芝诺悖论的解释
芝诺悖论

芝诺悖论一尺之棰,日取其半,万世不竭就拿“阿喀琉斯与乌龟赛跑”的例子来说好了,等乌龟先跑出一段后阿喀琉斯再起跑追赶,结果则是飞毛腿阿喀琉斯怎么也追不上乌龟:当人追上乌龟的上一段的出发点时,乌龟已经往前走了一段路。
并且最关键的是,这个过程可以无限地重复下去。
可是大家想一想,这里的这个“无限”是什么意思呢?假设人一开始在乌龟后方10m,人的速度为11m/s,乌龟的速度为1m/s,小学生都会算这个追及问题——人追上乌龟要1秒的时间。
可是芝诺悖论是怎么算的呢:人先走到乌龟的第一段出发点要10/11秒,再走到乌龟的第二段出发点要10/121秒,再走到乌龟的第三段出发点要………(其实把这些所有所需的无限段时间加起来,你会发现其实就等于1秒)所以,悖论本身对于“无限”隐含的定义其实是“这个步骤无限重复下去,时间无限接近于1秒”!无限接近于一秒(其实还不到1秒),人当然还是追不上乌龟的。
但我们直觉上却认为,一个步骤重复无限次,就必然需要无穷无尽的时间。
因此我们直觉上以为这里“无限”的定义是无穷无尽的时间。
所以芝诺悖论其实告诉我们的是:不管时间再如何无限逼近1秒,只要没到1秒,人就追不上乌龟。
而芝诺自己和我们却错误地理解成了:即使有几百几千年无限的时间,人也追不上乌龟。
说到底,定义标准不统一罢了。
芝诺悖论讲了一个很有趣的事情,说是阿基里斯追不上乌龟。
(阿基里斯就是特洛伊战争中被射穿脚踵的那个,肯定比乌龟跑的快)理由是当阿基里斯跑到乌龟位置时,乌龟就向前走一段距离。
所以永远都追不上。
在这个明显的错误面前,我居然找不到错误所在。
不过在思考了n分钟后,我终于想到了问题之所在。
其实就是一个简单的数学问题。
假设阿基里斯与乌龟之间距离为s,阿基里斯与乌龟的速度分别为a和b,则在阿基里斯到达第一次乌龟的位置时,所需时间为s/a,此时两者之间距离为sb/a。
同理,当阿基里斯到达第二次乌龟的位置时,所需时间为sb/a^2,此时两者之间距离为sb^2/a^2。
芝诺悖论

作为一个的女王,她把键牛皮切成细细的 条子,并决定用它围成面积最大的土地。
伟大的类比——开普勒
2、“阿基里斯追鬼”悖论
阿基里斯是古希腊神话中的善跑英雄,让乌龟在 阿基里斯前100米处,与阿基里斯一同起跑,阿基里 斯的速度是乌龟的10倍。最初起跑时,阿基里斯与乌 龟的距离为100米,当阿基里斯跑完100米时,乌龟前 进了10米,这时阿基里斯与乌龟的距离为10米,当阿 基里斯跑完100米时,乌龟前进了1米,这时阿基里斯 与乌龟的距离为1米 …..,这样阿基里斯与乌龟的距离 渐次为100,10,1,0.1,0.01,…..按线段无限可分 理论,他们之间的距离永远不为零。因此善跑的阿基 里斯追不上乌龟。
解析:拥有最高德行的人如同水一样,具 有宽广的胸怀、谦逊的品德、与世无争的情 操、宽厚诚实的作风。具体地讲就是心胸要 像水渊一样,宽广无边、清湛悠然;要像水 的流势一样谦虚卑下,不可处处与人争高低, 要择地而居。对人要亲切自然,以诚相待, 老厚道。为人处世重诺守信,如同潮汐一般, 起落守时。
《道德经》第二十七八章 善行无辙—— “瞒天过海”
芝诺悖论
1、“二分说”悖论:运动是不可 能的 一个物体从甲地到乙地,永远不能到达。 因为从甲地到乙地,首先要通过道路的一半, 但是要通过一半,必须通过一半的一半,即 道路的四分之一,要通过道路的四分之一, 必须通过八分之一。这样分下去,永无止境。 芝诺的结论是此物体根本不能开始运动,因 为它被道路的无限分割阻碍着。
“一尺之棰,日取其半,万世不竭。”
意大利的裴波那契在《算盘书》中写了这 样一个问题: 7个老妇同赴罗马,每人有7匹骡,每匹 骡驮7个袋,每个袋盛7个面包,每个面包带 有7把小刀,每把小刀放在7个鞘之中,问各 有多少?
