进行举例。

其次,n阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法。

最后,值得注意的是,在同一个行列式有时会有不同的求解方法,这就要根据行列式的特点选择适当的方法了。

关健词:行列式计算方法方法举例AbstractIn linear algebra, the determinant is a function.In essence, the determinant dimensional space described in a linear transformation.The formation of "parallel polyhedron" and "volume".The concept of the root of the determinant there is solution of linear equations.The paper on the summary of the calculation of the determinant and the calculation method for example.n-order determinant have many the calculation methods,Fewer non-zero elements Can be calculated using the definition(1.In accordance with the start of a column or a row. 2.Full expansion.). More determinant of the nature of the calculation is to use.In particular, observe the characteristics of the subject request,Flexible Selection Method.It is to be noted that In the same determinant sometimes will have different methods for solving. Here are some commonly used methods and illustrate with examples.Keywords:Determinant Calculation motheds illustrate with examples目录前言 (1)第一章普遍法求行列式1.1利用行列式的定义直接计算 (2)1.2利用行列式的性质计算 (2)1.3化为三角形行列式 (3)1.3.1直接化为阶梯型 (3)1.3.2相同去项化上三角形 (4)第二章特殊法求行列式2.1降阶法(按行(列)展开法) (5)2.1.1先简后展 (5)2.1.2 按第一行(列)展开 (6)2.2 递(逆)推公式法 (7)2.2.1等差数列递推 (7)2.2.2“一路直推” (9)2.2.3对角递推 (9)2.3利用德蒙行列式 (11)2.3.1变形德蒙行列式 (11)2.3.2 系数德蒙行列式 (12)2.3.3利用行列式性质凑德蒙行列式 (13)第三章其他方法求行列式3.1加边法(升阶法) (14)3.1.1“0”和“字母”加边 (14)3.1.2“0”和“1”加边 (14)3.2 数学归纳法 (16)3.2.1第一数学归纳法 (16)3.2.2第二数学归纳法 (17)3.2.3猜测归纳法 (17)3.3拆开法 (19)3.3.1对角拆开 (19)3.3.2按行(列)拆 (19)参考文献.............................................................................................21. 辞. (22)前言在线性代数中,行列式是一个函数,其定义域为的矩阵A,值域为一个标量,写作)det(A。

