磁性材料名词解释

合集下载

第5节磁性材料

第5节磁性材料

方向相反的磁化强度(M),磁化率<0,这种磁性称为
抗磁性。
表现出磁化率小于零的物质称为抗磁性物质。
抗磁性物质有;惰性气体、大部分有机化合物、若干 金属(如Bi、Zn、Ag和Mg等)、非金属(如Si、P和S等)。
电子壳层都是填满的,所以,原子磁矩等于零或虽原 子的磁矩不为零,但由原子组成的分子的总磁矩为零。
磁化过程四阶段:
磁性材料的技术磁参量
内禀磁
主要取决

参量:
❖ 磁畴
自发磁化的小区域,称为磁畴。各个 磁畴之间的交界面称为磁畴壁。
磁学基础-物质的磁性
(四)磁各向异性 磁性材料在不同方向上具有不同磁性能的特性。 包括:磁晶各向异性,形状各向异性,感生各向异性 和应力各向异性等。
单晶体的易磁化和难磁化方向
磁学基础-物质的磁性
(五)磁致伸缩 磁性材料磁化过程中发生沿磁化方向伸长(或缩 短),在垂直磁化方向上缩短(或伸长)的现象,叫 做磁致伸缩。它是一种可逆的弹性变形。材料磁致 伸缩的相对大小用磁致伸缩系数λ表示,即 :
磁性功能材料
本章主要内容
• 磁学理论 —— 物质的磁性、磁性的基本物理量 • 磁性材料分类 —— 软磁材料、永磁材料 • 磁性材料的基本性能与应用
磁学基础-物质的磁性
(一) 物质的磁性
将一个面积为(A) 、通有电流
(Is)的环型导体放入磁场中,该 环型导体将会在磁场(H)的作用下
发生偏转,即环型导体受到力矩的
铁磁性物质只有在居里温度以下才具有铁磁性;在 居里温度以上,由于受到晶体热运动的干扰,原子磁矩 的定向排列被破坏,使得铁磁性消失,这时物质转变为 顺磁性。
❖ 自发磁化
铁磁性物质内的原子磁矩,通过相 邻晶格结点原子的电子壳层的作用,克服 热运动的无序效应,原子磁矩是按区域自 发平行排列、有序取向,按不同的小区域 分布,这种现象称为自发磁化。

