新高一数学二面角知识点
高一数学二面角

AB AC BC 2a ,
那么BAC 为等边三角形,
所以BAC 600 .
解:(略)
课堂小结
从一条直线出发的两个半
1、二面角的定义:
平面所组成的图形叫做二 面角。这条直线叫做二面
角1的、棱二。面这角两的个平半面平角面叫
2、二面角的画法和记法:做二的面大角小的与面。其顶点 画法:在直棱立上式的和位平置卧无式关
角就是所求的则平由面三垂角线, 定最理后得求A出D这⊥个l .角的大小。
ADO 就是二面角 - l - 的平面角.
A.
AO 2 3, AD 4 在Rt△ADO中,
D
O
∵sin∠ADO= AO 2 3 AD 4
l
∴ ∠ADO=60°.
∴二面角 - l- 的大小为60 °.
垂直于棱的两条射线,这两条射线所成的角叫做二面角的
平面角。
AOB =?=AOB
O l
A
B
注无量一同等:个,关的((角角那,,12定))的么只一理二二两这与个:面面边两二二如角角分个面面果的是别角角角一平用平相的的个面它行等张平角角的,。角面的与平并)大角两点面且小多边的角方有大和位来向关,另置度相。就
O
B
A
说这个二面角是多少度的二面角。 (3)平面角是直角的二面角叫做
直二面角。
(4)二面角的取值范围一般规定
为(0,π)。
观看动画演示
二面角的 平面角的定义、范围及作法
2、二面角的平面角的作法: 1、定义法: 根据定义作出来。
2、作垂面: 作与棱垂直的平面与两半平面 的交线得到。
3、应用三垂线: 应用三垂线定理或其逆定理作 出来。
高一数学二面角

第13课时二面角一、【学习导航】知识网络学习要求1.理解二面角及其平面角的概念2.会在具体图形中作出二面角的平面角,并求出其大小.【课堂互动】自学评价1. 二面角的有关概念(1).半平面:(2).二面角:(3).二面角的平面角:(4).二面角的平面角的表示方法:(5).直二面角:(6).二面角的范围:2.二面角的作法:(1)定义法(2)垂面法(3)三垂线定理【精典范例】例1:下列说法中正确的是(D)A.二面角是两个平面相交所组成的图形B.二面角是指角的两边分别在两个平面内的角C.角的两边分别在二面角的两个面内, 则这个角就是二面角的平面角D.二面角的平面角所在的平面垂直于二面角的棱.例2如图, 在正方体ABCD-A1B1C1D1中:(1)求二面角D1-AB-D的大小;(2)求二面角A1-AB-D的大小见书43例1(1) 45°(2) 90思维点拨要求二面角的平面角,关键是根据图形自身特点找出二面角的平面角,主要方法有:定义法,垂面法,三垂线定理法.步骤为作,证,求.例3在正方体ABCD-A1B1C1D1中,求平面A1BD与平面C1BD的夹角的正弦值.点拨:本题可以根据二面角的平面角的定义作出二面角的平面角.分析:取BD的中点O,连接A1O,C1O,则∠A1O C1为平面A1BD与平面C1BD的二面角的平面角.答:平面A1BD与平面C1BD的夹角的正弦值1 3追踪训练1.从一直线出发的三个半平面,两两所成的二面角均等于θ,则θ=60°2.矩形ABCD中,AB=3,AD=4,PA⊥面ABCD,且A-BD-P的度数为30°3.点A为正三角形BCD所在平面外一点,且A到三角形三个顶点的距离都等于正三角形的边长,求二面角A-BC-D的余弦值.答:13ADD1A1BCB1C1C A第14课时 二面角分层训练1.已知二面角α- l –β为锐角,点MÎα,M到β的距离MN=6,则N 点α的距离是 ( )A. B. 3C.D. 2.过正方形ABCD 的顶点A 作线段PA 垂直于平面ABCD , 如果PA=AB , 那么平面ABP 与平面CDP 所成的锐二面角为 ( )A. 30°B. 45°C. 60°D. 90°3.已知钝二面角α- l –β等于θ, 异面直线a 、b 满足a Ìα, b Ìβ, 且a ⊥l , b ⊥l , 则a , b 所成的角等于 ( )A. θB. π-θC.2-θD. θ或π-θ 4.等边三角形ABC的边长为1,BC边上的高是AD,若沿高AD将它折成直二面角B-AD-C,则A到BC的距离是 .5.在直角三角形ABC中,两直角边AC=b,BC=a,CD ⊥AB 于D ,把三角形ABC 沿CD 折成直二面角A-CD-B ,求cos ∠ACB = .6.如图, 已知AB 是平面α的垂线, AC 是平面α的斜线, CD Ìα, CD ⊥AC, 则面面垂直的有_____________ .7.在四棱锥P-ABCD 中, 若PA ⊥平面ABCD, 且ABCD 是菱形, 求证: 平面PAC ⊥平面PBD.8.已知正方体ABCD-A 1B 1C 1D 1 , 求二面角C 1-BD-C 的正切值.A 11拓展延伸正方体ABCD-A1B1C1D1的棱长为1,P是AD的中点,求二面角A-BD1-P的大小.。
高中数学必修二立体几何常考内容,二面角的有关知识你掌握了吗?