行列式的计算技巧及其应用毕业论文.docx

行列式的计算技巧及其应用毕业论文.docx

本科生毕业论文(设计)题目:行列式的计算技巧及应用学生姓名:谢芳学号: 201210010133专业班级:数学与应用数学12101班指导教师:颜亮完成时间: 2016 年 5 月目录摘要 (1)关键词 (1)0、前言 (1)1、基础知识及预备引理 (2)1.1行列式的由来及定义 (2)1.2行列式的性质 (3)1.3拉普拉斯定理及范德蒙德行列式的定义 (4)2、行列式的计算方法 (4)2.1定义法 (4)2.2利用行列式的性质(化三角型)计算 (5)2.3拆行(列)法 (6)2.4加边法(升阶法) (6)2.5范德蒙德行列式的应用 (7)3、n阶行列式的计算 (8)4、行列式的应用 (9)4.1行列式在代数中的应用 (9)4.2行列式在几何中的应用 (10)参考文献 (10)致谢 (11)行列式的计算技巧及应用数学与应用数学12101班谢芳指导老师颜亮摘要:行列式的计算是高等代数中一个重要的知识点,也是我们学好高等代数的重要工具 .无论是高等数学领域还是现实生活中的实际问题,都或多或少的包含了行列式的思想,所以学好行列式尤为重要.本文主要介绍几种行列式的思想,并从实例进行具体说明,介绍方法的同时加以应用.并通过举例说明行列式在代数和几何方面的应用,从而更好的了解行列式的普遍性.关键词:行列式,线性方程组,计算,方法Abstract: the calculation of the determinant is an important part of the knowledge of higher algebra, also an important tool for us to learn advanced algebra. Both higher mathematics and practical problems in real life, more or less contains the ideas of the determinant, so learning determinant is particularly important. This paper mainly introduces several kinds of determinant, and illustrate the application of the determinant in algebra and geometry, so we can understand the universality of the determinant better.Keywords: determinant, system of linear equations, calculation, the method0前言行列式是学习线性代数的基本工具,行列式的解法有很多种,在解题过程中我们先要观察行列式的特征,然后再考虑用什么样的方法解.本文主要介绍几种常用的解行列式的方法,如定义法、化三角型法、拆行(列)法、加边法、利用范德蒙德行列式计算相关行列式的方法,并通过一定的例题对所介绍的方法进行透彻的讲解,使之更好的理解.当然,解行列式的方法还有很多,只要我们善于总结.行列式在数学的很多领域都有广泛的应用,在线性代数和高等数学中更是一个重要的解题工具.本文主要介绍行列式在代数和几何方面的应用.1 线性方程组与行列式1.1 行列式的由来及定义在中学数学中,我们学习了含有一个未知数和两个未知数的方程的解法,那在这里我们来讨论含n 个未知数n 个方程的多元一次方程组即线性方程组的解法.首先我们先来看未知数的个数不多的时候的情形.我们先讨论n=2时的二元线性方程组 {0212111=+x a x a 0222121=+x a x a (1)为了解这一类方程,我们将引入一个很重要的工具——行列式 我们把线性方程组(1)的系数作成二阶行列式,1221221122211211a a a a a a a a -=当a a a a 22211211≠0时,方程组(1)有唯一解x 1=a a a a ab a b 22211211222121x 2=a a a a b a b a 22211211221111同样的,对于三元线性方程组{b x a x a x a 1313212111=++b x a x a x a 3323222121=++b x a x a x a 3333232131=++ (2) 的系数作成三阶行列式D=a a a a a a a a a 333231232221131211= a a a a a a a a a a a a a a a a a a 322311332112312213322113312312332211---++当0D ≠时,那么方程组(3)有解D D D D D D x x x 332211,,===其中D 1=a a b a a b a a b 333232322213121,D 2=a b a a b a a b a 333312322113111,D 3=b a a b a a b a a 332312222111211我们的目的是要把二阶、三阶行列式推广到n 阶行列式,然后用这一工具来解含有n 个未知量n 个方程的线性方程组.