磁性材料原理

磁性材料原理

磁性材料原理磁性材料是一类在磁场中具有特殊性质的材料。

它们在工业生产和科学研究中起着重要的作用。

本文将介绍磁性材料的原理及其应用。

一、磁性材料的概述磁性材料是指在外加磁场作用下,能够产生磁化现象的材料。

它们包括铁、钢、镍、钴等物质。

磁性材料有两种基本类型:铁磁性材料和非铁磁性材料。

铁磁性材料具有强烈的磁性,如铁、镍和钴等。

它们在强磁场中可以被永久磁化,形成磁体。

非铁磁性材料则具有较弱的磁性,它们一般不会被永久磁化。

二、磁性材料的原理1. 原子磁偶极矩磁性材料具有原子磁偶极矩。

原子内电子所带的自旋和轨道角动量导致了原子磁矩的形成。

在一个磁场中,这些原子磁矩会互相作用,从而形成磁性。

2. 域结构磁性材料中存在着不同的磁畴,每个磁畴具有自己的磁化方向。

在无外加磁场的情况下,这些磁畴的磁化方向是杂乱无序的。

当外加磁场作用于材料时,磁畴会逐渐重新排列,使整个材料形成统一的磁化方向。

3. 局域场和磁畴壁在磁性材料中,每个磁畴内的磁化强度是均匀的,但不同磁畴之间的磁化强度存在差异。

这种差异由局域场引起。

磁畴之间的过渡区域称为磁畴壁,磁畴壁上的磁化方向逐渐变化,使得整个材料的磁化过渡更加平滑。

三、磁性材料的应用1. 电磁设备磁性材料广泛应用于电磁设备中。

例如,铁磁性材料可以用于制造电动机、电磁铁和变压器等设备。

非铁磁性材料则用于制造电感器和传感器。

2. 数据存储磁性材料在数据存储领域有着重要的应用。

磁性材料通过改变磁化方向来储存和读取信息。

硬盘驱动器和磁带等设备都是基于磁性材料的数据存储原理。

3. 医疗应用磁性材料在医疗领域有广泛的应用。

例如,磁共振成像(MRI)利用磁性材料的特性来观察人体内部结构。

磁性材料也可以用于制造人工关节和植入式医疗器械。

4. 环境保护磁性材料在环境保护中的应用也越来越多。

例如,利用磁性材料可以制造高效的垃圾处理设备,帮助减少废物产生和环境污染。

四、磁性材料的发展前景随着科学技术的不断发展,磁性材料的应用领域将会不断扩大。

磁性材料研究

磁性材料研究

磁性材料研究磁性材料是一类具有特殊磁性性质的材料,在现代科学和技术中发挥着重要的作用。

磁性材料的研究涉及到物理学、化学、材料科学等多个领域,为我们的生活带来了许多便利和创新。

本文将介绍磁性材料及其研究的基本概念、应用领域以及最新的研究进展。

一、磁性材料的基本概念磁性材料是指在外加磁场的作用下,能够产生磁化强度和磁感应强度的材料。

根据其磁性质的不同,可以将磁性材料分为铁磁材料、顺磁材料和抗磁材料三类。

铁磁材料是指在外加磁场的作用下,其磁化强度远大于磁场强度的材料。

常见的铁磁材料有铁、镍、钴等。

顺磁材料是指在外加磁场的作用下,其磁感应强度和磁场强度方向一致的材料。

常见的顺磁材料有氧化铁、铁氧体等。

抗磁材料是指在外加磁场的作用下,其磁化强度和磁感应强度方向相反的材料。

常见的抗磁材料有铜、银等。

二、磁性材料的应用领域磁性材料在许多领域具有广泛的应用。

首先是电子领域,磁性材料被广泛应用于电感、变压器、电动机等电子器件中。

其次是信息存储领域,磁性材料被用于磁盘、磁带等数据存储介质中。

此外,磁性材料还在医学领域、能源领域、环境保护领域等方面有重要的应用。

在医学领域,磁性材料被用于磁共振成像(MRI)等医学设备中,用于检测和诊断人体内部的病变。

在能源领域,磁性材料被用于发电机、电动汽车等设备中,提高能源利用效率。

在环境保护领域,磁性材料被用于处理废水、废气中的污染物,起到净化环境的作用。

三、磁性材料研究的最新进展随着科学技术的不断发展,磁性材料研究也在不断取得新的进展。

近年来,研究人员发现了一种新型的磁性材料-自旋电子材料,它具有自旋自由度的操控能力,可以用于未来超导和自旋电子器件的研究。

另外,先进的材料制备技术也推动了磁性材料研究的发展。

例如,纳米技术的应用使得材料的尺寸尺度从宏观到纳米级别,材料的性能得到了显著提升。

同时,高通量材料制备技术的引入,使得研究人员可以快速地合成和筛选大量的材料,为磁性材料的开发提供了更大的空间。

了解物理中的磁性材料和电磁感应

了解物理中的磁性材料和电磁感应