古代的数学迷宫——图形数
从极限角度解释芝诺悖论

从极限角度解释芝诺悖论题目:从极限角度解释芝诺悖论【导言】在古希腊数学史上,芝诺的悖论被视为数理逻辑领域中的一颗明珠。
它通过对质疑动态和时间的无限分割,挑战了人们对真实世界的直观理解。
本文将以极限的观点,解读芝诺悖论并探讨其含义。
【正文】1. 芝诺悖论的起源芝诺悖论起源于古希腊数学家芝诺提出的一系列非常反直觉的思维实验。
其中最著名的是“亚基里斯赛跑”和“阿喀琉斯之舟”两个悖论。
在亚基里斯赛跑中,亚基里斯每次都会落后于乌龟一点点,因此他永远都赶不上乌龟;而在阿喀琉斯之舟中,阿喀琉斯每次射箭之前,船总是移动到了箭射到的位置,所以他永远无法将箭射中目标。
2. 极限的观点要理解芝诺悖论,我们需要引入“极限”的概念。
极限是用来描述趋近于某个特定值或状态时的无限过程。
当我们观察运动变化或无限分割时,极限的思想可以帮助我们解释一些看似矛盾的现象。
3. 亚基里斯赛跑的极限分析在亚基里斯赛跑中,亚基里斯每次都会离乌龟更近一点,但永远不会赶上它。
然而,如果我们用极限的观点来看待这个过程,我们会发现每次迭代,亚基里斯离乌龟的距离会趋向于无穷小,但他永远不会达到乌龟的位置。
4. 阿喀琉斯之舟的极限分析在阿喀琉斯之舟中,船总是在阿喀琉斯射箭之前移动到箭射到的位置。
尽管看起来这种情况下箭无法射中目标,然而通过极限的思考,我们可以认识到,船的移动速度趋近于零、而箭射出的速度是有限的,所以当阿喀琉斯射箭的瞬间到来时,箭射中目标成为可能。
5. 芝诺悖论的启示芝诺悖论通过思考动态过程中的无限分割,揭示了我们的感官和直觉不能完全捕捉到真实世界的特性。
在现代数学中,通过引入极限、序列和无穷的概念,我们能够正式地处理芝诺悖论中的矛盾,并将其应用于数学推理中。
【总结】芝诺悖论作为古希腊数学史上的一颗明珠,挑战了人们对真实世界的直观理解。
通过极限的观点,我们可以解释亚基里斯赛跑和阿喀琉斯之舟这两个悖论,并在这个过程中进一步理解动态过程中的无限分割。
哲学十大悖论

哲学十大悖论哲学悖论是指在逻辑上似乎是正确的,但却与常识或我们的直觉相矛盾的陈述。
悖论可以是关于存在、知识、自由意志或其他任何哲学主题的。
以下是十大著名的哲学悖论:1.芝诺的两分法悖论:这是一个关于运动的悖论,由古希腊哲学家芝诺提出。
悖论认为,如果要从A点走到B点,首先要走半程,然后再走半程,如此反复,就永远无法到达B点。
2.说谎者悖论:这是一个关于语言的悖论,由古希腊哲学家欧提洛提出。
悖论认为,如果一个人说“我是一个说谎者”,那么他所说的句子是真是假?如果他是说谎者,那么他所说的句子是假的,但这句话又说他是说谎者,所以他又不是说谎者。
3.罗素悖论:这是一个关于集合的悖论,由英国哲学家伯特兰·罗素提出。
悖论认为,集合“所有不属于自己的成员的集合”是矛盾的。
4.哥德尔不完全性定理:这是一个关于数学的悖论,由奥地利数学家库尔特·哥德尔提出。
定理认为,任何足够强大的形式系统都无法证明自己的无矛盾性。
5.图灵机悖论:这是一个关于计算机的悖论,由英国数学家阿兰·图灵提出。
悖论认为,存在一个图灵机可以模拟任何其他图灵机,但没有图灵机可以模拟自己。
6.薛定谔的猫:这是一个关于量子力学的悖论,由奥地利物理学家埃尔温·薛定谔提出。
