传热过程
第三章传热过程

第三章传热过程内容提要:本章先对传热的三种基本方式即传导传热、对流传热和辐射传热以及工业上的换热方法进行介绍,然后着重讨论传导传热、对流传热的机理和传导传热、对流传热的速率方程式,在此基础上建立总传热速率方程。
冷热流体通过固体壁面进行热交换时的热量衡算及与总传热方程相结合解决热交换过程中的问题。
对强化和抑制传热过程的途径以及列管式热交换器的基本结构仅作简单介绍。
学习指导:了解传导传热和对流传热的机理,掌握传导传热、对流传热的速率方程式,掌握总传热速率方程式并对其中的总传热系数K、传热平均温度差Δtm能分别计算,能将热交换中热量衡算式与总传热方程相结合而解决热交换中的计算问题。
了解强化和抑制传热过程的方法以及列管式热交换器的基本结构。
第一节概述在自然界,在人们的生产和日常生活中,每时每刻都在发生由于物体或系统内部温度不同而使热量自动地转移到温度较低的部分的过程,这一过程称为热的传递简称传热。
而本章主要研究化工生产中的传热。
一、化工生产中的传热过程在化工生产、科学实验中随时会遇到热量传递问题,化工生产中的化学反应要求在一定温度下进行,而适宜的温度依靠加热或冷却才能实现。
例如,氮、氢合成氨、由氨氧化制硝酸、萘氧化制苯酐等,由于催化剂的活性和反应的要求,反应温度必须控制在一定的范围,过高过低都会导致原料利用率降低,温度控制不当甚至会发生事故。
又如在蒸馏、蒸发、干燥、结晶、冷冻等操作中也必须供给或移走一定的热量才能顺利进行。
在这类情况下,要求热量的传递速率要高,即通常所说的要求传热良好。
另有一类情况如高温或低温下操作的设备或管道,为了保持其温度应尽量隔绝热的传递即要求传热速度要低,即通常所说的保温。
此外,能量的充分利用是化工生产尤其是大型生产中极为重要的问题,为了充分利用反应热,回收余热和废热以降低生产成本,工业上大量使用热交换器,这都涉及到热量的传递问题。
传热过程是研究具有不同温度的物体内或物体间热量的传递。
第十一章 传热过程

三、传热实例分析
3、省煤器传热分析 最大热阻在管外的灰垢层导热热阻
省煤器
三、传热实例分析
4、凝汽器传热分析
凝汽器传热总热阻 1 1 1 rk Rf K 1 2
增强凝汽器传热的措施:
污垢热阻
① 减小铜管内侧冷却水对流换热热阻1/α1;如提高流速等。 ② 减小污垢热阻Rf;如定期清洗等。
三、传热实例分析
1、锅炉水冷壁传热分析
传热特点:
烟气与灰垢层外表面的复
合换热热阻较大(主要热
阻),而管壁导热热阻及 管内沸腾换热热很小。 火焰温度高,而管壁温度 不高,它只比管内水温高 10~20 0C.
三、传热实例分析
2、汽缸壁传热分析
主要热阻在保温层; 缸壁本身导热热阻和缸内壁与蒸汽的换热热阻很小, 温差小,不必担心热变形。 但保温层损坏或脱落时,会产生热变形和热损失。
热过程;如过热器的传热,水冷壁的传热;冷油器中的换热, 特点:
① 传热过程有时存在三种基本传热方式; ② 一个传热过程至少由三个环节组成; ③ 传热过程中,放热和吸热同时进行。
电厂中换热设备传热过程
过热器传热过程
图 管壁
对流
烟 气
导热 辐射
对流
蒸 汽
烟 气
蒸 蒸 汽 汽
烟 气
对流 辐射 烟气
1
10 ~ 100 10 ~ 30 340 ~ 910 60 ~ 280 115 ?40 2000 ~ 6000 30 ~ 300
455 ~ 1140 2000 ~ 4250
455 ~ 1020
11-2 平壁和圆筒壁的传热
一、通过平壁的传热 1、单层平壁的传热 传热过程的三个环节
对流、辐射
《传热学》资料第五章传热过程与传热器