高中数学必修二立体几何常考内容,二面角的有关知识你掌握了吗?高中数学必修二立体几何中,有一类题型是求二面角的大小。
今天就说说二面角的有关知识及如何求二面角的问题。
一看见“二面角”这几个字,你“捡珍珠”,“穿珍珠”,“知识串”里应该有这些知识点(一)二面角的定义从一条直线出发的两个半平面所组成的图形叫二面角。
这条直线叫二面角的棱,这两个半平面叫二面角的面。
(二)二面角的表示如果棱为l,面为α,β,则二面角表示为α-l-β.(三)二面角的大小(1)二面角的平面角在二面角的棱上任取一点,分别在两个半平面内,过该点做垂直于棱的垂线,两条垂线所形成的角叫二面角的平面角。
简单记忆,“点在棱上,线在面内,与棱垂直”。
(2)二面角大小的度量二面角的大小,用它的平面角去度量,平面角是多少度,二面角就是多少度。
(3)二面角的范围,0~180(4)二面角与它平面角的画法(四)二面角的求法常用的方法有“定义法”及“垂线法”(1)定义法求二面角的大小例:若P是ΔABC所在平面外一点,而ΔPBC和ΔABC都是边长为2的正三角形,PA=√6,那么二面角P-BC-A的大小为()求二面角的步骤:①做:做出平面角②证:证明所做的角满足定义,是二面角的平面角③求:将做出的角放到三角形中,计算出平面角的大小④答:所求二面角的大小是多少。
(2)垂线法,过一个半平面内的一点A(不在棱上),向另一个半平面做垂线,垂足为B,再由B向二面角的棱做垂线,垂足为O,连AO,则∠AOB就是二面角的平面角。
例:如图,在空间四边形ABCD中,ΔBCD是正三角形,ΔAB D 是等腰直角三角形,H是斜边BD的中点,且AH⊥平面BCD,二面角A-BD-C为直二面角,求二面角A-CD-B的正切值的大小.求二面角的大小,还可以用到“垂面法”,“公式法”这里公式法可以有两个公式,一个是cosθ=S射影/S原图,一个是空间向量学习后,转换成两平面的法向量的夹角去求。
希望本文对需要的家长和孩子有所帮助,也希望孩子们抓紧时间复习,期末考出好成绩!。
高一数学《二面角》课件

O
小B有关。 A (2)二面角是用它的平面角来度
量的,一个二面角的平面角多大,就
说这个二面角是多少度的二面角。
观看动画演示
(3)二面角的范围: 0 ,π
(4)直二面角—— 平面角为直角的二面角 A 叫做直二面角
B
O
• 问题1:在正四面体中,求相邻两个平面所成
的二面角的的大小
A
D B
E C
问题2:一个平面垂直于二面角的棱,它和 二面角的两个面的交线所成的角是二面角的 平面角吗?为什么?
直作出来
做二面角的的大面小。与 其顶点
二、二面3、角借助的三表垂线示定方理或法: 在棱上的位置无关 三、二面角12其、、逆的找证定到明平理或1作面中作出的出角来角二:就面是角所的3求平、的面它小二角角的来面平度角面的量角大的小大用
四、二面角3、的计算平所面求的角角的作法:
五、二面角的计算:
一“作”二“证”三“算”
一.二面角的概念
1、半平面: 平面内的一条直线,把这个平面分成两部分, 每一部分都叫做半平面。
2、二面角:
从一条直线引出的两个半平面所组成的图形 叫做二面角。这条直线叫做二面角的棱,这 两个半平面叫做二面角的面。
半
l
半
平
平
面
面
面
面
棱l
二面角定义与平面角定义的对比
平面角
二面角
A
图形
边
顶点
O
边B
二、二面角的表示方法: 三、二面角的平面角: 四、二面角的平面角的作法: 五、二面角的计算:
一“作”二“证”三“算”
二 面 角 二 面 角 -AB-
二 面 角 C-AB- D
从一条直线出发的两个半 平面所1、组二成面的角图的形平叫面做角二
高中数学知识点:二面角