悖论认为,如果一只猫被关在密封的盒子里,盒子里有一只放射性原子,原子有50%的概率衰变,如果原子衰变,则猫会被毒死。
在盒子没有打开之前,猫既是活着的,又是死了的。
7.秃头悖论:这是一个关于集合的悖论,由美国哲学家罗伯特·怀特提出。
悖论认为,如果一个集合包含所有不包含自己的集合,那么这个集合是否包含自己?如果包含,那么它就属于集合本身,但这又是一个矛盾。
8.自由意志悖论:这是一个关于自由意志的悖论,由美国哲学家丹尼尔·丹尼特提出。
悖论认为,如果自由意志是真实的,那么它必须是可预测的,但如果自由意志是可预测的,那么它就不是自由意志。
第7讲芝诺悖论有限与无限

22
但康托不同意这一观点,他很愿意把 这个装有所有正整数的袋子看作一个完整的实 体。这就是实无限的观点。
康托的工作是划时代的,对现代数学产生了 巨大的影响,但当时,康托的老师克罗内克尔, 却激烈反对康托的观点。所以康托当时的处境和 待遇都不太好。
17
2. 数学中的无限在生活中的反映
1 )大烟囱是圆的:每一块砖都是直的 (整体看又是圆的)
2 )锉刀锉一个光滑零件: 每一锉锉下去都是直的
(许多刀合在一起的效果又是光滑的)
18
3 ) 不规则图形的面积:正方形的面积,长方形
的面积三角形的面积,多边形的面积,圆面积。 规则图形的面积→不规则图形的面积?
4
二、芝诺悖论
芝诺(前 490 ?—前 430 ?)是(南意 大利的)爱利亚学派创始人巴门尼德的学生。他企 图证明该学派的学说:“多”和“变”是虚幻的,不可 分的“一”及“静止的存在”才是唯一真实的;运动只 是假象。于是他设计了四个例证,人称“芝诺悖 论”。这些悖论是从哲学角度提出的。我们从数学角 度看其中的一个悖论。
9
2. 客满后又来了一个旅游团,旅游团 中有无穷个客人
1
2
3
4
┅
k┅
↓↓ ↓ ↓┅
↓┅
2
46Biblioteka 8┅2k ┅
空下了奇数号房间
10
3. 客满后又来了一万个旅游团,每个
团中都有无穷个客人
1
2
3
4
┅
↓↓↓ ↓┅
10001 20002 30003 40004 ┅
k
┅
↓┅
10001×k ┅
由a点到b点_芝诺悖论_二分法_概述说明以及解释

由a点到b点芝诺悖论二分法概述说明以及解释1. 引言:1.1 概述:在数学研究和推理过程中,常常会遇到一些看似简单却又充满深刻哲学意味的问题。
本文将介绍由a点到b点的路径上所涉及的芝诺悖论和二分法,通过对这两个概念的探讨,旨在揭示数学思维中的一些独特之处。
1.2 芝诺悖论:芝诺悖论是古希腊哲学家芝诺提出的一个引人注目的问题,即“亚基里斯与乌龟”悖论。
虽然看似简单,但在实际计算中却存在着无限缩减距离、无限分割时间等颇具深意的问题。
我们将详细解释这个看似难以理解的悖论。
1.3 二分法:二分法是一种数学工具和思维方式,通过不断将整体分割为两部分,逐步求解目标问题。
在数值计算、搜索算法等领域广泛应用。
我们将介绍二分法的基本原理与应用,并结合实际案例展示其强大影响力和作用。
2. 点a到点b的表述:2.1 起始点a: 在数学和几何中,起始点a通常被认为是一个给定的位置或数值,用来表示某个过程或问题的起始状态或条件。
在本文中,起始点a将被假设为一个具体的初始位置或数值,用于描述从点a到点b的运动或变化过程。
2.2 终点b: 终点b是指从起始点a经过一系列步骤或操作后所到达的最终位置或结果。
