数学建模资源分配
席位分配问题数学建模

席位分配问题是一个常见的实际问题,涉及到资源的分配和管理。
为了解决这个问题,我们可以使用数学建模的方法,通过建立数学模型来分析和优化席位的分配方案。
一、问题描述假设有一个大型会议,需要分配给不同的参与者席位。
每个参与者可能有不同的资格和需求,我们需要根据一定的规则来分配席位。
具体问题包括:1. 参与者数量和席位数量2. 参与者的资格和需求3. 席位分配的规则和标准二、数学建模为了解决席位分配问题,我们可以使用以下数学模型:1. 参与者集合P:表示所有的参与者。
2. 席位集合S:表示所有的席位。
3. 资格矩阵A:表示每个参与者的资格情况,每一行表示一个参与者,每一列表示一个资格类型(例如,专业、身份等)。
4. 需求矩阵D:表示每个参与者对席位的需求情况,每一行表示一个参与者,每一列表示一个席位类型(例如,地点、时间等)。
5. 分配规则R:表示席位的分配规则和标准,如按照资格优先、按照需求优先、按照公平分配等。
根据以上描述,我们可以建立如下的数学模型:目标函数:最小化席位浪费(即席位数与参与者需求之差)约束条件:1. 资格约束:每个参与者的资格必须满足分配规则的要求。
2. 需求约束:每个参与者所需席位类型必须得到满足。
3. 数量约束:总的席位数必须不超过总席位数量。
4. 可行性约束:分配的席位必须是有效的,即不存在冲突和重复的情况。
三、求解方法根据上述数学模型,我们可以使用以下方法进行求解:1. 枚举法:逐个尝试所有可能的席位分配方案,找到满足约束条件的方案。
这种方法需要大量的计算时间和空间,但在某些情况下可能找到最优解。
2. 优化算法:使用优化算法如遗传算法、粒子群算法等,通过不断迭代找到最优解。
这种方法需要一定的编程知识和技能,但通常能够快速找到满意的解。
3. 启发式算法:使用启发式算法如模拟退火、蚁群算法等,通过不断尝试找到满意解。
这种方法相对简单易行,但可能无法找到最优解。
4. 数学软件求解:使用专门的数学软件如Matlab、Python等,通过编程求解上述数学模型。
亚太区数学建模c题

亚太区数学建模c题数学建模在现代科学研究和工程技术领域中扮演着重要的角色。
本文将讨论亚太区数学建模竞赛的C题,并提供一种解决方案。
这个题目是关于人口增长和资源分配的问题。
在这个问题中,我们需要分析一个城市的人口增长和资源分配情况。
根据题目要求,我们需要考虑城市的建筑密度、土地利用率以及资源的供应和需求。
我们的目标是找到一种资源分配方案,使得城市的人口增长和资源利用达到最佳的平衡。
首先,我们需要建立一个数学模型来描述城市的人口增长和资源分配。
我们可以使用差分方程来模拟人口增长的变化,如下所示:$\frac{dP}{dt} = rP(1-\frac{P}{K})$其中,P表示城市的人口数量,t表示时间,r表示人口的增长率,K表示城市的容量上限。
这个方程描述了人口数量随时间变化的规律,考虑到城市的容量限制,人口的增长率会随着人口数量的增加而减小。
接下来,我们需要考虑资源的供应和需求。
假设资源的供应量为S,人口的需求量为D。
我们可以使用一个资源分配模型来描述资源的供应和需求之间的关系,如下所示:$\frac{dS}{dt} = rS(1-\frac{S}{K}) - aD$其中,S表示资源的供应量,D表示人口的需求量,r表示资源的增长率,K表示资源的容量上限,a表示资源供应量对人口需求的影响系数。
这个方程描述了资源供应量随时间变化的规律,考虑到资源的容量限制,资源的增长率会随着资源供应量的增加而减小,而资源的供应量还受到人口需求的影响。
为了找到最佳的资源分配方案,我们需要优化资源供应和人口增长的平衡。
我们可以使用最优化方法,比如说最大化人口增长和资源利用的效率。
我们可以定义一个目标函数,如下所示:$maximize \quad \frac{dP}{dt} - \frac{dS}{dt}$这个目标函数表示了人口增长和资源利用的效率,我们的目标是找到使得目标函数达到最大值的资源分配方案。
最后,我们可以使用数值方法,如Euler方法,来求解这个数学模型。
数学建模竞赛试题--AD-HOC网络资源分配问题

