《二面角》第二课时示范公开课教学设计【高中数学】

合集下载

高中数学《二面角的概念》教案教学设计及说课稿模板

高中数学《二面角的概念》教案教学设计及说课稿模板

高中数学《二面角的概念》教案教学设计及说课稿模板《二面角的概念》教学设计一、教学目标【知识与技能】能正确概述“二面角”、“二面角的平面角”的概念,会做二面角的平面角。

【过程与方法】利用类比的方法推理二面角的有关概念,提升知识迁移的能力。

【情感态度与价值观】营造和谐、轻松的学习氛围,通过学生之间,师生之间的交流、合作和评价达成共识、共享、共进,实现教学相长和共同发展。

二、教学重、难点【重点】“二面角”和“二面角的平面角”的概念。

【难点】“二面角的平面角”概念的形成过程。

三、教学过程(一)创设情境,导入新课请学生观察生活中的一些模型,多媒体展示以下一系列动画如:1.打开书本的过程;2.发射人造地球卫星,要根据需要使卫星的轨道平面与地球的赤道平面成一定的角度;3.修筑水坝时,为了使水坝坚固耐久,须使水坝坡面与水平面成适当的角度;引导学生说出书本的两个面、水坝面与底面,卫星轨道面与地球赤道面均是呈一定的角度关系,引出课题。

(二)师生互动,探索新知学生阅读教材,同桌互相讨论,教师引导学生对比平面角得出二面角的概念平面角:平面角是从平面内一点出发的两条射线(半直线)所组成的图形。

二面角定义:从一条直线出发的两个半面所组成的图形,叫作二面角。

这条直线叫作二面角的棱,这两个半平面叫作二面角的面。

(动画演示)(2)二面角的表示(3)二面角的画法(PPT演示)教师提问:一般地说,量角器只能测量“平面角”(指两条相交直线所成的角.相应地,我们把异面直线所成的角,直线与平面所成的角和二面角,均称为空间角)那么,如何去度量二面角的大小呢?我们以往是如何度量某些角的?教师引导学生将空间角化为平面角.教师总结:(1)二面角的平面角的定义定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.“二面角的平面角”的定义三个主要特征:点在棱上、线在面内、与棱垂直(动画演示)平面角是直角的二面角叫做直二面角。