定义1[1]用符号 ||a a a a a a a a a nnn n n n 212222111211||表示n 阶行列式指的是n!项的代数和,这些项是所有取自该行列式不同行与不同列上的n 个元素的乘积a 1j 1a 2j 2⋯a nj n ,项的符号为(−1)π(j 1j 2⋯j n ),也就是说,当j 1j 2⋯j n 为偶排列时,这一项的符号为正,当j 1j 2⋯j n 为奇排列时符号为负.这一定义还可以表示成||a a a a a a a a a nnn n n n212222111211||=∑(−j 1j 2⋯j n 1)π(j 1j 2⋯j n )a 1j 1a 2j 2⋯a nj n1.2 n 阶行列式性质:[2]引理1 把行列式的行变成列、列变成行,行列式的值不变.引理2 把一个行列式的两行(或两列)交换位置,行列式的值改变符号.引理3 把行列式的某一行(或一列)的所有元素乘以某个数c,等于用数c 乘原行列式.引理4 若一个行列式的两行(或两列)的对应元素成比例,那么行列式的值等于零.引理5 把行列式某一行(或列)的所有元素同乘以一个数c,加到另一行(或一列)的对应元素上,所得行列式的值与原行列式的值相等.引理6 行列式某一行(或列)的各元与另一行(或列)对应元的代数余子式的乘积之和等于零.1.3 拉普拉斯定理及范德蒙德行列式的定义拉普拉斯定理]3[ 设D 为一n 阶行列式,任意取定D 中的k (≤1k<n )行,由这k 行元素所构成的一切k 阶子式与它们所对应的代数余子式的乘积的和等于行列式D 的值.用符号可以表示为D=A i mi i ∑=1N ,其中m=C k n行列式||a a a a a a a a a n nn n n n 112112222121111---||叫作一个n 阶范德蒙德行列式. 2 行列式的计算2.1 定义法例1 计算行列式D=|d hc g f b e a 0000000|解 由定义可知,D 是一个4!=24项的和,展开式的一般项为a 1j 1a 2j 2⋯a nj n ,在这个行列式中,除了abcd,afgd,ebch,efgh 外,其余各项均含有0,故乘积为0,与上面四项相对应列标的排列依次为1234,1324,4231,4321,而π(1234)=0,π(1324)=1,π(4231)=5, π(4321)=6,故D=abcd+efgh-afgd-ebch.利用定义法求解行列式时,只适合一些比较简单的行列式,如对角线行列式,三角行列式等,定义法常用于解低阶的行列式,对于一些高阶的行列式,我们将介绍其他方法来求解.2.2 利用行列式的性质计算例2 证明n 阶上三角行列式(主对角线以下的元素都为零)]4[|a a a a a a nnnn 0022211211|=a a a nn 2211证明 在这个行列式中,当j i <i 时,元素a j ii =0,由定义可知所有取自各行各列的项的乘积除了a a a nn 2211外,其余项中均含有因子0,故乘积为零,又π(a a a nn 2211)=0,故|a a a a a a nn nn00022211211|=a a a nn 2211特别的λλλn00021=λλλn 21 由性质1可知,下三角行列式也等于主对角线上元素的积.那么对于可化为三角行列式的计算,就可先利用行列式的性质把它变成三角行列式例3 计算行列式2111121********* 解 把行列式除开第一行外其他行上的对应元素分别减去第一行上的元素,得原式=1000010000101111=1 如果一个行列式可化为三角行列式,我们可以优先考虑化成三角形后再进行计算,计算起来更简便.2.3 按行(列)展开按行(列)展开又称降阶法,按某一行展开时,可以使行列式降一阶,更一般的,如果可以用拉普拉斯定理就可以降很多阶了.但为了让计算更加简便,我们一般先利用行列式的性质使行列式中的元出现尽可能多的零,然后再展开.例4 计算行列式4122743221010113-=D 解 原行列式c c 31- 41217432-210001-14c c c 334__21211-432-010021-14=)(1-32+2211-32214=-2213706-7-0=-376-7-=-21对于这种阶数稍微高点的行列式用定义法一般比较复杂,这时我们考虑利用行列式的性质降阶后再按行或列展开.2.4 加边法(升阶法)加边法即把行列式添加一行和一列,使升阶(加边)后的行列式的值与原行列式相等,这种方法叫加边法.这种方法一般适用于所加边的元素和原行列式的元素有直接关系,如相等或倍数关系,或原来的行列式中有大片元素相同的行列式.例5 计算行列式D =a xx x x a x x xx a x xxx a n321(x a a a n ,,21≠) 解 原行列式中存在“大片”的x,故用加边法把原行列式变成n+1阶行列式,则有a x xxx a x x x x a x x x x a x x x x D n0001321=r r k n k 1)1,,3,2(-+==xa x a x a x a x x x x n ----001-0001-0001-0001-1321c a c ii x n i -++==11,,3,21 xa x a x a xa x xxxx a x n ni -----+∑=000000000000132111=(1+)()11x a x a xni i ni i --∏∑==利用加边法把行列式化为n+1阶行列式后,再利用行列式的性质把该行列式化为可直接计算的行列式,从而简便计算.2.5 范德蒙德行列式的应用由于范德蒙德行列式]5[=D n ||a a a a a a a a a n nn n n n 112112222121111---||=)1x x m nk m k -∏≤<≤( 范德蒙德行列式是一个很特殊的行列式,从第二行起每一行与前一行对应元素的比都等于同一个常数.