高中数学知识点:二面角1.二面角定义平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫做二面角的面.表示方法:棱为AB 、面分别为αβ、的二面角记作二面角AB αβ--.有时为了方便,也可在αβ、内(棱以外的半平面部分)分别取点P Q 、,将这个二面角记作二面角P AB Q --.如果棱记作l ,那么这个二面角记作二面角l αβ--或P l Q --.2.二面角的平面角(1) 二面角的平面角的定义:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则这两条射线构成的角叫做二面角的平面角.(2)二面角的平面角θ的范围:0°≤θ≤180°.当两个半平面重合时,θ=0°;当两个半平面相交时,0°<θ<180°;当两个半平面合成一个平面时,θ=180°.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面角.(3) 二面角与平面角的对比角 二面角 图形定义 从半面内一点出发的两条射线(半直线)所组成的图形从空间内二直线出发的两个半平面所组成的图形 表示法由射线、点(顶点)、射线构成,表示为∠AOB 由半平面、线(棱)、半平面构成,表示为二面角a αβ--(4) 二面角的平面角的确定方法 方法1:(定义法)在二面角的棱上找一特殊点,在两个半平面内分别作垂直于棱的射线.如右图,在二面角a αβ--的棱a 上任取一点O ,在平面α内过点O 作OA ⊥a ,在平面β内过点O 作BO ⊥a ,则∠AOB 为二面角a αβ--的平面角.方法2:(垂面法)过棱上一点作棱的垂直平面,该平面与二面角的两个半平面产生交线,这两条交线所成的角,即为二面角的平面角.如下图(左),已知二面角lαβ--,过棱上一点O作一平面γ,使lγ⊥,且OAγβ=。
高一数学二面角知识点

高一数学二面角知识点二面角是几何学中的重要概念之一,在高一数学课程中也是必学的知识点之一。
二面角主要涉及到直线和平面的交角问题,在解题过程中需要灵活运用相关理论和定理。
下面将详细介绍高一数学中与二面角有关的知识点。
1. 二面角的定义和性质在平面几何中,二面角是指两个相交平面所张角的角度。
二面角有正负之分,当两个相交平面逆时针旋转时,角度增加,为正二面角;顺时针旋转时,角度减小,为负二面角。
2. 二面角的计算方法计算二面角的方法主要有两种:直接使用给定的公式计算和利用相关性质进行推导和计算。
(1)直接使用公式计算:当已知两个相交平面的法线向量时,可以使用向量内积的方法计算二面角的角度。
(2)利用相关性质计算:若已知两个相交平面上的夹角和两个平面与第三个平面的夹角,可以利用平面几何中的一些性质和定理,如余弦定理、平面内角和定理等进行推导和计算。
3. 二面角与直线之间的关系在解决与直线有关的问题时,二面角也起到了重要的作用。
通过二面角的概念,可以理解和推导出一些与直线平行、垂直、夹角等性质相关的定理。
(1)直线的斜率与二面角的关系:两个相交直线的斜率之间的关系可以通过二面角推导出来,从而可以得到判断两条直线斜率大小关系的方法。
(2)直线的夹角与二面角的关系:当两条直线相交时,可以通过二面角的概念计算出两条直线的夹角。
4. 二面角的应用举例在实际问题中,二面角的概念和性质被广泛应用。
以下是一些常见的应用场景:(1)建筑物的倾斜角度:通过测量建筑物的倾斜面与地平面的二面角,可以得知建筑物的倾斜程度。
(2)车辆的转弯半径计算:通过计算车辆转弯时前后轮之间的二面角,可以求得车辆的转弯半径和转弯角度。
(3)立体图形的表面积计算:计算立体图形的表面积时,需要考虑到不同面之间的二面角,根据二面角的性质进行计算。
(4)光的折射和反射:在光的折射和反射现象中,二面角的概念可以解释和计算光线的入射角、反射角和折射角。
综上所述,二面角是高一数学中的重要知识点之一,它与直线、平面等几何对象之间有密切的关系。
二面角的定义