湖南省师范大学附属中学高三数学总复习 二面角2教案

湖南省师范大学附属中学高三数学总复习 二面角2教案

湖南师范大学附属中学高三数学总复习教案:二面角2 教学目标1.使学生进一步掌握好二面角及二面角的平面角的概念;2.使学生掌握求二面角平面角的基本方法,不断提高分析问题和解决问题的能力.教学重点和难点重点:使学生能够作出二面角的平面角;难点:根据题目的条件,作出二面角的平面角.教学设计过程重温二面角的平面角的定义.(本节课设计的出发点:空间图形的位置关系是立体几何的重要内容.解决立体几何问题的关键在于做好:定性分析,定位作图,定量计算,其中定性是定位、定量的基础,而定量则是定位,定性的深化.在面面关系中,二面角是其中的重要概念之一,它的度量归结为平面上角的度量,一般说来,对其平面角的定位是问题解决的关键一步.可是学生往往把握不住其定位的基本思路而导致思维混乱,甚至错误地定位,使问题的解决徒劳无益.这正是本节课要解决的问题.)教师:二面角是怎样定义的?学生:从空间一直线出发的两个半平面所组成的图形叫二面角.教师:二面角的平面角是怎样定义的?学生:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.教师:请同学们看下图.如图1:α,β是由l出发的两个半平面,O是l上任意一点,OC α,且OC⊥l;OD β,且OD⊥l.这就是二面角的平面角的环境背景,即∠COD是二面角α-l-β的平面角.从中我们可以得到下列特征:(1)过棱上任意一点,其平面角是唯一的;(2)其平面角所在平面与其两个半平面均垂直;另外,如果在OC上任取一点A,作AB⊥OD,垂足为B,那么由特征(2)可知AB⊥β.突出l,OC,OD,AB,这便是另一特征.(3)体现出一完整的三垂线定理(或逆定理)的环境背影.教师:请同学们对以上特征进行剖析.学生:由于二面角的平面角是由一点和两条射线构成,所以二面角的定位可化归为“定点”或“定线”的问题.教师:特征(1)表明,其平面角的定位可先在棱上取一“点”.耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背影互相沟通,给计算提供方便.(上面的引入力争符合练习课教学的特点.练习是形成技能的重要途径,练习课主要是训练学生良好的数学技能,同时伴随着巩固知识,发展智能和培育情感.特别要注意做到第一,知识的激活.激活知识有两个目的,一是突出了知识中的重要因素;二是强化知识中的基本要素.第二,思维的调理.练习课成功的关键在于对学生思维激发的程度.学生跃跃欲试正是思维准备较好的体现.因此,准备阶段安排一些调理思维的习题,确保学生思维的启动和运作.请看下面两道例题.)例1 已知:如图2,四面体V-ABC中,VA=VB=VC=a,AB=BC=CA=b,VH⊥面ABC,垂足为H,求侧面与底面所成的角的大小.分析:由已知条件可知,顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,由三垂线定理可知,VO⊥AB,则∠VOC为侧面与底面所成二面角的平面角.(图2)正因为此四面体的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使得题设背影突出在面VOC上,给进一步定量创造了得天独厚的条件.特征(2)指出,如果二面角α-l-β的棱l垂直某一平面γ,那么l必垂直γ与α,β的交线,而交线所成的角就是α-l-β的平面角.(如图3)由此可见,二面角的平面角的定位可以考虑找“垂平面”.例2 矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,使点A在平面BCD上的射影A′落在BC上,求二面角A-BD-C的大小的余弦值.这是一道由平面图形折叠成立体图形的问题,解决问题的关键在于搞清折叠前后的“变”与“不变”.如果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA,OE与BD的垂直关系不变.但OA与OE此时变成相交两线并确定一平面,此平面必与棱垂直.由特征(2)可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角.另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了可能.在Rt△AA′O中,∠AA′O=90°,通过对例2的定性分析、定位作图和定量计算,特征(2)从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角.“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量.特征(3)显示,如果二面角α-l-β的两个半平面之一,存在垂线段AB,那么过垂足B作l的垂线交l于O,连结AO,由三垂线定理可知OA⊥l;或者由A作l的垂线交l于O,连结OB,由三垂线定理的逆定理可知OB⊥l.此时,∠AOB就是二面角α-l-β的平面角.(如图6)由此可见,二面角的平面角的定位可以找“垂线段”.课堂练习1.在正方体ABCD-A1B1C1D1中,棱长为2,E为BC的中点,求面B1D1E与面BB1C1C所成的二面角的大小的正切值.练习1的环境背景表明,面B1D1E与面BB1C1C构成两个二面角,由特征(2)可知,这两个二面角的大小必定互补.为创造一完整的三垂线定理的环境背景,线段C1D1会让我们眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1)即得面D1B1E与面CC1B1E所成二面角的平面角∠C1OD1,2.