那么对于可化为范德蒙德行列式的计算我们可先把它化成范德蒙德行列式后再进行计算.例6 计算D n =nn nnn n n323232333322221111解 从该行列式的第k (k=2,3,…,n )行中提取公因子后,得到n nnn D nnn n2221333122211111!=该行列式为范德蒙德行列式的转置行列式,故D n=n!(n-1)!2!1!.3 n 阶行列式的计算对于n 阶行列式的计算,除了以上的方法外,我们还会根据行列式的特征采用递推法和归纳法来求解. 例1 计算D n =ba ab b a b a ab b a ++++100000100解 将D n 按第一行展开,再将按第一行展开的第二个行列式按第一列展开得abD D b a D n n n 21)(---+=,整理得aD D n 1-n -=b (D a D n n 21---)由递推关系可以得出:aD D n 1-n -=)(122D D b n --=][)()(22b a a ab b a b n +--+-=b n 在上式中,a 和b 的地位是相等的,因此有D D n 1-n -=a n两式联立解得ab a b D n n --=1-n ,可以得出a b a b D n n n --=++11递推法一般用于n 阶行列式的求解,递推法的关键是找出D D D D D n n n n n 211,---与或与的关系.除了上面讲到的递推法,我们还常用归纳法来证明某些行列式. 例2]6[ 证明αααααcos 211cos 200000cos 210001cos 210001cos=D n =cos(αn )证明 当n=1时,D 1=αcos ,等式成立当n=2时,ααcos 211cos 2=D =2cos 2α-1=cos2α,等式成立假设n=k 时等式仍然成立,即αk D k cos =,α)1cos(1-=-k D k那么,当n=k+1时,把行列式按最后一行展开得D D D k k k 211cos 2--+-=α 代入得α)1cos(1k +=+k D 由归纳法得αn D cos n =行列式的计算方法多种多样,本文中所提到的方法也只是解题过程中的一些常用方法,不同的题目有不同的计算方法,至于要采用哪种方法要视具体题目而定,只要我们多观察行列式的特征就能找到合适的方法来计算.4 行列式的应用4.1 行列式在代数中的应用行列式在代数中的应用主要有利用行列式解含n 元线性方程组b x a x a x a n n 11212111=+++ b x a x a x a n n 22222121=+++……b x a x a x a n n nn n n =+++ 2211当系数行列式D ≠0时,有唯一解:D D x k k =(k=1,2,…,n).对于齐次线性方程组,若D ≠0,则对应的方程组只有零解.4.2 行列式在几何中的应用我们还可以用行列式来表示直线方程,例如过两点M (y x 11,),N (y x 22,)的直线方程1112211y x y x y x=0 (1) 证明 由两点式,我们可以得出过MN 的直线方程为y y y y x x x x 211211--=-- 把上式化简得012212121=-+-+-y x y x y x y x y x y x再进一步进行化简得y x y x x x y y y x221121211111+-=0即为(1)式按第一行展开所得的结果,命题得证.行列式有着很广泛的应用,上面只是讲的比较特殊的两种,在几何方面,还有许多应用,还可利用行列式表示三角形的面积例如 以平面内三点P (y x 11,),Q(y x 22,),R (y x 33,)为顶点的△PQR 的面积S 是11121332211y x y x y x参考文献[1]张禾瑞,郝鈵新·高等代数(第五版)[M]·北京:高等教育出版社,2000[2]任功全,封建湖,薛仁智·线性代数[M]·北京:科学出版社,2005 [3]姚慕生·高等代数[M]·上海:复旦大学出版社,2002.8[4]马菊霞,吴云天·线性代数题型归纳与方法点拔考研辅导[M]·北京:国防工业出版社,2000[5]毛纲源·线性代数解题方法技巧归纳[M]·武汉:华中科技大学出版社,2000[6]王丽霞· N阶行列式的几种常见的计算方法[J]山西大同大学学报(自然科学版),2008致谢本文是在我的论文指导老师颜亮老师的精心指导下完成的.在整个论文写作的过程,颜老师给我提供了很多新颖的思路,并对我进行了耐心的指导和帮助,老师开阔的视野和广博的知识使我深受启发.颜老师严谨的治学态度、高度的敬业精神和大胆创新的精神让我深深的敬佩,在此,我向我的指导老师表示最诚挚的谢意.在这次本科毕业论文设计中我学到了许多关于行列式的知识,视野得到了很大的开阔.同时,我也要感谢我们小组的同学,感谢她们给我提出的建议,让我更好的完成了此次论文.。