《传热学》资料第五章传热过程与传热器一、名词解释1.传热过程:热量从高温流体通过壁面传向低温流体的总过程.2.复合传热:对流传热与辐射传热同时存在的传热过程.3.污垢系数:单位面积的污垢热阻.4.肋化系数: 肋侧表面面积与光壁侧表面积之比.5.顺流:两种流体平行流动且方向相同6.逆流: 两种流体平行流动且方向相反7.效能:换热器实际传热的热流量与最大可能传热的热流量之比.8.传热单元数:传热温差为1K时的热流量与热容量小的流体温度变化1K所吸收或放出的热流量之比.它反映了换热器的初投资和运行费用,是一个换热器的综合经济技术指标.9.临界热绝缘直径:对应于最小总热阻(或最大传热量)的保温层外径.二、填空题1.与的综合过程称为复合传热。
(对流传热,辐射传热)2.某燃煤电站过热器中,烟气向管壁传热的辐射传热系数为20 W/(m2.K),对流传热系数为40 W/(m2.K),其复合传热系数为。
(60W/(m2.K))3.肋化系数是指与之比。
(加肋后的总换热面积,未加肋时的换热面积)4.一传热过程的热流密度q=1.8kW/m2,冷、热流体间的温差为30℃,则传热系数为,单位面积的总传热热阻为。
(60W/(m2.K),0.017(m2.K)/W)5.一传热过程的温压为20℃,热流量为lkW,则其热阻为。
(0.02K/W)6.已知一厚为30mm的平壁,热流体侧的传热系数为100 W/(m2.K),冷流体侧的传热系数为250W/(m2.K),平壁材料的导热系数为0.2W/(m·K),则该平壁传热过程的传热系数为。
(6.1W/(m2.K))7.在一维稳态传热过程中,每个传热环节的热阻分别是0.01K/W、0.35K/W和0.009lK /W,在热阻为的传热环节上采取强化传热措施效果最好。
(0.35K/W)8.某一厚20mm的平壁传热过程的传热系数为45W/(m2.K),热流体侧的传热系数为70W/(m2K),冷流体侧的传热系数为200W/(m2.K),则该平壁的导热系数为。
化工基础第三章传热过程

(3) 常压下气体混合物的导热系数估算式为
m
式中 yi ——组分i的摩尔分率。 M i ——组分i的摩尔质量,kg/kmol。 ④.一般规律 (1)
1 i yi M i / 3 1 yi M i / 3
金 非金 (2) s l g (3) 晶 非晶 (4) (气体除外 ) 纯 混
第三章 传热过程 23
t+△t dt/dn n
t
t-△t
Φ dS
图 温度梯度和傅里叶定律
第三章 传热过程
24
3) 导热系数:表征物质导热能力的物性参数。
①.固体
式中:0为固体在0C的导热系数,W/(mK),W/(mC); α为温度系数, 1/ C。 金属的导热系数最大,其中以银和铜的导热系数值最 高;若金属材料的纯度不纯,会使λ大大降低。固体非 金属次之。(绝热材料λ<0.23 W/(mK) ) ②.液体 导热系数较小 (1) 金属液体: t , (2) 非金属液体(除水、甘油外):t, (略减小) (3) 有机化合物水溶液的导热系数估算式为
第三章 传热过程 19
二、传导传热
1、导热基本定律 傅里叶定律
1) 温度场和温度梯度
温度场(temperature field):某一瞬间空间中各点的温度
分布,称为温度场(temperature field)。
物体的温度分布是空间坐标和时间的函数,即
t = f (x,y,z,τ) 式中:t —— 温度; x, y, z —— 空间坐标; τ—— 时间。
T2
t1 T2
T1
套管式
T1 T2
t2
列管式
夹套式
第三章 传热过程 13
传热过程