将棱长为a的正四面体的一个面与棱长为a的正四棱锥的一个侧面吻合,则吻合后的几何体呈现几个面?分析:这道题,考生答“7个面”的占99.9%,少数应服从多数吗?从例题中三个特征提供的思路在解决问题时各具特色,它们的目标分别是找“点”、“垂面”、“垂线段”.事实上,我们只要找到其中一个,另两个就接踵而来.掌握这种关系对提高解题技能和培养空间想象能力非常重要.本题如果能融合三个特征对思维的监控,可有效地克服、抑制思维的消极作用,培养思维的广阔性和批判性.如图9,过两个几何体的高线VP,VQ的垂足P,Q分别作BC的垂线,则垂足重合于O,且O为BC的中点.OP延长过A,OQ延长交ED于R,考虑到三垂线定理的环境背影,∠AOR为二面角A-BC-R 的平面角,结合特征(1),(2),可得VAOR为平行四边形,VA∥BE,所以V,A,B,E共面.同理V,A,C,D共面.所以这道题的正确答案应该是5个面.(这一阶段的教学主要是通过教师精心设计的一组例题与练习题,或边练边评,或由学生一鼓作气练完后再逐题讲评,达到练习的目的.其间要以学生“练”为主,教师“评”为辅)为了提高“导练”质量,教师要力求解决好三个问题:1.设计好练习.设计好练习是成功练习的前提.如何设计好练习是一门很深的学问,要注意:围绕重点,精选习题;由易到难,呈现题组;形式灵活,题型多变.2.组织好练习.组织练习是“导练”的实质,“导练”就是有指导、有组织的练习过程.要通过一题多用、一题多变、一题多解等使学生举一反三,从而提高练习的效果.有组织的练习还包括习题的临时增删、节奏的随时控制、要求的适时调整等.3.讲评好练习.讲评一般安排在练习后进行,也可以在练习前或练习时.练习前的讲评,目的是唤起学生的注意,提醒学生避免出错起到前馈控制的作用;练习时的讲评,属于即时反馈,即学生练习,教师巡视,从中发现共性问题及时指出来,以引起学生的注意;更多的是练习后的讲评,如果采用题组练习,那么最常用的办法是一组练习完毕后教师讲评,再进行下一组练习,以此类推.教师:由例1、例2和课堂练习,我们已经看到二面角的平面角有三个特征,这三个特征互相联系,客观存在,但在许多问题中却表现得含糊而冷漠,三个特征均藏而不露,在这种形势下,需认真探索.学生:应探索体现出一完整的三垂线定理的环境背景,有了“垂线段”,便可以定位.教师:请大家研究下面的例题.例3 如图10,在正方体ABCD-A1B1C1D1中,E是BC的中点,F在AA1上,且A1F∶FA=1∶2,求平面B1EF与底面A1C1所成的二面角大小的正切值.分析:在给定的平面B1EF与底面A1C1所成的二面角中,没有出现二面角的棱,我们可以设法在二面角的两个面内找出两个面的共点,则这两个公共点的连线即为二面角的棱,最后借助这条棱作出二面角的平面角.略解:如图10.在面BB1CC1内,作EH⊥B1C1于H,连结HA1,显然直线EF在底面A1C1的射影为HA1.延长EF,HA1交于G,过G,B1的直线为所求二面角的棱.在平面A1B1C1D1内,作HK⊥GB1于K,连EK,则∠HKE为所求二面角的平面角.在平面A1B1C1D1内,作B1L⊥GH于L,利用Rt△GLB1∽Rt△GKH,可求得KH.又在Rt△EKH中,设EH=a,容易得到:所求二面角大小的正切值教师:有时我们也可以不直接作出二面角的平面角,而通过等价变换或具体的计算得出其平面角的大小.例如我们可以使用平移法.由两平面平行的性质可知,若两平行平面同时与第三个平面相交,那么这两个平行平面与第三个平面所成的二面角相等或互补.因而例3中的二面角不易直接作出其平面角时,可利用此结论平移二面角的某一个面到合适的位置,以便等价地作出该二面角的平面角.略解:过F作A′B′的平行线交BB′于G,过G作B′C′的平行线交B′E于H,连FH.显见平面FGH∥平面A′B′C′D′.则二面角B′-FH-G的平面角度数等于所求二面角的度数.过G作GM⊥HF,垂足为M,连B′M,由三垂线定理知B′M⊥HF.所以∠B′MG为二面角B′-FH-G的平面角,其大小等于所求二面角平面角的大小.(练习课的一个重要特征是概括.解题重要的不是统计做了多少题目,而是是否掌握了一类题的实质,即有无形成基本的解题模式,只有真正掌握了一类问题的解题思路,才算掌握了解答这类题目的基本规律.当学生练习到一定程度就应不失时机地引导他们总结和概括出练习的基本经验和教训,获得有意义的练习成果)例4 已知:如图12,P是正方形ABCD所在平面外一点,PA=PB=PC=PD=a,AB=a.求:平面APB与平面CPD相交所成较大的二面角的余弦值.分析:为了找到二面角及其平面角,必须依据题目的条件,找出两个平面的交线.解:因为 AB∥CD,CD 平面CPD,AB 平面CPD.所以 AB∥平面CPD.又 P∈平面APB,且P∈平面CPD,因此平面APB∩平面CPD=l,且P∈l.所以二面角B-l-C就是平面APB和平面CPD相交所得到的一个二面角.因为 AB∥平面CPD,AB 平面APB,平面CPD∩平面APB=l,所以 AB∥l.过P作PE⊥AB,PE⊥CD.因为 l∥AB∥CD,因此 PE⊥l,PF⊥l,所以∠EPF是二面角B-l-C的平面角.因为 PE是正三角形APB的一条高线,且AB=a,因为 E,F分别是AB,CD的中点,所以 EF=BC=a.在△EFP中,小结:二面角及其平面角的正确而合理的定位,要在正确理解其定义的基础上,掌握其基本特征,并灵活运用它们考察问题的背景.我们已经看到,定位是为了定量,求角的大小往往要化归到一个三角形中去解,因此寻找“垂线段”,把问题化归是十分重要的.作业1.120°二面角α-l-β内有一点P,若P到两个面α,β的距离分别为3和1,求P 到l的距离.2.正方体ABCD-A1B1C1D1中,求以BD1为棱,B1BD1与C1BD1为面的二面角的度数.。