Ad Hoc网络中的区域划分和资源分配问题Ad Hoc网络是当前网络和通信技术研究的热点之一,对于诸如军队和在野外作业的大型公司和集团来说,Ad Hoc网络有着无需基站、无需特Array定交换和路由节点、随机组建、灵活接入、移动方便等特点,因而具有极大的吸引力。
在Ad Hoc网络中,节点之间的通信均通过无线传输来完成,由于发射功率以及信道(即频率)的限制,节点的覆盖范围有限,当它要与其覆盖范围之外的节点进行通信时,可以通过中间节点转发,如右图所示。
对一个指定区域,用一系列称为一跳覆盖区的小区域将其有重叠地完全覆盖,对每个一跳覆盖区分配一个信道,处于几个一跳覆盖区重叠部分的节点同时使用几个信道工作。
在同一个一跳覆盖区内的用户使用同一个信道相互通信;不同一跳覆盖区的用户之间通过中间节点转发。
如图中,节点A,B间的通信可由路由A-C-D-B或A-C-E-F-B实现。
如果区域中任意两个节点都能通信,则称之为连通。
现在,需要在一个1000 1000(面积单位)的区域内构建一个Ad Hoc网络,请你完成以下工作:(1)将此正方形区域用若干个半径都是100的圆完全覆盖,要求相邻两个圆的公共面积不小于一个圆面积的5%,最少需要多少个圆(如果一个圆只有部分在正方形区域中,也按一个计算)?若给每个圆分配一个信道,使得有公共部分的圆拥有不同的信道,最少需要几个信道?怎样分配(用示意图标出)?如果将上面的5%改为18%,其它不变,结果又如何?对以上两种划分,若每个公共部分中心和相应圆心各恰有一个节点,讨论网络的抗毁性。
(即从节点集合中随机地抽掉2%、5%、10%、15%等数量的节点后网络是否仍然连通)(2)设正方形区域中有一中心在(550,550)、长轴与正方形水平的一条边成30度角、长度为410、短轴为210的椭圆形湖泊。
节点仅能设置在地面上,假设一跳覆盖区圆的半径可以在75~100间随意选择,两个面积不等的圆相交,它们之间的公共面积应不小于大圆面积的5%,其他假设同(1),研究使全部圆半径之和为最小的区域分划和信道分配方案。
数学建模-农场资源配置问题

数学建模-农场资源配置问题农场资源配置最优化【摘要】资源是社会经济活动中⼈⼒、物⼒和财⼒的总和,是经济发展的基本物质条件。
资源配置是对相对稀缺的资源在各种不同⽤途上加以⽐较做出的选择。
由于农业⽣产资源的稀缺性,建设现代农业的过程中,必须对有限的资源进⾏合理配置,⽤最少的资源耗费得到最⼤的⽣产产出,获得最佳的经济效益,实现资源配置的最优化。
避免农业⽣产资源的闲置和浪费。
按照市场配置⽅式,努⼒发挥市场在资源配置中的指导作⽤,依托组织、产业和技术优势,⼤⼒开发境外资源,全⾯整合和优化配置资源。
应充分利⽤产业发展,合理调配各种资源实现资源的最优配置。
本⽂以某农户拥有100亩⼟地和25000元可供投资为前提,建⽴数学模型,确定每种农作物应该种植多少亩,以及奶⽜和母鸡应该各蓄养多少,使年净现⾦收⼊最⼤。
在此⽂中我们通过对农户投资的合理设置及其分配使得收⼊最⼤化问题⽽进⾏研究,通过精密细致的理论研究和数据分析,和LINGO 软件的运作求解,寻求农户的⼟地和劳作时间的最优化设置,试图从⼩⾓度透视农户投资的最优化。
数模⽅法及主要结果:在本题中,我们先进⾏问题重述,接着进⾏问题假设,排除了外部变化对结果的影响,然后对符号进⾏设定,由于涉及的未知量较多,并没有使⽤常规的图解法,于是建⽴基于⽬标函数与约束条件的线性规划模型,从⽽转化到对该线性模型最优解的探讨,接着进⾏问题分析和建⽴模型及运⽤了LINGO软件进⾏模型求解,得到了问题所需的最优解——农民出去打⼯才能获得最⼤利润。
【关键字】资源优化配置;农户投资;数学建模⼀、问题重述某农户拥有100亩⼟地和25000元可供投资,每年冬季(9⽉份中旬⾄来年5⽉中旬),该家庭的成员可以贡献 3500h的劳动时间,⽽夏季为4000h。
如果这些劳动时间有富余,该家庭中的年轻成员将去附近的农场打⼯,冬季每⼩时6.8元,夏季每⼩时7.0元。
现⾦收⼊来源于三种农作物(⼤⾖、⽟⽶和燕麦)以及两种家禽(奶⽜和母鸡)。
数学建模选课分班问题

数学建模选课分班问题
数学建模选课分班问题是指在学校的数学建模选修课程中,需要将学生分配到不同的班级中。