数学毕业论文《行列式计算的若干种方法及算法实现》

数学毕业论文《行列式计算的若干种方法及算法实现》

山西师范大学本科毕业论文行列式计算的若干种方法及算法实现姓名系别专业班级学号指导教师答辩日期成绩行列式计算的若干种方法及算法实现内容摘要行列式是高等数学中基本而又重要的内容之一,那么认识行列式,并且掌握行列式的性质就显得尤为重要,在此基础上,我们还需要搞清楚行列式的若干种计算方法,这不仅仅是用于高等数学中的计算,行列式也可用于解决许多实际问题。

本文通过行列式的定义,把握行列式的性质,透彻全面的概括了6种行列式的计算方法,包括定义法,化三角法,应用一行(列)展开公式,范德蒙行列式,递推公式法以及加边,本文还提出运用MATLAB来帮助计算行列式,正确的选择计算行列式的方法,使计算更为快捷。

通过这一系列的方法进一步提高我们对行列式的认识,为我们以后的学习带来十分有益的帮助。

【关键词】行列式性质计算方法 MATLABThe determinant of several kinds of calculating method andalgorithmAbstractThe determinant of higher mathematics is the basic and important content of, then know the determinant, and grasps the nature of the determinant is particularly important, based on this, we also need to figure out some kind of calculation method of the determinant, it is not used in the calculation of higher mathematics, the determinant can also be used to solve many problems. In this paper the determinant do understand after, grasp the nature of the determinant, thoroughly comprehensive summary six kinds of determinant calculation method, including definition method, the triangle method, the application of row(column) on a formula, Vander monde determinants, recursive formula method and add edge method. This paper also puts forward to help with MATLAB calculation determinants; the right choice calculation method of the determinant, making the calculation is more quickly. Through this a series of methods to future improve our understanding of the determinant, for the rest of learning brings very useful help.【Keywords】Determinant Properties Calculation method MATLAB目录一、行列式概念的提出 (1)二、行列式的定义 (1)(一)定义1 (2)(二)定义2 (2)(三)定义3 (2)三、行列式的性质 (2)四、行列式的若干种计算方法 (4)(一)定义法 (4)(二)化三角形法 (5)(三)应用一行(列)展开公式 (5)(四)范德蒙行列式 (5)(五)递推公式法 (6)(六)加边法 (7)五、运用MATLAB来解决行列式的问题 (8)六、结束语 (13)参考文献 (13)致谢 (14)行列式计算的若干种方法及算法实现学生姓名: 指导老师: 一、行列式概念的提出我们知道,行列式是高等代数中的一个计算工具,无论是数学中的高深领域,还是现实生活中的实际问题,都或多或少的与行列式有着直接或间接地关系。