高中数学教案教学设计10篇

高中数学教案教学设计10篇

高中数学教案教学设计10篇高中数学教案教学设计篇1一、教材分析1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。

“二面角”是人教版《数学》第二册(下B)中9.7的内容。

它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。

因此,它起着承上启下的作用。

通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

2、教学目标:知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

(2)进一步培养学生把空间问题转化为平面问题的化归思想。

能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

3、重点、难点:重点:“二面角”和“二面角的平面角”的概念难点:“二面角的平面角”概念的形成过程二、教法分析1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。

求二面角 (平面与平面所成的角) 高中数学教案

求二面角 (平面与平面所成的角) 高中数学教案

§2.3.2求二面角——平面与平面所成的角一、教学目标1、知识与技能(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在数学问题解决上的作用。

2、过程与方法(1)通过实例让学生直观感知“二面角”概念的形成过程;(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。

3、情态与价值通过揭示概念的形成、发展和应用过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力。

二、教学重点、难点。

重点:平面与平面垂直的判定;难点:如何度量二面角的大小。

三、学法与教学用具。

1、学法:实物观察,类比归纳,语言表达。

2、教学用具:二面角模型(两块硬纸板)四、教学设计(一)创设情景,揭示课题问题1:平面几何中“角”是怎样定义的?问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?(二)研探新知1、二面角的有关概念老师展示一张纸面,并对折让学生观察其状,然后引导学生用数学思维思考,并对以上问题类比,归纳出二面角的概念及记法表示(如下表所示)2、二面角的度量二面角定理地反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一些,那我们应如何度量二两角的大小呢?师生活动:师生共同做一个小实验(预先准备好的二面角的模型)在其棱上位取一点为顶点,在两个半平面内各作一射线(如图2.3-3),通过实验操作,研探二面角大小的度量方法——二面角的平面角。

教师特别指出:(1)在表示二面角的平面角时,要求“OA⊥L”,OB⊥L;(2)∠AOB的大小与点O在L上位置无关;(3)当二面角的平面角是直角时,这两个平面的位置关系怎样?承上启下,引导学生观察,类比、自主探究,βB获得两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

高中数学二面角的教案

高中数学二面角的教案

高中数学二面角的教案【篇一:“二面角”教学设计】“二面角”教学设计一、教学内容解析“二面角”在人教版新课标教材《必修2》第二章第三节第二小节的一个子内容,它的主要用途在于去定义两平面垂直关系,同时它也是继讨论了直线与直线所成的角、直线与平面所成的角之后的另一种自然的空间角。

在《必修2》中教材没有例题进行二面角的计算,只是在小节习题中以正方体为背景设计了一个题,在《选修2-1》的第三章第二节中教材着重的加强了利用空间向量的工具去解决二面角的计算。

“二面角”的内容在以前的大纲版教材中是专设一节来进行详细的介绍,以及对二面角平面角的找寻进行了细致的划分,诸如:定义法,三垂线定理法等。

对比两个版本教材的编写情况可以看出,本节在新课程中主要起到的作用是更好地理解两平面垂直的关系,而且对前面两者——直线与直线的垂直,直线与平面的垂直起着衔接和完善整个关系体系的作用。

故而,“二面角”这节的重点应该是理解概念,以及通过学习本节让学生在各自的思维中构建整个知识脉络,建立相关关系。

二、教学目标设置在《说明》中对《必修2》教材第二章“点、直线、平面之间的位置关系”的目标设置为能用数学语言表述有关平行、垂直的性质与判定,并对某些结论进行论证,以及以立体几何中的定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。

又在《说明》中对《选修2-1》教材第三章“空间向量与立体几何”的目标设置为能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用,足以见得,对于二面角这个子内容的作用就是过渡,提出面面垂直的定义。