了解物理中的磁性材料和电磁感应在物理学中,磁性材料和电磁感应是两个非常重要的概念。

磁性材料是指具有吸引铁质或其他磁性物质能力的材料,而电磁感应是指当磁通量发生变化时,在导体中会产生感应电流。

本文将详细介绍磁性材料和电磁感应的相关原理和应用。

一、磁性材料磁性材料根据其特性可以分为软磁性材料和硬磁性材料两大类。

软磁性材料是指在外加磁场作用下,能迅速磁化和去磁化的材料,如铁、镍、钴等。

而硬磁性材料则是指在外加磁场的作用下,能保持永久磁力的材料,如铁氧体、钕铁硼、钢等。

磁性材料的磁性主要来自于其中的原子和分子微观磁矩的相互作用。

这些磁矩可以通过自旋和轨道磁矩的相互作用而产生。

在磁性材料中,原子磁矩的方向会随着外加磁场的改变而改变,从而导致材料整体呈现磁性。

磁性材料在许多领域有着广泛的应用。

例如,软磁性材料常用于电感、变压器、发电机等电磁设备中,用来储存和传输能量。

硬磁性材料则常用于制作永磁体,如用于磁吸附、磁存储和磁传感器等。

此外,磁性材料还被广泛应用于医学领域,如核磁共振成像(MRI)等。

二、电磁感应电磁感应是指在磁通量发生变化的情况下,导体中会产生感应电流。

这个现象是由英国物理学家迈克尔·法拉第在19世纪首次发现的。

根据法拉第的电磁感应定律,当导体或线圈中的磁通量发生改变时,会在导体中产生感应电动势,从而驱动电子流动形成感应电流。

电磁感应的应用十分广泛。

最典型的例子就是电磁感应用于发电机的原理。

发电机通过转动磁场感应线圈中的电流,从而将机械能转化为电能。

此外,电磁感应还应用于变压器、感应加热、电动机和电磁传感器等领域。

在电磁感应中,还存在一个重要的概念,即法拉第电磁感应定律。

根据该定律,感应电动势的大小与磁通量的变化率成正比。

具体而言,当磁通量发生变化时,感应电动势的大小可以用以下公式表示:ε = -dΦ/dt其中,ε代表感应电动势,Φ代表磁通量,dt代表时间的微小变化量。

这个公式反映了感应电动势与磁通量的直接关系。

磁性材料

磁性材料

磁性材料(释义)编辑本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!磁性材料,通常所说的磁性材料是指强磁性物质,是古老而用途十分广泛的功能材料,而物质的磁性早在3000年以前就被人们所认识和应用,例如中国古代用天然磁铁作为指南针。

现代磁性材料已经广泛的用在我们的生活之中,例如将永磁材料用作马达,应用于变压器中的铁心材料,作为存储器使用的磁光盘,计算机用磁记录软盘等。

大比特资讯上说,磁性材料与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关。

而通常认为,磁性材料是指由过度元素铁、钴、镍及其合金等能够直接或间接产生磁性的物质。

磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料。

磁化后容易去掉磁性的物质叫软磁性材料,不容易去磁的物质叫硬磁性材料。

一般来讲软磁性材料剩磁较小,硬磁性材料剩磁较大。

中文名磁性材料外文名Magnetic materials成本材料、制造、管理常用软磁磁芯铁粉芯、软磁铁氧体等目录1. 1简介2. 2基本特性3. 3简史4. 4分类5. ▪永磁材料6. ▪软磁材料1. ▪旋磁材料2. ▪压磁材料3. 5发展及种类4. 6常用软磁磁芯5. ▪铁粉芯构是有差异的,这种物质结构的差异性是物质磁性差异的原因。

磁性材料的应用——变压器现了地磁偏角的现象。

磁性材料的磁滞回线向的磁性。

对这类材料的要求是剩余磁感应强度B r高,矫顽力B H C(即磁性材料磁性材料是生产、生活、国防科学技术中广泛使用的材料。

如制造电力技术中的各种电机、变压器,电子技术中的各种磁性元件和微波电子管,通信技术中的滤波器和增感器,国防技术中的磁性水雷、电磁炮,各种家用电器等。

此外,磁性材料在地矿探测、海洋探测以及信息、能源、生物、空间新技术中也获得了广泛的应用。

磁性材料的用途广泛。

主要是利用其各种磁特性和特殊效应制成元件或器件;用于存储、传输和转换电磁能量与信息,或在特定空间产生一定强度和分布的磁场;有时也以材料的自然形态而直接利用(如磁性液体)。