行列式解法小结 数学毕业论文

行列式解法小结  数学毕业论文

行列式解法小结数学毕业论文
行列式解法是线性代数中重要的一种方法,可以广泛地应用于各个领域,如物理、工程、经济等。

本文就行列式解法进行了全面的介绍和分析,并探讨了它在实际应用
中的具体作用。

首先,本文阐述了行列式作为一个矩阵的一个属性,描述了它的定义、性质和计算方法。

行列式的定义是通过对一个矩阵中所有可能的排列进行组合,求得的一个标
量值。

它具有很多有用的性质,如行列式关于行和列的互换、行列式的线性性质等。

计算行列式可以使用伴随矩阵或展开式等方法。

其次,本文讨论了行列式作为一个代数工具的应用。

通过分析行列式与线性方程组之间的关系,我们可以发现,行列式可以被用来检测线性方程组解的性质。

如果行
列式的值为零,则该线性方程组无唯一解。

但如果其值不为零,则有唯一解。

此外,本文还阐释了行列式在求解矩阵乘法、求逆矩阵及求解特征值的应用。

通过行列式解法可以很容易地计算出矩阵的乘积、逆矩阵以及特征值等,这对于实际应
用中的矩阵相关问题具有很大的意义。

最后,本文对于行列式的具体应用进行了分析。

在物理领域中,如电学和热学计算问题里,行列式经常出现在方程组的解中。

在机器学习领域,行列式也被广泛地应
用于求解数据的特征值和特征向量。

在工业制造领域中,行列式可以用于计算机器人
的运动,以及控制系统的分析。

综上所述,行列式在数学中具有很重要的地位,并且在各个应用领域都有着非常广泛的应用。

因此,学习和掌握行列式解法对于从事数学及相关领域的人员来说是非
常必要的。

行列式的计算及应用毕业论文

行列式的计算及应用毕业论文

行列式的计算及应用毕业论文行列式的计算及应用毕业论文目录1. 行列式的定义及性质 (1)1.1 行列式的定义 (1)1.1.1 排列 (1)1.1.2 定义 (1)1.2 行列式的相关性质 (1)2. 行列式的计算方法 (5)2.1 几种特殊行列式的结果 (5)2.1.1 三角行列式 (5)2.1.2 对角行列式 (5)2.2 定义法 (5)2.3 利用行列式的性质计算 (5)2.4 降阶法 (6)2.5 归纳法 (7)2.6 递推法 (8)2.7 拆项法 (9)2.8 用德蒙德行列式计算 (10)2.9 化三角形法 (10)2.10 加边法 (11)2.11 拉普拉斯定理的运用 (12)2.12 行列式计算的Matlab实验 (13)3. 行列式的应用 (15)3.1 行列式应用在解析几何中 (15)3.2 用行列式表示的三角形面积 (15)3.3 应用行列式分解因式 (16)3.4 利用行列式解代数不等式 (17)3.5 利用行列式来证明拉格朗日中值定理 (17)3.6 行列式在实际中的应用 (18)总结 (20)参考文献 (21)附录1 (22)附录2 (22)附录3 (23)谢辞 (24)1. 行列式的定义及性质 1.1 行列式的定义1.1.1 排列[1]在任意一个排列中,若前面的数大于后面的数,则它们就叫做一个逆序,在任意一个排列中,逆序的总数就叫做这个排列的逆序数.1.1.2 定义[1]n 阶行列式nnn n n na a a a a a a a a D212222111211=就相当于全部不同行、列的n 个元素的乘积nnj j j a a a 2121 (1-1-1)的代数和,这里n j j j 21是n ,,2,1 的一个排列,每一项(1-1-1)都按下列规则带有符号:当n j j j 21是偶排列时,(1-1-1)是正值,当n j j j 21是奇排列时,(1-1-1)是负值.这一定义可以表述为n nn nj j j j j j j j j nnn n nna a a a a a a a a a a a D21212121)(212222111211)1(∑-==τ, (1-1-2)这里∑nj j j 21表示对所有n 级排列求和.由于行列指标的地位是对称的,所以为了决定每一项的符号,我们也可以把每一项按照列指标排起来,所以定义又可以表述为n i i i i i i i i i nn n n nnn n a a a a a a a a a a a a D21)(212222111211212121)1(∑-==τ.(1-1-3) 1.2 行列式的相关性质记 nnn n n na a a a a a a a a D 212222111211=,nnn nn n a a a a a aa a a D 212221212111'=,则行列式'D 叫做行列式D 的转置行列式.性质1 行列式和它的转置行列式是相等的[2]. 即D D ='. 证明:记D 中的一般项n 个元素的乘积是,2121n nj j j a a a它处于D 的不同行和不同列,所以它也处于'D 的不同行和不同列,在'D 中应是,2121n j j j n a a a所以它也是'D 中的一项.反之, 'D 的每一项也是D 的一项,即D 和'D 有相同的项.再由上面(1-2)和(1-3)可知这两项的符号也相同,所以D D ='.性质2 nnn n in i i nnn n n in i i n a a a a a a a a a k a a a ka ka ka a a a212111211212111211=. 证明:inin i i i i nnn n in i i n A ka A ka A ka a a a ka ka ka a a a +++=2211212111211.)(2121112112211nnn n in i i nin in i i i i a a a a a a a a a k A a A a A a k =+++=性质3 如果行列式的某行(列)的元素都为两个数之和[2],如nnn n nn n a a a c b c b c b a a a D 21221111211+++=,那么行列式D 就等于下列两个行列式的和:.212111211212111211nnn n n n nn n n n n a a a c c c a a a a a a b b b a a a D += 可以参照性质2的证明得出结论.性质4 对换行列式中任意两行的位置,行列式值相反.即若设,21212111211nnn n kn k k in i i na a a a a a a a a a a a D=,212121112111nnn n in i i kn k k na a a a a a a a a a a a D =则.1D D -=证明:记D 中的一般项中的n 个元素的乘积是.2121n k i nj kj ij j j a a a a a它在D 中处于不同行、不同列,因而在1D 中也处于不同行、不同的列,所以它也是1D 的一项.反之,1D 中的每一项也是D 中的一项,所以D 和1D 有相同的项,且对应的项绝对值相同.现在看该项的符号:它在D 中的符号为.)1()(21n k i j j j j j τ-由于1D 是由交换D 的i 、k 两行而得到的,所以行标的n 级排列n k i 12变为n 级排列n k i 12,而列标的n 级排列并没有发生变化.因此D 和1D 中每一对相应的项绝对值相等,符号相反,即.1D D -= 性质5 如果行列式中任有两行元素完全相同,那么行列式为零.证明:设该行列式为D ,交换D 相同的那两行,由性质4可得D D -=,故.0=D性质6 如若行列式中任有两行或者两列元素相互对应成比例,则行列式为零.证明:设n 阶行列式中第i 行的各个元素为第j 行的对应元素的k 倍,由性质2,可以把k 提到行列式外,然后相乘.则剩下的行列式的第i 行与第j 行两行相同,再由性质5,最后得到行列式为零.性质7 把任意一行的倍数加到另一行,行列式的值不改变.nnn n knk k knin k i k i na a a a a a ca a ca a ca a a a a2121221111211+++nnn n kn k k kn k k nnnn n kn k k in i i n a a a a a a ca ca ca a a a a a a a a a a a a a a a2121211121121212111211+=nnn n kn k k in i i n a a a a a a a a a a a a 21212111211=.2. 行列式的计算方法2.1 几种特殊行列式的结果2.1.1 三角行列式nn nn nna a a a a a a a a 221122*********=(上三角行列式).nn nnn n a a a a a a a a a2211212221110=(下三角行列式). 2.1.2 对角行列式nn nna a a a a a22112211000=. 2.2 定义法例1 用定义法证明.000000002121215432154321=e e d d c c b b b b b a a a a a 证明:行列式的一般项可表成.5432154321j j j j j a a a a a 列标543,,j j j 只能在5,4,3,2,1中取不同的值,故543,,j j j 三个下标中至少有一个要取5,4,3中的一个数,则任意一项里至少有一个0为因子,故任一项必为零,即原行列式的值为零.2.3 利用行列式的性质计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行列式计算方法总结及简单应用摘要:行列式的计算方法,并举例说明了它们的应用,同时对若干特殊例子进行推广。