故而,在本节我设计的目标要求如下:(1)引导学生探索和研究两平面垂直应该如何定义,在概念形成的过程中,使得学生认同学习“二面角”概念的必要,并发展学生的思维。

(2)在经历概念形成的过程中去理解二面角平面的作法,并掌握。

三、学生学情分析在学习“二面角”之前,学生已经学习了空间中两直线的垂直定义,两直线所成角的定义,直线与平面垂直的定义和直线与平面所成角的定义,至此学生已经具备一定的空间想象力和概括能力,在这里很自然的能够联想到缺少了两个平面垂直的关系,两个平面的垂直是生活中常见的形式,学生能够去感受,而数学是严格的,也就自然会想该怎样去定义这种关系,根据前两种关系从“角度”出发的描述形式,“二面角”是呼之欲出,是势在必然。

高中数学教案《二面角》

高中数学教案《二面角》

高中数学教案《二面角》一、教学目标1.理解二面角的概念,掌握二面角的表示方法。

2.学会应用二面角的性质和定理解决实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

二、教学重难点重点:二面角的概念、表示方法及其性质。

难点:二面角性质的应用。

三、教学过程1.导入新课(1)引导学生回顾空间几何中的基本概念,如平面、直线、角等。

(2)提出问题:在空间几何中,我们学过角,那么什么是二面角呢?2.二面角的概念及表示方法(1)讲解二面角的概念:由两条相交直线与它们所在平面所夹的角叫做二面角。

(2)讲解二面角的表示方法:用两条相交直线表示,或者用它们所在平面表示。

(3)举例说明:展示一个二面角模型,引导学生观察并理解二面角的定义。

3.二面角的性质(1)讲解二面角的性质:二面角的度数范围是0°到180°。

(2)讲解二面角的性质:二面角的大小与两条相交直线的夹角大小无关。

(3)讲解二面角的性质:二面角的两个面可以互换。

4.二面角的应用(1)讲解二面角的应用:求解空间几何问题。

(2)举例说明:展示一个实际问题,引导学生运用二面角的知识解决问题。

5.练习与讨论(1)布置练习题:让学生独立完成一些关于二面角的练习题。

(2)讨论答案:引导学生互相讨论,共同解决问题。

(2)拓展延伸:引导学生思考如何将二面角的知识应用于实际问题。

四、教学反思本节课通过讲解二面角的概念、表示方法、性质及其应用,使学生掌握了二面角的基本知识。

在教学过程中,注重培养学生的空间想象能力和逻辑思维能力。

通过练习题和讨论,学生能够灵活运用二面角的知识解决问题。

但部分学生在理解二面角的性质时仍存在困难,需要在今后的教学中加以关注。

五、教学评价1.课堂表现:观察学生在课堂上的参与度、提问回答情况等。

2.作业完成情况:检查学生作业的完成质量,了解学生对二面角知识的掌握程度。

3.测试成绩:通过测试了解学生对二面角知识的掌握情况。

4.学生反馈:收集学生对本节课教学的意见和建议,以改进教学方法。

《二面角及其度量》示范公开课教学设计【高中数学人教版】

《二面角及其度量》示范公开课教学设计【高中数学人教版】

《二面角及其度量》教学设计1.通过自学明确什么是二面角,会判断二面角. 2.能会求二面角的平面角.课前预习案1. 叫做二面角,其中每个半平面叫做二面角的面;这条直线叫做二面角的棱,二面角记作 .2.二面角的大小可以用它的 来度量.如课本P108,3-43所示,在二面角的 任取一点O ,在两个半平面内分别做射线OA l ,OB l .则角AOB 叫做二面角l αβ--的平面角. 二面角的范围: .3.求二面角的平面角的方法:(1)利用两半平面的法向量的夹角求.设12,n n αβ⊥⊥, 则12,n n <>与二面角l αβ--的平面角大小相等或互补.具体由题目中的图形而定.