这个问题涉及到多个因素,包括学生的兴趣、能力水平、性别等,以及班级的容量和教师资源等。
在解决数学建模选课分班问题时,可以采用以下几种方法:
1.基于规则的分班方法:根据一些规则和标准,将学生分配到班级中。
例如,可以根据学生的兴趣和能力水平将他们分为不同的班级,以便更好地满足他们的学习需求。
2.基于优化算法的分班方法:利用数学建模中的优化算法,通过最小化某个目标函数来确定最佳的分班方案。
例如,可以将学生的分班问题建模为一个最小化总班级差异的问题,然后使用遗传算法或线性规划等方法求解最优解。
3.基于机器学习的分班方法:利用机器学习算法,通过学习历史数据和模式来预测学生在数学建模中的表现,并根据预测结果将学生分配到适合他们的班级。
这种方法可以根据学生的个性化需求和特点来进行分班。
在实际应用中,数学建模选课分班问题需要综合考虑多个因素,并进
行权衡和平衡。
例如,要避免班级之间的差异过大,同时也要注意班级容量和教师资源的合理分配。
为了更好地解决数学建模选课分班问题,可以采用多种方法的组合,例如先利用基于规则的方法进行初步分班,然后利用优化算法和机器学习算法进行微调和优化。
总之,数学建模选课分班问题是一个复杂的问题,需要综合考虑多个因素,并运用合适的方法进行求解。
通过合理的分班方案,可以更好地满足学生的学习需求,并提高数学建模课程的教学效果。
数学建模分配问题模型

数学建模分配问题模型数学建模是一种通过数学方法解决实际问题的方法。
在实际生活中,我们经常会遇到分配问题,即将一定数量的资源分配给不同的需求方。
这些资源可以是金钱、人力、材料等,需求方可以是个人、企业、机构等。
为了合理地分配资源,我们可以使用数学建模的方法进行分析和优化。
一般来说,分配问题可以分为两类:最优化问题和约束问题。
最优化问题的目标是使得某个指标达到最大或最小值,比如最大化利润、最小化成本等。
约束问题则是在一定的条件下寻找满足需求的最优解。
下面我们将分别介绍这两类问题的数学建模方法。
对于最优化问题,我们首先需要确定一个目标函数。
目标函数描述了我们希望优化的指标,可以是一个或多个变量之间的函数关系。
然后,我们需要确定一组约束条件。
约束条件反映了资源的限制以及需求方的限制,可以是等式或不等式。
最后,我们需要确定决策变量,即需要分配的资源量或决策方案。
通过求解目标函数在约束条件下的最优解,就可以得到最佳的分配方案。
以货物运输为例,假设有一批货物需要从仓库分配给不同的销售点,我们希望通过最优化分配来降低运输成本。
我们可以将每个销售点的需求量作为约束条件,将货物的运输成本作为目标函数。
然后,我们需要确定每个销售点的分配量作为决策变量,通过求解目标函数在约束条件下的最优解,就可以得到最佳的分配方案,从而降低运输成本。
对于约束问题,我们需要确定一组约束条件,这些条件可能是资源的限制、需求方的限制或其他限制。
然后,我们需要确定决策变量,即需要分配的资源量或决策方案。
通过在约束条件下寻找满足需求的最优解,就可以得到合理的分配方案。
以人力资源分配为例,假设有一定数量的员工需要分配到不同的项目中,每个项目对员工的技能要求不同。
我们希望通过合理的分配来最大化项目的效益。
我们可以将每个项目的效益作为约束条件,将员工的技能水平作为决策变量。
通过在约束条件下寻找满足需求的最优解,就可以得到最佳的分配方案,从而最大化项目的效益。
基于数学建模的资源优化分配模型

基于数学建模的资源优化分配模型资源优化分配模型是一种基于数学建模方法的决策模型,旨在通过合理的资源分配策略来实现资源的最大化利用和效益。
在资源优化分配模型中,首先需要确定目标函数,即所需优化的目标。
目标函数可以根据具体的应用场景来确定,如最大化利润、最小化成本、最大化效益、最大化服务质量等。
根据目标函数的设定,可以进一步确定约束条件和决策变量。
约束条件是指对资源分配进行限制的条件。
这些约束条件可以是资源的供给限制、技术限制、市场条件等。
例如,一家生产企业在分配生产资源时可能会考虑工人的工作时间、机器的使用时间、原材料的供应量等。
这些约束条件需要根据实际情况加以确定,并在模型中进行描述和考虑。
决策变量是指在资源分配过程中可供调整的变量。