在许多情况下,终点b代表了问题的解决方案、目标实现或过程结束的状态。
在我们探讨由起始点a到达终点b的过程中,终点b将被描述为一个具体而清晰的标记。
2.3 中间过程描述: 从起始点a到终点b往往需要经历一系列连续且有序的步骤和转换。
这些中间过程可能包括计算、移动、分割、逼近等操作,其中二分法作为一种有效且常用的方法,在该过程中发挥着重要作用。
通过详细描述这些中间过程,我们可以更好地理解并掌握由起始点a到达终点b的整个演变过程。
3. 芝诺悖论解释:3.1 定义和由来芝诺悖论是古希腊数学家芝诺提出的一种悖论,也被称为“亚基连多洛斯之箭”或“飞越者难题”。
这个悖论主要涉及到运动和时间的问题,表达了一个看似合理但却带有矛盾的思考方式。
芝诺悖论

芝诺悖论解答芝诺悖论(Zeno's paradoxes)是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论。
这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。
芝诺提出这些悖论是为了支持他老师巴门尼德关于“存在”不动、是一的学说。
这些悖论中最著名的两个是:“阿基里斯跑不过乌龟”和“飞矢不动”。
这些方法现在可以用微积分(无限)的概念解释,但还是无法用微积分解决,因为微积分原理存在的前提是存在广延(如,有广延的线段经过无限分割,还是由有广延的线段组成,而不是由无广延的点组成。
),而芝诺悖论中既承认广延,又强调无广延的点。
这些悖论之所以难以解决,是因为它集中强调后来笛卡尔和伽桑迪为代表的的机械论的分歧点。
这些悖论其实都可以简化为:1/0=无穷。
留传下来的芝诺悖论共有8个,最为著名的主要有4个,分别为二分法悖论、阿基里斯(Achilles)悖论、飞矢不动悖论和游行队伍悖论。
二分法悖论的内容是:事物想要运动完全程,就必须运动完全程的一半,而全程的一半还有一半,一半的一半还是有一半,这样一来一半的概念是可以无限地划分的,因而,事物在运动的过程中是永远无法经过“一半”的。
因此,运动是永远无法终结和进行的,因而运动不存在。
这里的问题所在是把时间看作了一个有限的概念而把空间看做了一个无限的范畴。
因而认为无法在有限中完成无限。
然而事实上,根据马克思理论,事物的有限无限的概念完全是相对的,不能片面地承认一方面的存在而否定另外一方。
比如说,一条线段(距离)包括无限的点,人永远无法走完这无数的点,正如他永远无法数清这些点一样。
为什么人们不认为数不清这无数的点是个悖论,却认为走完这无数的点就成了悖论了呢?原因就在于数数和运动是不同性质的东西,数数是空间中的行为,运动是本身的时间中的行为,不能混淆时间和空间。
第二个悖论是最为复杂的阿基里斯(Achilles)悖论。
芝诺认为追赶者,即阿基里斯需要一定的时间才能达到被追赶者(乌龟)于该时间开始的出发之处。
芝诺曾提出四个运动的不可分性的哲学悖论有什么

B、C两个列队开始移动,如下图所示相对于观众席A,B和C分别向右和左各移动了一个距离单位.
□□□□
■■■■
▲▲▲▲
而此时,对B而言C移动了两个距离单位.也就是,队列既可以在一瞬间(一个最小时间单位)里移动一个距离单位,也可以在半个最小时间单位里移动一个距离单位,这就产生了半个时间单位等于一个时间单位的矛盾.因此队列是移动不了的.