(2)定义法:二面角的平面角适合于一些较为规范的图形,并常借助于三垂线定理或线面垂直的性质定理.(3)应用例二的结论:/cos S S θ=(只用于小题,大题中必须加以证明后再使用) 1、自二面角内一点分别向二面角的两个面引垂线,这两条垂线所成的角与二面角的大小关系是( )A .相等B .互为补角C .互为余角D .相等或互为补角◆ 课前检测◆ 学习目标◆ 课前预习2n 1n l2n 1n2、如图所示,已知二面角α—l —β的大小为60°,m ,n 为异面直线,且m ⊥α,n ⊥β,则直线m ,n 的夹角为( )A .30°B .60°C .90°D .120°3.从点P 引三条射线PA 、PB 、PC ,每两条夹角均为60°,则二面角B —PA —C 的余弦值是( ) A.12 B.13 C.33 D.324.在正方体ABCD —A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22课内探究案【典例精析】题型一:向量法求二面角的大小例1.在长方体ABCD —A 1B 1C 1D 1中,1AA =1,AD =DC =3,在线段A 1C 1上有一点Q ,且11131A C Q C =,求平面QDC 与平面A 1DC 所成锐二面角的大小.变式训练:如图,已知ABCD 为直角梯形,,2DAB ABC SA π∠=∠=垂直于平面ABCD ,SA=AB=BC=1,12AD =,求平面SAB 与SCD 的夹角的正切.例2. 在一个二面角的棱上有两个点A 、B ,线段AC ,BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,4,6,AB cm AC cm ==8,BD cm =217CD cm =.求这个二面角的度数.变式训练:在090二面角的棱上有两个点A ,B,AC,BD 分别是在这个二面角的两个面内,且都垂直于棱AB ,已知AB=5,AC=3,BD=8,求CD 的长。

《二面角》教学设计

《二面角》教学设计

教材版本:人教大纲版高二年级上学期(第三册)第九章《二面角》教学设计江西省宜春市万载中学(336100)授课人:郭炜甘淑清教学目标1、知识与技能:使学生正确理解和掌握“二面角”、“二面角的平面角”的概念,并能初步运用它解决实际问题;引导学生探索和研究“二面角的平面角”应该如何定义,在概念形成的过程中,发展学生的思维能力.2、过程与方法:以培养学生的创新能力和动手能力为重点。

(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

(2)通过对图形的作图、观察、分析和比较来强化学生的动手操作和动脑的能力。

3、情感与态度三维目标:(1)使学生认识到数学知识来自实践,并服务于实践,从而增强学生应用数学的意识。

(2)通过揭示面面之间的内在联系,进一步使学生建立“联系”的辩证唯物主义观点。

教学重点和难点本课的重点是“二面角”和“二面角的平面角”的概念;本课的难点是“二面角的平面角”概念形成的过程及如何作出二面角的平面角。

教学设计过程一:引入镜头一:学生观察开关门时门所在平面和墙面所在的平面的张合程度有何变化?(动画)镜头二:学生观察翻书时翻开的书面与书本所在平面的张合程度有何变化?(动画)(目的:使学生在观看动画的时候能够感觉到平面与平面之间存在着变化的位置关系,为引入二面角的概念作出铺垫)二:新课讲解1.二面角概念及表示法首先复习在平面几何中“角”是怎样定义的?对比平面角的定义给二面角下定义.并解释二面角的表示法。

平面角表示法:∠AOB.二面角表示法α-a-β或α-AB-β.2.二面角的大小如何度量在翻书和开门过程中,都给人一种二面角大小会连续变化的的印象,节下来应该解决的是如何度量二面角的大小。