决策变量的选取与模型的复杂性和实际可行性有关。
常见的决策变量包括:产品生产量、资源的分配比例、生产线的配置等。
在实际应用中,决策变量的选取需要综合考虑多个方面的因素,例如成本、效益、风险等。
在基于数学建模的资源优化分配模型中,常用的数学方法包括线性规划、整数规划、动态规划、模拟等。
不同的数学方法适用于不同的问题,根据实际情况选择合适的方法进行建模和求解。
线性规划是一种常用的数学方法,适用于目标函数和约束条件都是线性关系的问题。
线性规划通过数学优化理论和算法来求解最优的资源分配方案。
整数规划则是在线性规划的基础上增加了整数变量的限制,在某些问题中可以更好地反映实际情况。
动态规划是一种适用于具有重叠子问题和最优子结构性质的问题的优化方法。
通过将问题分解为多个子问题,并保存子问题的最优解,动态规划可以高效求解问题的最优解。
在资源优化分配模型中,动态规划可以用于处理具有时序关系的问题,例如生产计划、库存管理等。
模拟是一种基于随机数生成的数学方法,适用于对不确定性因素进行建模和分析的问题。
通过随机数的生成和运算,模拟可以模拟一系列可能的情况,从而评估各种资源分配策略的效果。
在资源优化分配模型中,模拟可以用于评估不同决策方案的风险和不确定性。
出租车资源配置数学建模

出租车资源配置数学建模出租车资源配置是城市交通管理的重要组成部分,也是市民生活中不可缺少的服务。
如何高效合理地配置出租车资源,对于缓解交通拥堵、提高出租车服务质量和增加司机收入都具有重要意义。
本文将对出租车资源配置问题进行数学建模与分析,以期为实现优质出租车服务、促进城市交通可持续发展提供指导意义。
首先,我们需要确定影响出租车资源配置的因素。
出租车资源配置主要受到市场需求、城市道路交通规划、司机收益和乘客出行习惯等多方面因素的影响。
因此,通过调查和研究,我们可以得出以下指标:1. 日均出租车需求量:该指标反映市场需求的大小,是决定资源配置数量的重要因素。
2. 出租车利用率:衡量出租车资源利用程度的指标,反映出租车行业的效益水平。
3. 路径选择效率:路网状况对出租车运营效能的影响指标,需考虑路况、车流量、限行等因素。
4. 司机工作负荷:司机收入和服务效率的关键指标,需要考虑出车率和等待乘客时间等。
基于以上指标,我们可以建立基础模型。
首先,根据日均出租车需求量,我们可以确定城市出租车资源总量。
因为城市规模和出租车服务商数量不同,我们可以根据当地实际情况进行合理分配,以确保资源利用率最大化。
然后,我们根据出租车需求的高峰时段,确定每个时段的出租车资源需求量,并将之与出租车数量进行比对,再进行调整和分配,以确保出租车利用率最大化。
其次,为了提高路径选择效率,我们需要对城市道路交通规划进行分析和规划。
我们通过模拟乘客上下车点,计算出租车到达目的地的最短路径,并结合路况和车流量等因素,确定出租车行驶路线,以减少通行时间。
同时,为了应对特殊情况和限行政策,我们可以将路线进行多种组合和调整,以避开交通拥堵和限行区域,确保出租车到达目的地的速度和效率,从而提高出租车行业的效益水平。
最后,为了降低司机工作负荷,我们可以通过计算司机出车率、乘客等待时间等指标,确定不同时段的服务区域和出车数量,以确保司机收入与服务效率最优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、问题重述 (2)二、符号说明 (2)三、模型假设 (3)四、问题分析 (3)五、模型建立与求解 (4)六、模拟程序设计 (6)七、误差分析 (7)八、模型的应用 (7)九、模型评价 (7)十、小结 (8)十一、参考文献 (10)一、问题重述某储蓄所每天的营业时间是上午九点到下午五点,根据经验每天不同的时 间段所需要的服务员数量如下:储蓄所可以雇佣全时和半时两类服务员。
全时服务员每天报酬 100 元,从 上午 9;00 到下午 5:00,但中午 12:00 到下午 2:00 之间必须安排一小时的午餐 时间。
储蓄所每天可以雇佣不超过 3 名的半时服务员, 每个半时服务员必须连续 工作 4 小时,报酬 40 元。