第四章传热过程第一节概述第二节传导传热第三节对流传热第四节热交换的计算第五节热交换器第一节概述一、化工生产中的传热过程(包含传热和保温)1、化工生产中的化学反应要控制适宜的温度范围:(1)放热反应的热量要通过换热移除。
(2)吸热反应需提供足够的热量。
(3)反应原料要预热,产物要冷却。
2、很多化工单元操作是在换热条件下进行的:蒸发、结晶、干燥、精馏等。
3、节约能源,合理使用能源:(1)热流体保温、低温条件的保持。
(2)生产中余热、废热的有效利用。
二、传热的基本方式1、传导传热:物体温度较高的分子因热而振动,并与相邻分子碰撞,而将能量传递给相邻分子,顺序地将热量从高温向低温部分传递。
特点:没有分子的宏观相对位移。
如固体传热2、对流传热:由于流体质点变动位置并相互碰撞,能量较大的质点与能量较低的质点相互混合,使热量从高温向低温传递。
自然对流:温度差,密度差,自然移动。
强制对流:外力(搅拌等)使流体质点相对位移。
3、辐射传热:热物体以波的形式向四周散发辐射能,辐射遇到另外的物体时,被全部或部分地吸收并重新转变成热能的传热方式。
温度越高,辐射出去的热能越大。
不用任何介质作媒介。
实际生产中的传热,并非单独以某种方式进行,往往是多种方式同时进行。
4、恒压比热容c p、c pm:单位量物质恒压下升温1K所需热量。
单位: c p J ·kg-1·K-1 c pm J ·mol-1·K-15、显热:单位量(质量或物质的量)物质在等压时变温伴随的热量变化。
单位: J计算:Q=m · c p ·Δt或 Q=n · c pm ·Δt6、潜热:单位量(质量或物质的量)物质在发生相变时伴随的热量变化。
单位: J·kg-1,J·moj-1汽化热、冷凝热、升华热、溶解热、结晶热等计算:Q=ΔH ·m 或 Q=ΔH m ·n潜热和显热的区别:相变,温变四、定态传热和非定态传热1、定态传热:传热面上各点的温度不随时间改变的传热。
传热过程的计算

必须着力减少控制步骤的热阻,才更易以达到强化传热的目的。 。
实际计算换热管热流量,可依据管壁内表面积或外表面积写出两个方程 内表面: 外表面: Ql=KlA1 (T-t) Q2=K2A2 (T-t) (6-116)
式中,K1、K2分别为以内、外表面积为基准的传热系数,明显两者是不相等的。 但有 K1A1=K2A2 如圆管的内、外直径分别用d1、d2表示,结合式子: K 可导出: K 1
即
Q KAt m
称为传热过程基本方程式
式中
t m
T t 1 T t 2 T t 1 ln T t 2
称为对数平均温差或对数平均推动力。
对数平均推动力
对数平均推动力恒小于算术平均推动力,特别是当换热器两端推动力相差悬 殊时,对数平均值要比算术平均值小得多。 当换热器一端两流体温差接近于零时,对数平均推动力将急剧减小。 对数平均推动力这一特性,对换热器的操作有着深刻的影响。 例如,当换热器两端温差有一个为零时,对数平均温差必为零。 这意味着传递相应的热流量,需要无限大的传热面。 但是,当两端温差相差不大时,如0.5<(T-t)1/(T-t)2<2时,对数平均推动 力可用算术平均推动力代替。
qm1CP1dT=q1dA1=dQ (热流体在微元体内放出的热量) 同样,对冷流体作类似假定,并以微元体内环隙空 间为控制体作热量衡算,可得到 qm2CP2dt=q2dA2=dQ (冷流体在微元体内吸收的热量)
2、传热速率方程式 热流密度q是反映具体传热过程速率 大小的特征量。从理论上讲,根据前面 导热或对流给热规律,热流密度q已可以 计算。但是,这种做法必须引入壁面温 度;而在实际计算时,壁温往往是未知 的。为实用方便,希望能够避开壁温, 直接根据冷、热流体的温度进行传热速 率的计算。 如图所示的套管换热器中,热量序 贯地由热流体传给管壁内侧、再由管壁 内侧传至外侧,最后由管壁外侧传给冷 流体(参见 P201 图 6-35 )。在定态条 件下,并忽略管壁内外表面积的差异, 则各环节的热流量相等,即
第五章传热

第五章传热主要内容:热量传递基础;传热过程的计算;传热设备。
重点内容:傅里叶传导定律;牛顿冷却对流传热定律;传热过程基本方程;换热器的计算;管壳式换热器的设计和选用。
难点内容:传热过程基本方程。
课时安排:20第一节概述一、传热过程由热力学第二定律可知,凡有温度差存在的地方,就必然有热量的传递。
化学工业与传热密切相关,化工生产过程中许多单元操作都需要加热和冷却。
化工生产中进行传热操作的目的——1.料液的加热和冷却,为达到反应所需的温度;2.为维持反应温度,需不断输入或输出热量;3.许多单元操作需输入或输出热量;4.化工设备的保温;5.生产过程中热能的综合利用及废热的回收。
化工生产对传热过程的要求:1.强化传热——要求传热速率高,降低设备成本;2.削弱传热——可减少热损失。
二、传热的基本方式(传热机理)传热原因——传热推动力(温度差)传热方向——在无外功输入时,由热力学第二定律,热流方向由高温处向低温处流动。
传热的三种基本方式:1.热传导——物体内部或两个直接接触物体之间的传热方式。
金属导体—自由电子运动不良导体,大部分液体—温度高的分子振动,与相邻分子碰撞,造成的动量传递。
气体—分子无规则运动热传导是静止物体内的一种传递方式,没有物质的宏观位移。
2.对流传热——是指流体由质点发生相对位移而引起的热交换。
对流传热仅发生在流体中,所以与流体的流动方式密切相关。
自然对流——质点位移是由于流体内部密度差引起的,使轻者浮,重者沉;强制对流——质点运动是由外力作用所致。
对流传热同时伴有热传导,事实上无法将其分开——又称给热。
化工中所讨论的给热,都是指流体与固体壁面之间的传热过程——间壁式换热3.热辐射——是一种通过电磁波传递能量的过程任何物体,只要在0K 以上都能发射电磁波,而不依靠任何介质,当被另一物体接收后,又重新变为热能。
热辐射不仅是能量转移,也伴随着能量形式的转移。
三、间壁式换热1. 间壁式换热过程—由对流、导热、对流三过程串联而成(1)热流体以对流方式将热量传递到间壁一侧; (2)热量以导热方式通过间壁; (3)热量以对流方式传至冷流体。
第二章传热过程