二分法悖论:
这也是芝诺提出的一个悖论:当一个物体行进一段距离到达D,它必须首先到达距离D的二分之一,然后是四分之一、八分之一、十六分之一、以至可以无穷地划分下去.因此,这个物体永远也到达不了D.这些结论在实践中不存在,但是在逻辑上无可挑剔.
芝诺甚至认为:“不可能有从一地到另一地的运动,因为如果有这样的运动,就会有‘完善的无限’,而这是不可能的.”如果阿基里斯事实上在T时追上了乌龟,那么,“这是一种不合逻辑的现象,因而决不是真理,而仅仅是一种欺骗”.这就是说感官是不可靠的,没有逻辑可靠.
有人用物理语言描述这个问题说,在阿基里斯悖论中使用了两种不同的时间度量.一般度量方法是:假设阿基里斯与乌龟在开始时的距离为S,速度分别为V1和V2.当时间T=S/(V1-V2)时,阿基里斯就赶上了乌龟.
但是芝诺的测量方法不同:阿基里斯将逐次到达乌龟在前一次的出发点,这个时间为T'.对于任何T',可能无限缩短,但阿基里斯永远在乌龟的后面.关键是这个T'无法度量T=S/(V1-V2)以后的时间.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
悖论的解释
当阿基里斯无限接近于乌龟之时,时间也停 滞了。所以在有限的时间里,阿基里斯永远 无法追上乌龟。从这个意义上讲,阿基里斯 悖论倒不是悖论了,只是有个隐含件没有被
大家所发现——有限时间内。
时间的连续性
个人认为用时间的连续性来解释更清晰。在这 个假设里,时间的发展被设定为无限的趋近于 一个点。而实际情况是我们生活的这个时空, 时间的发展是连续,不会出现无限接近某一个 时刻的情况。例如,从这一刻开始,往后数4 秒,你能说有3.9,3.99,3.999,3.999….就
注意 1.无穷小是变量,不能与很小的数混淆; 2.零是可以作为无穷小的唯一的数.
© 2007 Microsoft Corporation. All rights reserved
阿基里斯继续追乌龟跑0.01s,此时乌龟又跑了0.01米
。。。。。。。。。。。 。。。。。。。。。。。 。。。。。。。。。。。
© 2007 Microsoft Corporation. All rights reserved
© 2007 Microsoft Corporation. All rights reserved
© 2007 Microsoft Corporation. All rights reserved
阿基里斯追乌龟跑1000米用100s,此时乌龟又跑了100米
阿基里斯继续追乌龟跑10s,此时乌龟又跑了10米
阿基里斯继续追乌龟跑1s,此时乌龟又跑了1米
阿基里斯继续追乌龟跑0.1s,此时乌龟又跑了0.1米
第四节 无穷小与无穷大
无穷小
芝诺悖论 无穷小的概念 小结
© 2007 Microsoft Corporation. All rights reserved
© 2007 Microsoft Corporation. All rights reserved
我们不妨假设阿基里斯的速度为 10m/s,乌龟的速度是1m/s,乌龟 在阿基里斯前方1000m处。阿基里 斯跑1000米用100s,此时乌龟又 跑了100m;
1
10)n
0
,这就引出了我们这节课
要学习的无穷小的概念:
© 2007 Microsoft Corporation. All rights reserved
1.定义: 极限为零的变量称为无穷小.
记作 lim f ( x) 0 (或 lim f ( x) 0).
x x0
x
例如,
lim sin x 0, 函数sin x是当x 0时的无穷小. x0
1 lim 0,
x x
函数 1 是当x 时的无穷小. x
(1)n lim n n
0, 数列{(1)n }是当n n
时的无穷小.
© 2007 Microsoft Corporation. All rights reserved
无穷小是相对于过程而言的.
无穷小是这样的函数 在xx0(或x)的过程中 极限为零
是达不到 Corporation. All rights reserved
我们可以写出这个时间数列:100,10, 1, 0.1, 0.01, 0.001……….;
我们对这个等比数列求和是 1000 (1- ( 1 )n ) ;
9
10
那么我知道
lim(
n