问该储蓄所应如何雇佣全时和半时两类服务员?如果 不能雇佣半时服务员, 每天至少增加多少费用?如果雇佣半时服务员的数量没有 限制,每天可以减少多少费用?二、符号说明时间段(时)9-10 10-11 11-12 12-1 1-2 2-3 3-4 4-5 服务 4 3 4 6 5 6 8 8y1,y2,y3,y4,y5 —————— 1:00 至 2:00 为x2.半时服务员从 9:00 至 1:00 以小时为单位的人数;x1———————————— 12:00 至 1:00 为为全时服务员人数;x2———————————— 1:00 至 2:00 为为全时服务员人数;三、模型假设1. 题中所给的数据是在微小的范围内变化的数据。
2. 所给的数据基本上有效。
3. 目标函数就是所求的资源分配方案。
四、问题分析本问题是一个资源决策分配的最优化问题数学模型。
主要是针对根据不同的报酬雇佣全时与半时服务员的如何分配问题 , 首先应定义了相关的决策变量,对不同的条件约束 ,列出对应的目标函数 ,利用相关的工具进行操作 ,最后对结果进行分析.问题的关键1. 定义相关的决策变量 . 列出目标函数。
2. 转化为定量说明。
3. 列出目标函数。
(1) 分析问题,收集资料。
需要搞清楚需要解决的问题,分析有可能的情况。
(2) 建立模拟模型,编制模拟程序。
按照一般的建模方法,对问题进行适当的假设。
也就是说,模拟模型未必要将被模拟系统的每个细节全部考虑。
模拟模型的优劣将通过与实际系统有关资料的比较来评价。
如果一个“粗糙”的模拟模型已经比较符合实际系统的情况,也就没有必要建立费时、复杂的模型。
当然,如果开始建立的模型比较简单,与实际系统相差较大,那么可以在建立了简单模型后,逐步加入一些原先没有考虑的因素,直到模型达到预定的要求为止。
编写模拟程序之前,要先画出程序框图或写出算法步骤。
然后选择合适的计算机语言,编写模拟程序。
(3) 运行模拟程序,计算结果。
为了减小模拟结果的随机性偏差,一般要多次运行模拟程序。
(4) 分析模拟结果,并检验。
模拟结果一般说来反映的是统计特性,结果的合理性、有效性,都需要结合实际的系统来分析,检验,以便提出合理的对策、方案。
以上步骤是一个反复的过程,在时间和步骤上是彼此交错的。
比如模型的修改和改进,都需要重新编写和改动模拟程序。
模拟结果的不合理,则要求检查模型,并修改模拟程序。
五、模型建立与求解问题一的回答设全时服务员每天雇佣时间从 12:00 至 1:00 人数为 x1,1:00 至 2:00 为x2. 半时服务员从 9:00 至 1:00 以小时为单位分别为 y1,y2,y3,y4,y5.则列出模型如下 :Min=100x1+100x2+40y1+40y2+40y3+40y4+40y5 约束条件如下 :x1+x2+y1>=4x1+x2+y1+y2>=3x1+x2+y1+y2+y3>=4x2+y1+y2+y3+y4>=6x1+y2+y3+y4+y5>=6x1+x2+y4+y5>=8x1+x2+y5>=8y1+y2+y3+y4+y5<=3x1,x2,y1,y2,y3,y4,y5>=0, 且为整数. 所求的结果如下由结果分析:问题一的回答:雇佣全时服务员 7 人,半时服务员 3 人.其中 12:00-1:00 全时服务员 3 名, 1: 00-2: 00 全时服务员 4 名。
11: 00-12: 00 雇佣半时服务员2 人, 12: 00-1: 00 雇佣半时服务员 1 人。
.问题二的回答:不能雇佣半时服务员 ,则全时服务员 11 人,其中 12:00-1:00 全时服务员 5 名, 1: 00-2: 00 全时服务员 6 名。
最小费用 1100 元, 即每天至少增加 280 元.问题三的回答:如果雇佣半时服务员的数量没有限制 ,则应雇佣全时服务员0 人,半时服务员 14 人,其中雇佣半时服务员 9: 00—— 10: 00 为 4 人, 11: 00- 12: 00 为 2 人, 12: 00-1: 00 为 8 人。