高,以AD为折痕使∠BDC成直角。
求证:① 平面ABD⊥平面BDC,平面ACD⊥平面BDC
②
∠
BAC
=
。
60
A
证明:① 在图乙中 ∵AD⊥BD,AD⊥DC, ∴AD⊥平面BDC,
又∵AD 平面ABD,AD
B
平面ACD,
∴平面ABD⊥平面BDC平,面ACD⊥平面BDC。
② 在图甲中 ∵AB=AC=a,∠BAC=90。
O
二面角
例3.如图P为二面角α–ι–β内一点,PA⊥α,PB⊥β,且PA=5, PB=8,AB=7,求这二面角的度数。
解:过PA、PB的平面PAB与
棱ι 交于O点 ∵PA⊥α ∴PA⊥ι ∵PB⊥β ∴PB⊥ι
βB
ιO
P Aα
∴ι⊥平面PAB
∴∠AOB为二面角α–ι–β的平面角
又∵PA=5,PB=8,AB=7 由余弦定理得 cosP 1
3
sinAQN=
6 3
。即二面角B-B1C-A的正弦值为
6。
3
二面角
练习
1、如图,AB是圆的直径,PA垂 P
直圆所在的平面,C是圆上任一点,
则二面角P-BC-A的平面角为:
C
A.∠ABP B.∠ACP C.都不是 A
B
2、已知P为二面角 内一 点,且P到两个半平面的距离都等
β
B
p
于P到棱的距离的一半,则这个二
ι
α
A
O
ι
α
A
二面角的求法
几点说明:
⑴定义法是选择一个平面内的一点(一般为这个面的一个顶点)向 棱作垂线,再由垂足在另一个面内作棱的垂线。此法得出的平面角 在任意三角形中,所以不好计算,不是我们首选的方法。
高一数学必修2二面角

一个平面内的一条直线把这个平面分成
两个部分,其中的每一部分都叫做半平面。
从一条直线出发的两个半平面所组成的图 形叫做二面角。
这条直线叫做二面角的棱。
这两个半平面叫做二面角的面。
QB
B
l
P
O
A
A
平面角由射线--点--射线构成。 二面角由半平面--线--半平面构成。
二面角的表示
构成
边—点—边 (顶点)
面—直线—面 (棱)
表示法
∠AOB
二面角—l— 或二面角—AB—
3.二面角的度量
以二面角的棱上任意一点为端点,在两 个面内分别作垂直于棱的两条射线,这两 条射线所成的角叫做二面角的平面角。
二面角的大小用它的平面角来度量
∠A O B
B1 B
l
O1 O
?∠A1O1B1
所成的二面角为60,堤面 上有一条直道CD, 它与堤脚的水平线A B的夹角为 30, 沿这条直道从堤脚向上行走到10m时人升高了 多少(精确到0.1m) ?
ED
G
30
CF
精品文档 欢迎下载
读书破万卷,下笔如有神--杜甫
二面角 l 二面角 AB
二面角P l Q 二面角P AB Q
2.二面角的画法
A
F
E
l
B
A
B
D
C
二面角-AB- 二面角- l-
C
B
D
A
二面角C-AB- D
5
角
二面角
图形
顶点 O
A 边
边B
A 棱a 面
B面
定义
从一点出发的两条射线 所组成的图形叫做角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新高一数学二面角知识点
一、二面角的定义
二面角是指两个位于同一平面的射线,它们的起始点相同但是方向不同的角。
如图所示:
(插入图片)
在图中,OA和OB是位于同一平面的两个射线,它们的起始点O相同,但是方向不同,所以∠AOB是一个二面角。
二、二面角的度量
二面角的度量可用度、分、秒或弧度表示。
常用的单位是度,用符号°表示。
(表格)
其中,一周等于360°,一度等于60分,一分等于60秒。
三、二面角的分类
根据二面角的大小和位置关系,二面角可以分为四类:锐角、
直角、钝角和平角。
1. 锐角:度数大于0°且小于90°的二面角称为锐角。
如图所示:
(插入图片)
在图中,∠AOB是一个锐角,它的度数大于0°且小于90°。
2. 直角:度数等于90°的二面角称为直角。
如图所示:
(插入图片)
在图中,∠AOB是一个直角,它的度数等于90°。
3. 钝角:度数大于90°且小于180°的二面角称为钝角。
如图所示:
(插入图片)
在图中,∠AOB是一个钝角,它的度数大于90°且小于180°。
4. 平角:度数等于180°的二面角称为平角。
如图所示:
(插入图片)
在图中,∠AOB是一个平角,它的度数等于180°。
四、二面角的性质
1. 锐角的余角等于钝角。
2. 钝角的余角等于锐角。
3. 直角的余角等于直角。
4. 平角的余角等于平角。
5. 互补的二面角加起来等于平角。
6. 互补的二面角的余角相等。
7. 任意一锐角的余角是唯一的。
五、二面角的应用
1. 几何中常用的二面角有直角、钝角和锐角,它们在三角函数等计算中具有重要的作用。
2. 二面角的概念也应用于立体几何及解析几何等领域。
六、总结
二面角是高中数学中的重要概念,在几何和三角函数等计算中都有广泛的应用。
通过学习二面角的定义、度量和性质,我们能够更好地理解和应用数学知识。
希望本文对大家有所帮助。