从右表数据可 以看出,金属的值 最大,气体的值最 小,一些保温材料 值之所以很小,就 是因为保温材料内 有很大部分空间是 空气的缘故。
物质 导热系数 λ [W/m·K]
金属 建筑材料
5 0.5~2
绝热材料
0.01~0.4
水
0.6
其他液体 气体
0.09~0.7 0.007~0.17
物料的导热系数 值还随温度而变化。但金属和液
液体混合物的导热系数,可按质量加和法进行估算:
n
m Kixi i1
(2 4)
式中:m、i - 混合液和各组分的导热系数 [W/m·K];
xi - 各组分的质量分数;
K - 常数,对一般混合物或溶液为1.0,对有机物的水 溶液为0.9。
气体混合物的导热系数,可按摩尔加和法估算:
λm
i
n
1
化工生产中,间壁式传热设备用得最多。这类设 备通常称作热交换器或换热器。在所有化工厂设备中 换热器约占设置重量的40%左右,因此必须对传热机 理、传热过程的影响因素、传热过程的强化或抑止、 换热设备的传热面积计算,以及主要几种热交换器的 基本结构和性能有所了解。
补充:
传热过程
稳态传热:在传热进行时,物体各点温度不随时 间而变、仅随位置变化的传热过程。
补充:
▪ 发生导热时,物体各部分之间不发生宏观相对位移。 ▪ 对于气体,导热是由于气体分子做无规则热运动、
相互碰撞而引起; ▪ 对于固体,导电体的导热是由自由电子的运动而引
起;而非导电体则通过晶格的振动来传递热量。 ▪ 对于液体,可以认为介于气体和固体之间。
在一个均匀(各部分化学组
成、物理状态相同)的物体内 (图2-1),热量以传导方式沿 着方向n通过物体。取热流方向 的微分长度为dn ,在d 瞬间内 的热传量为 dQ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I=ΔU/R
I
U1
U2
U3
U4
R1
R2
R3
ΔU
电路图
热阻分析法 例题
Φ
tw1
tw2
tf1
tf2
Rh1
Rλ
Rh2
Δt
热路图
热阻分析法
电学
R=R1+R2+R3
传热学
RK=Rh1+Rλ+Rh2
热电 类比
串联热阻 叠加原理
热阻分析法 可以进行定量计算 也可进行定性分析
应用
请应用热阻分析法分析, 为什么要及时清除水垢?
传热学
传热过程
定义
此处是个视频!
水
壶底壁面
热 量
燃气
物理模型
热量由高温流体通过 固体壁面传递给低温流体的过程
传热方程式
传热系数
单位W/(m2·K)
冷流体温度
热流量 换热面积 热流体温度
传热方程式
传热过程 转移量
热阻 传热热阻
动力比阻力等于过程转移量
是否可以运用电学知识来 解决传热学问题呢?
热阻分析法
请应用热阻分析法分析, 为什么要及时清除冰箱内的结霜?
无水垢时:
Φ
tf1
tf2
Rh1 RRλλ
Rh2
Δt
应用
请应用热阻分析法分析, 为什么要及时清除水垢?
有水垢时: 水垢层相当于在低温流体
侧增加一个导热热阻 ,传热 效果削弱,更耗燃气。
t 1/(Ak )
壶外常结灰垢 又该如何分析呢? 请画出热路图来分析
小结
定义
传热过