先复习异面直线所成的角是如何作出平面角的。

直线a,b是异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,我们把直线a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.若以棱a上任意一点O为端点,在两个面内作两条射线OA′,OB′,由空间等角定理知,∠A′OB′并不是存在且唯一的,所以不能用这样的角定义二面角的平面角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二面角》教学设计第二课时◆教学目标1、进一步理解线面角的定义.提升学生的数学抽象素养.2、掌握求线面角的两种基本方法,即空间向量法与几何法,提升学生的数学运算素养◆教学重难点◆教学重点:掌握求线面角的两种基本方法,即空间向量法与几何法.教学难点:灵活运用两种基本方法求线面角.◆课前准备PPT课件.◆教学过程一、整体概览问题1:阅读课本第50-52页,回答下列问题:(1)本节将要研究哪类问题?(2)本节要研究的对象在高中的地位是怎样的?师生活动:学生带着问题阅读课本,老师指导学生概括总结本节的内容.预设的答案:(1)本节主要学习二面角第二课时用空间向量求二面角的大小.(2)学生在学习了异面直线所成角的概念及线面角的基础上,对空间角的问题有了一定的经验,二面角的问题,依然按照将空间问题化为平面问题、将立体几何问题化为空间向量运算问题的基本思路展开.为培养学生直观想象、数学抽象、逻辑推理、数学建模和数学运算的核心素养提供舞台.设计意图:通过对本节知识内容的预习,让学生明晰下一阶段的学习目标,初步搭建学习内容的框架二、探索新知问题2:如果21n n ,分别是平面21αα,的一个法向量,设21αα,所成角的大小为θ,通过作图讨论θ与〉〈21n n ,的关系.师生活动:学生根据个人理解,老师指导学生总结答案.预设的答案:由图(1)(2)易知,〉〈=21,n n θ或〉〈-=21,n n πθ 特别的,〉〈=21,sin sin n n θ追问:根据上述解答过程,请同学们探究二面角为锐角和钝角时的余弦值情况.师生活动:学生根据个人理解,老师指导学生总结答案.预设的答案:已知θ为锐角,当〉〈21n n ,为锐角时,θ=〉〈21n n ,,〉〈=21,cos cos n n θ,当〉〈21n n ,为钝角时,〉〈-=21,n n πθ,〉〈-=21,cos cos n n θ,所以恒有|,cos |cos 21〉〈=n n θ.设计意图:该内容探究的是如何用两个平面的各自一个法向量去研究两个平面所成角的大小.教师可以在前面方法回顾的基础上,引导学生进行自主学习与尝试.三、初步应用例3: 如图所示,已知四棱锥ABCD S -中,ABCD ABCD SA ,面⊥为直角梯形,,90 =∠=∠ABC DAB 且AD BC AB SA 3===,求平面SCD SAB 与所成角的正弦值.师生活动:学生尝试建系解答,做完同桌总结思路,给出本体解答的一般步骤,由老师指定学生解答.预设的答案:解:依题意可得,AD ,AB ,AS 两两互相垂直,以A 为原点, AS AB AD ,,的方向分别为z y x ,,轴正方向,AD 的长为单位长度,建立如图所示直角坐标系,则:)0,0,1(),0,3,3(),3,0,0(),0,0,0(D C S A 所以)0,3,2(),3,0,1(),0,0,1(=-==DC DS AD 显然,AD 是平面SAB 的一个法向量,设平面''BCD A 的一个法向量为),,(z y x n =, 则⎪⎩⎪⎨⎧=+=⋅=+-=⋅03203y x DC n z x DS n 取3=x ,可得1,2=-=z y ,此时)1,2-,3(=n 因为14143||||,cos ==〉〈n AD nAD n AD 所以所求的角的正弦值为14701491=- 设计意图:例3是以条件较为特殊的几何体来示范用空间向量求平面所成角的问题.教师可以通过师生的探究与交流.教师讲解:在解题的过程中应该注意的方面:(1)条件的特殊性.存在共顶点的三条棱两两互相垂直,利于建系,可以直接确定其中一个平面的一个法向量;有三条棱长相等,因此,此四棱锥可视为某正方体中的一部分.可以合理利用题目中条件的特殊性,灵活确定点的坐标及平面的一个法向量.(2)所求的问题是两个平面所成角的正弦值.虽然前面有“尝试与发现”的结论,但是向量公式中没有正弦值,可以先求余弦值,再求正弦值,这是通法.事实上,两个平面所成角为特殊角的情况还是非常少的,因此,多数情况下为求所成角的三角函数值.(3)直观上看,平面SAB 与平面SCD 没有公共的棱,因此用作二面角的平面角去解答就会很困难,这也体现了向量方法在解答较复杂的立体几何问题时的优势.在条件不变的前提下,教师还可以让学生求平面SAD 与平面SBC 所成角的正弦值,以巩固学生本小节知识与方法的掌握.