并举出了几种常见的行列式应用。

关键词:行列式;范德蒙行列式;矩阵;特征植;拉普拉斯定理;析因法;辅助行列式法;行列式的应用;方程组;平面几何。

Abstract: The formulation of the various calculation methods, and examples of theirapplications, and to promote a number of special cases Cited several common determinant applications.Keywords: determinant; Vandermonde determinant; matrix; characteristicsof plants;Laplace theorem; factorial method; secondary determinant method Determinant of the application; equations; plane geometry引言计算方法变化多样,本科期间只能解决一些初等的基本的或者说是有规律的行列式。

而其方法又分为简单和复杂。

最复杂的情形就是:任何一个n阶行列式都可以由它的定义去计算其值。

但由定义可知,n阶行列式的展开式有n!项,计算量很大,一般情况下不用此法。

当然也有列外,假设行列式中有许多零元素,可考虑此法,但也只是考虑。

特别需要注意的是:在应用定义法求非零元素乘积项时,不一定从第1行开始,哪行非零元素最少就从哪行开始。

本论文要介绍的是有规律可循的行列式计算。

而在高代课本中行列式的应用包括了求解方程组,求矩阵的特征向量等等,本论文就不再赘述,本论文中给出的应用是我在做题过程中总结出的行列式考题中的一些常见的问题,以例题的形式给出,可以引发进一步的思考。

一.行列式计算方法总结 方法1 对于形如,的所谓二条线的行列式,可直接展开降级,再利用三角或者反三角行列式的结果直接计算。

例:计算n 级行列式Dn=112211....n n nna b a b b a b a --解:Dn=22111....n n a b a a b a--+()1221111....nn n n b a b b a b =---=()11212...1...n n n a a a b b b ++-Ps :其中第一步展开按1列展开方法2对于形如的所谓两条线行列式,可直接展开得到递推公式。

例:计算2n 级行列式111121111....nnn n n n n nna b a b a b D c d c d c d ----=解:()11111111122111111110....1....00n n n n n n nn n n n n nna b a b a b a b D a c d b c d c d c d d c ----+----=+-=()()111111112111111111........n n n n n nn nn n n n n n n n n a b a b a b a b a d b c a b b c D c d c d c d c d ----------=- 于是有22(1)()n n n n n n D a d b c D -=-=11112(2)()()...n n n n n n n n n a d b c a d b c D -------==11111111()()...()n n n n n n n n a d b c a d b c a d b c -------特别注意:本题也可用拉普拉斯定理计算解:1111121222(1)1111..(1)()..n n n n n nn n n n n n nnn n a b a b a b D a d b c D c d c d c d --+++---=-=-Ps :其中第一步按1,2n 行展开方法3对于形如,,,的所谓剑型行列式,可直接利用行列式性质将其一条边换位零,从而可根据三角或者反三角行列式的结果求值。

例:计算n 级行列式11.11021....01.010.01n D n n =- 解:1112...1n n n c c n c c n D ---=======(1)21111...11...200 (2011)(1)!(1...)............201 (00)0 (00)n n nn n n n ----=-----方法4对于形如,的三对角或者反三对角行列式,按其第一行(列)或者第n 行(列)展开得到两项的递推关系式,再利用变形递推的技巧即可求解。

例1:计算n 级行列式210 (00)121...0012...00...............000...21000...12n D ----=-- 解:112n 111110...00021...012 (00)2(1)(1)2...............000...210...12n n n D D D D +-------======+-•-=---按第行展开直接递推不容易得到结果,但是级数较低时可以,于是变形得112232121 (211)2n n n n n n D D D D D D D D -------=-=-==-=-=-于是12112...(1)2(1)1n n n D D D D n n n ++=+=+==+-=+-=+例2: 方法5一般是利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明。

因此,数学归纳法一般是用来证明行列式等式。

因为给定一个行列式,要猜想其值是比较难的,所以是先给定其值,然后再去证明。

例:证明2cos 10 (001)2cos 1...00012cos ...00sin(1)(sin 0)...............sin 000...2cos 10...12cos nn D θθθθθθθθ+==≠解:当1,2n =时,有:122sin(11)2cos sin 2cos 1sin(21)4cos 112cos sin D D θθθθθθθθ+==+==-=结论显然成立。