磁性材料相关知识

磁性材料相关知识

磁性材料相关知识1. 磁性材料的概述磁性材料是一类具有磁性的材料,它们可以被外界的磁场所吸引或排斥。

磁性材料在许多领域有着广泛的应用,例如电机、传感器、存储设备等。

磁性材料根据其磁性质可以分为软磁性材料和硬磁性材料两大类。

2. 磁性材料的分类2.1 软磁性材料软磁性材料是一类具有较高磁导率和低矫顽力的材料,其磁化后能迅速消失。

软磁性材料可以有效地吸收和产生磁场,广泛应用于电机、变压器等领域。

常见的软磁性材料有铁、镍、钴等。

软磁性材料的磁导率高,能有效地集中磁场线,使其传导能力较强。

2.2 硬磁性材料硬磁性材料是一类具有较高矫顽力和磁饱和度的材料,其磁化后能长时间保持。

硬磁性材料主要应用于存储设备、传感器等领域。

常见的硬磁性材料有钕铁硼、钴磁体等。

硬磁性材料的矫顽力和磁饱和度高,能够长时间保持磁化状态。

3. 磁化过程磁性材料的磁化过程是指在外加磁场的作用下,磁性材料内部的原子磁矩重新进行排列的过程。

磁化过程可以分为顺磁化和逆磁化两种情况。

3.1 顺磁化顺磁化是指在外加磁场的作用下,磁性材料内部的原子磁矩与外磁场方向一致的过程。

顺磁化过程中,磁性材料会被吸引到磁场较强的地方。

顺磁性材料的磁化强度与外磁场强度成正比。

3.2 逆磁化逆磁化是指在外加磁场的作用下,磁性材料内部的原子磁矩与外磁场方向相反的过程。

逆磁化过程中,磁性材料会被排斥出磁场较强的地方。

逆磁性材料的磁化强度与外磁场强度成负相关。

4. 磁性材料的性能参数4.1 矫顽力矫顽力是指磁性材料在外磁场作用下,从无磁化状态转变为完全磁化状态所需的外磁场强度。

矫顽力越高,磁性材料越难磁化。

矫顽力的单位是安培/米(A/m)。

4.2 磁导率磁导率是指磁性材料在外磁场作用下,单位磁场强度下的磁化强度与外磁场强度的比值。

磁导率越大,磁性材料的磁性能越好。

磁导率的单位是亨利/米(H/m)。

4.3 磁饱和度磁饱和度是指磁性材料在外磁场作用下,达到最大磁化强度时的外磁场强度。

什么是磁性材料

什么是磁性材料

什么是磁性材料磁性材料是一类具有磁性的材料,其在外加磁场作用下会产生磁化现象。

磁性材料广泛应用于电子、通信、医疗、能源等领域,是现代社会中不可或缺的重要材料之一。

本文将从磁性材料的基本特性、分类、应用以及发展趋势等方面进行介绍。

首先,磁性材料的基本特性。

磁性材料具有磁化特性,即在外加磁场作用下会产生磁化现象。

根据磁化特性的不同,磁性材料可分为铁磁材料、铁氧体材料、永磁材料和软磁材料等几类。

铁磁材料在外加磁场下会产生明显的磁化,而铁氧体材料具有较高的磁导率和电阻率,因此在高频电路中得到广泛应用。

永磁材料则具有自身较强的磁化特性,常用于制作永磁体。

软磁材料则具有较低的矫顽力和磁导率,适用于变压器、电感器等领域。

其次,磁性材料的分类。

根据磁性材料的不同特性和应用领域,可以将其分为多种类型。

例如,按照磁性材料的组成成分可分为金属磁性材料、合金磁性材料和氧化物磁性材料等;按照磁性材料的磁性能力可分为软磁材料和硬磁材料;按照磁性材料的应用领域可分为电子器件用磁性材料、电机用磁性材料和传感器用磁性材料等。

再者,磁性材料的应用。

磁性材料在各个领域都有着重要的应用价值。

在电子器件中,磁性材料被广泛应用于制作电感、变压器、磁头等元器件;在电机领域,永磁材料被应用于制作各种类型的电机,如风力发电机、电动汽车驱动电机等;在通信领域,磁性材料被应用于制作微波器件、天线等;在医疗领域,磁性材料被应用于制作医疗设备,如核磁共振成像设备等;在能源领域,磁性材料被应用于制作发电机、电池等。

最后,磁性材料的发展趋势。

随着科学技术的不断进步,磁性材料的研究和应用也在不断发展。

未来,磁性材料将更加注重环保、节能、高效的特性,以适应社会对清洁能源和高效能源的需求。

同时,磁性材料的微纳米化、多功能化、智能化也将成为发展的趋势,以满足各种领域对材料性能的要求。

总之,磁性材料作为一类具有磁化特性的材料,在现代社会中具有重要的应用价值。

通过对磁性材料的基本特性、分类、应用和发展趋势的介绍,相信读者对磁性材料有了更深入的了解,也为今后的研究和应用提供了一定的参考。

磁性材料名词解释

磁性材料名词解释

磁性能名詞說明
■居里溫度Tc 系指随着温度的升高,由于物质内部基本粒子的热振荡加 剧,磁性材料内部的微观磁偶极矩的排列逐步紊乱,宏观 上表现为材料的磁极化强度J随着温度的升高而减小,当 温度升高至某一值时,材料的磁极化强度J降为0,此时磁 性材料的磁特性变得同空气等非磁性物质一样,将此温度 称为该材料的居里温度Tc ■可工作溫度Tw 系指在某一温度下永磁材料的磁性能与室温相比降低一规 定的幅度,将该温度称为该磁体的可工作温度Tw
磁性能名詞說明
■ 殘留磁束密度(Br) 給予磁石一外加飽和磁場(H) ,當磁場消退 為零時,磁石內部所保留之磁束密度。
■ 矯頑力(Hcb)及固有矯頑力(Hcj) 使磁束密度B=0之反向磁場強度稱矯頑力 (Hcb/Hc) ,另使磁化強度M=0之反向磁場 強度稱為固有矯頑力(Hcj/iHc) 。 為磁體抵抗外加磁場的能力,亦是充磁難 易度指標。
基本磁學單位換算
CGS制 SI制 換算
Br Hcb/Hcj Hmax
高斯 Gauss 奧斯特 Oe MGOe
特仕拉 T 安培/米 A/m kJ/m
1 T= 10 G 1 Oe = 79.5A/m 1 MGOe ≒ 8 kJ/m
磁性能名詞說明
■最大磁能積(BHmax) B-H曲線在第二象限(減磁曲線)上各點的磁 場強度H與磁束密度B之乘積最大值 ,亦即 (B.H)max,為磁體最大磁能量之衡量指
標,可用來分類磁石等級 。
磁性能名詞說明 ■溫度系數
Brα﹪/℃ 剩余磁感应强度(Br)随温度变化的系数 Hcjβ﹪/℃ 内禀矫顽力(Hcj)随温度变化的系数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁性材料名词解释篇一:磁性材料名词解释磁性材料Jump to: , 磁性材料magnetic material可由磁场感生或改变磁化强度的物质。