且最少费用 560 元, 即每天减少 260 元.六、模拟程序设计Max =-100*x1-100*x2-40*y1-40*y2-40*y3-40*y4-40*y5; x1+x2+y1>=4;x1+x2+y1+y2>=3;x1+x2+y1+y2+y3>=4;x2+y1+y2+y3+y4>=6;x1+y2+y3+y4+y5>=6;x1+x2+y4+y5>=8;x1+x2+y5>=8;y1+y2+y3+y4+y5<=3;y1+y2+y3+y4+y5<=3;end七、误差分析对于题目中给出的数据,采用了直接使用 ,这对问题的回答不会造成影响。
对于问题中的要求人员应为整数解,这对于模型的建立没有影响,但对模型的求解法求解是基于表达式的,所以在模型求解时存在一定的误差。
八、模型的应用本模型可用于资源决策分配的最优化问题数学模型的问题,适用范围广 ,操作简单。
如产品分发问题 ,时间安排问题,股票投资问题等九、模型评价模型的优点:模型实用范围较广,问题结果清晰透彻,具有合理可靠性,适用于多个同类问题。
模型的缺点:模型操作得细心,需使用多种数据处理工具。
十、小结数学建模是一个经历观察、思考、归类、抽象与总结的过程,也是一个信息捕捉、筛选、整理的过程,更是一个思想与方法的产生与选择的过程。
它给学生再现了一种“微型科研”的过程。
数学建模教学有利于激发学生学习数学的兴趣,丰富学生数学探索的情感体验;有利于学生自觉检验、巩固所学的数学知识,促进知识的深化、发展;有利于学生体会和感悟数学思想方法。
同时教师自身具备数学模型的构建意识与能力,才能指导和要求学生通过主动思维,自主构建有效的数学模型,从而使数学课堂彰显科学的魅力。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
使用数学语言描述的事物就称为数学模型。
有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
1. 只有经历这样的探索过程,数学的思想、方法,才能沉积、凝聚,从而使知识具有更大的智慧价值。
动手实践、自主探索与合作交流是学生学习数学的重要方式。
学生的数学学习活动应当是一个主动、活泼的、生动和富有个性的过程。
因此,在教学时我们要善于引导学生自主探索、合作交流,对学习过程、学习材料、学习发现主动归纳、提升,力求建构出人人都能理解的数学模型。
教师不应只是“讲演者”,而应不时扮演下列角色:参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断。
询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度。
仲裁者和鉴赏者——评判学生工作成果的价值、意义、优劣,鼓励学生有创造性的想法和作法。
2. 数学建模对教师、对学生都有一个逐步的学习和适应的过程。
教师在设计数学建模活动时,特别应考虑学生的实际能力和水平,起始点要低,形式应有利于更多的学生能参与。
在开始的教学中,在讲解知识的同时有意识地介绍知识的应用背景,在数学模型的应用环节进行比较多的训练;然后逐步扩展到让学生用已有的数学知识解释一些实际结果,描述一些实际现象,模仿地解决一些比较确定的应用问题;再到独立地解决教师提供的数学应用问题和建模问题;最后发展成能独立地发现、提出一些实际问题,并能用数学建模的方法解决它。
3. 由于知识产生和发展过程本身就蕴含着丰富的数学建模思想,因此老师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理、过程,数学知识、方法的转化、应用,不能仅仅讲授数学建模结果,忽略数学建模的建立过程。
4.数学应用与数学建模的目的并不是仅仅为了给学生扩充大量的数学课外知识,也不是仅仅为了解决一些具体问题,而是要培养学生的应用意识,提高学生数学能力和数学素质。
因此我们不应该沿用老师讲题、学生模仿练习的套路,而应该重过程、重参与,从小培养学数学已经成为当代高科技的一个重要组成部分和思想库,培养学生应用数学的意识和能力也已经成为数学教学的一个重要方面。
而应用数学去解决各类实际问题就必须建立数学模型。
小学数学教学的过程其实就是教师引导学生不断建模和用模的过程。
因此,用建模思想指导小学数学教学显得愈发重要。
十一、参考文献[1] 熊启才,《数学模型方法及应用》,重庆:重庆大学出版社 ,2005.[2] 姜启源,谢金星,叶俊 , 《数学建模》,高等教育出版社, 2010.。