现假定结论对小于等于1n -时成立。

即有:21sin(21)sin(11),sin sin n n n n D D θθθθ---+-+==将n D 按第1列展开,得:(1)(1)122cos 1 (00)2cos 0 (00)12cos ...0012cos ...00........................00...2cos 100...2cos 100...12cos 00...12cos 2cos sin(11)sin(21)2cos sin sin 2cos sin sin(1n n n n n D D D n n n n θθθθθθθθθθθθθθθθ----=-=⋅--+-+=⋅-⋅--=)sin 2cos sin sin cos cos sin sin sin cos cos sin sin sin(1)sin n n n n n n θθθθθθθθθθθθθθθθ⋅-⋅+⋅=⋅+⋅=+=故当对n 时,等式也成立下面说一个综合了方法4和方法5的例子,在高等代数书中101页18题(3)小题例:已知:0 (001000100) 0....1n D αβαβαβαβαβαβ++=++11,n n n D αβαβαβ++-=≠-证明 :其中解:D n 按第1列展开,再将展开后的第二项中n-1阶行列式按第一行展开有:12n n n D D D αβαβ=--(+)-这是由D n-1 和D n-2表示D n 的递推关系式。

若由上面的递推关系式从n 阶逐阶往低阶递推,计算较繁,注意到上面的递推关系式是由n-1阶和n-2阶行列式表示n 阶行列式,因此,可考虑将其变形为:11212n n n n n n D D D D D D αβαββα------=-=(-) 或 11212n n n n n n D D D D D D βααβαβ------=-=(-)现可反复用低阶代替高阶,有:23112233422221[()()](1)n n n n n n n n n n nD D D D D D D D D D αβαβαβαβαβαβαβααββ-+--+=---------=(-)=(-)=(-)==(-)=同样有:23112233422221[()()](2)n n n n n n n n n n nD D D D D D D D D D βαβαβαβαβααβαββαβα-+--+=---------=(-)=(-)=(-)==(-)=因此当αβ≠时由(1)(2)式可解得:11n n n D αβαβ++-=-方法6还有一种行列式,因无法用图形表达,故在此用语言表达出来:该类型具有各行(列)元素之和相等的特点,但是在所学的高等代数书绝大多数均为主对角线上是同一个元素,对角线两边是相对应的相等的同一元素,且行列式是不存在零元素。

当然我所举得例子只是特殊情况,但是若考此类型的行列式,大部分都是此种套路。

解决此类行列式的方法是可将第2,3,…,n 列(行)都加到第1列(行)(或者第12,…,n-1列(行)都加到第n 列(行)),则可得第1(n )列(行)元素相等,再进一步化简即可华为三角或反三角行列式例:计算n 级行列式........................n x a a aax a a D aa x a a a a x=解:2112311211......(1)...(1)....(1)......(1)...nn r r c c r r c c n c c r r x n a aa x n a x a D x n a x n aa x-+-++-+-+-=======+-+-1(1)....[(1)]()....n x n aa ax ax n a x a x a-+--=+--- ps : c 代表行,r 代表列。

与上一类型的行列式相似的,是对角线上元素不同,但是关于对角线元素的两边元素是同一个元素。

而对于这种类型的行列式的方法是添项(称为升级法或加边法):在保持原行列式值不变的情况下,增加一行一列,适当选择所增加行(列)的元素,使得下一步化简后出现大量的零元素,一般都会变成前面方法3的剑型行列式。

例:计算n 级行列式123a ........................n nb b b b a b bD b ba b b b ba = (,1,2,...,)ib a i n ≠= 解:21311112...1b ...0...0...............0...n r r r r n r r n b ba b b D b a b b ba +---====升级121...10...010...0 (100)...n b bb a b a b a b ------ 2113121111...21.........n n c c a b n c c a bc c a bn b bb bba b a ba ba ba b++-+-+-+++---======--=1211[1]()()....()nn i b a b a b a b a b+----∑还有一种是主对线是同一个元素,但是关于对角线两边的元素是互为相反数的,而解题方法是利用两边元素互为相反数,行列式平方运算则必得对角线形式行列式例:计算4级行列式4ab c d b a d c D c d a b dcb a --=----解:2'444ab c d a bc d b a d c b a d c D D D c d a b c d a b dcba dc ba------==------=222222222222222200000000a b c d a b c d a b c da b c d ++++++++++++=22224()a b c d +++故 222224()D a b c d =±+++根据行列式定义可知,D4的展开式中有一项为(1234)411223344(1)a a a a a τ-= 故得 222224()D a b c d =+++方法7在方法5中提到了添项法,再说一个添项法的实际应用,范德蒙德行列式高等代数中最经典,最重要的行列之之一,而有些问题中会出现变形得范德蒙德行列式,一般的变形情况是缺少一行(或者一列)而解题方法就是增加缺少的行(或列),间接的求出行列式。

相关文档
最新文档