例4:如图所示,已知直三棱柱111C B A ABC -中,2,1,901====∠AA BC AC ABC ,且D 是1AA的中点.求平面BDC 与平面1BDC 所成角的大小.师生活动:学生先尝试自己建立坐标系,并给出解答,由老师指定学生解答.预设的答案:依题意可得,CA,CB,1CC 两两互相垂直,以C 为原点, 1,,CC CB CA 的方向分别为z y x ,,轴正方向,建立如图所示直角坐标系,则:)2,0,0(),1,0,1(),0,1,0(),0,0,0(1C D B C 所以)2,1,0(),1,0,1(),1,0,1(),0,1,0(11-=-===BC DC CD CB设平面BCD 的一个法向量为),,(z y x n =, 则⎪⎩⎪⎨⎧=+=⋅==⋅00z x DC n y CB n 取,1=z ,可得0,1=-=y x ,此时)1,0,1-(=n设平面D BC 1的一个法向量为),,(z y x m =, 则⎪⎩⎪⎨⎧=+-=⋅=+-=⋅020m 11z y BC m z x DC 取,1=z ,可得2,1==y x ,此时)1,2,1(=m因为0=⋅n m所以所求的角的大小为90°.设计意图:法向量的方向决定了法向量的夹角与二面角的平面角的大小的关系是相等或互补.这就需要结合算出的法向量,将坐标原点作为始点,根据横、纵、竖坐标的正负,判断其终点所在的空间直角坐标系的卦限,从而确定其方向.法向量方向的判断环节,有助于培养学生的逻辑思维能力和空间想象能力.问题3:根据例4所求问题中的不能直接确定平面的一个法向量.解答过程也是给出了证明空间中两个平面垂直的一种方法.请学生归纳解题的一般过程.师生活动:在教师的指导下共同讨论.预设的答案:根据题目条件合理地建立空间直角坐标系;根据所设长度写出必要的点的坐标;根据点的坐标求出两组有公共顶点的棱(线段)的方向向量;用方程组分别求出两个平面的一个法向量;利用向量的夹角公式求出向量夹角的三角函数值;写出所求问题的结论.设计意图:法向量方向的判断环节,有助于培养学生的逻辑思维能力和空间想象能力.问题4:根据所学,请学生总结求二面角的平面角的一般方法.师生活动:在教师的指导下共同讨论.预设的答案:一定义法:在棱上任取一点,过这点在两个半平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;二是利用三垂线定理及其逆定理:自二面角的一个面上的一点向另一个平面引垂线,再由垂足向棱作垂线得到棱上的点(即斜足),斜足与面上这一点连线,和斜足与垂足连线所夹的角,就是二面角的平面角;三是射影面积公式法:SS 'cos =θ(其中'S 表示射影图形面积,S 表示原图形面积).设计意图:使用向量方法解决二面角的平面角问题,不能离开对立体几何图形的分析.实际上,向量方法与综合几何方法也是相互关联的.向量在立体几何中的应用的灵活性来源于立体几何图形位置关系和向量运算的联系,也就是实现向量语言对立体几何问题的描述.学习二面角的内容,对学生的空间想象力有着较高的要求.四、归纳小结,布置作业问题5:如果21n n ,分别是平面21αα,的一个法向量,设21αα,所成角的大小为θ,讨论θ与〉〈21n n ,的关系.师生活动:在教师的指导下共同讨论. 预设的答案:〉〈=21,n n θ或〉〈-=21,n n πθ 特别的,〉〈=21,sin sin n n θ设计意图:通过梳理本节课的内容,能让学生更加明确利用空间向量求二面角的大小 布置作业:教科书第52页练习B1,2,3.五、目标检测设计1已知二面角α­l ­β,其中平面α的一个法向量m =(1,0,-1),平面β的一个法向量n =(0,-1,1),则二面角α­l ­β的大小可能为________.设计意图:考查学生对空间向量求夹角的正弦值.2.三棱锥A ­BCD 中,平面ABD 与平面BCD 的法向量分别为n 1·n 2,若〈n 1,n 2〉=π3,则二面角A ­BD ­C 的大小为( )A .π3B .2π3C .π3或2π3D .π6或π3设计意图:考查学生对空间向量求夹角.3、已知向量m ,n 分别为直线l 和平面α的方向向量、法向量,若cos 〈m ,n 〉=-32,则直线l 与平面α所成的角为________.设计意图:考查学生对空间向量求夹角.参考答案:1.60°或120° [cos 〈m ,n 〉=m ·n |m |·|n |=-12·2=-12, ∴〈m ,n 〉=120°,∴二面角α­l ­β的大小为60°或120°.]2.C [当二面角A ­BD ­C 为锐角时,它等于〈n 1,n 2〉=π3. 当二面角A ­BD ­C 为钝角时,它应对等于π-〈n 1,n 2〉=π-π3=2π3.]3、60° [设直线l 与平面α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=32.又∵θ∈[0,90°],∴θ=60°.]。

相关文档
最新文档