按照磁性的强弱,物质可以分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性等几类。

铁磁性和亚铁磁性物质为强磁性物质,其余为弱磁性物质。

现代工程上实用的磁性材料多属强磁性物质,通常所说的磁性材料即指强磁性材料。

磁性材料的用途广泛。

主要是利用其各种磁特性和特殊效应制成元件或器件;用于存储、传输和转换电磁能量与信息,或在特定空间产生一定强度和分布的磁场;有时也以材料的自然形态而直接利用(如磁性液体)。

磁性材料在电子技术领域和其他科学技术领域中都有重要的作用。

简史中国是世界上最先发现物质磁性现象和应用磁性材料的国家。

早在战国时期就有关于天然磁性材料(如磁铁矿)的记载。

11世纪就发明了制造人工永磁材料的方法。

1086年《梦溪笔谈》记载了指南针的制作和使用。

1099~1102年有指南针用于航海的记述,同时还发现了地磁偏角的现象。

近代,电力工业的发展促进了金属磁性材料──硅钢片(Si-Fe合金)的研制。

永磁金属从 19世纪的碳钢发展到后来的稀土永磁合金,性能提高二百多倍。

随着通信技术的发展,软磁金属材料从片状改为丝状再改为粉状,仍满足不了频率扩展的要求。

20世纪40年代,荷兰J.L.斯诺伊克发明电阻率高、高频特性好的铁氧体软磁材料,接着又出现了价格低廉的永磁铁氧体。

50年代初,随着电子计算机的发展,美籍华人王安首先使用矩磁合金元件作为计算机的内存储器,不久被矩磁铁氧体记忆磁芯取代,后者在60~70年代曾对计算机的发展起过重要的作用。

50 年代初人们发现铁氧体具有独特的微波特性,制成一系列微波铁氧体器件。

压磁材料在第一次世界大战时即已用于声纳技术,但由于压电陶瓷的出现,使用有所减少。

后来又出现了强压磁性的稀土1 / 17合金。

非晶态(无定形)磁性材料是近代磁学研究的成果,在发明快速淬火技术后,1967年解决了制带工艺,正向实用化过渡。

分类磁性材料按磁性功能分,有永磁、软磁,矩磁、旋磁和压磁材料;按化学成分分,有金属磁和铁氧体;按结构分,有单晶、多晶和非晶磁体;按形态分,有磁性薄膜、塑性磁体、磁性液体和磁性块体。

磁性材料通常是按功能分类的。

永磁材料一经外磁场磁化以后,即使在相当大的反向磁场作用下,仍能保持一部或大部原磁化方向的磁性。

对这类材料的要求是剩余磁感应强度Br高,矫顽力BHC(即抗退磁能力)强,磁能积(BH)max (即给空间提供的磁场能量)大。

相对于软磁材料而言,它亦称为硬磁材料。

永磁材料有合金、铁氧体和金属间化合物三类。

①合金类:包括铸造、烧结和可加工合金。

铸造合金的主要品种有:AlNi(Co)、 FeCr(Co)、FeCrMo、FeAlC、FeCo(V)(W);烧结合金有:Re-Co(Re代表稀土元素)、Re-Fe以及AlNi (Co)、 FeCrCo等;可加工合金有:FeCrCo、PtCo、MnAlC、CuNiFe和AlMnAg 等,后两种中BHC较低者亦称半永磁材料。

②铁氧体类:主要成分为MO·6Fe2O3,M代表Ba、Sr、Pb或SrCa、LaCa等复合组分。

③金属间化合物类:主要以MnBi为代表。

永磁材料有多种用途。

①基于电磁力作用原理的应用主要有:扬声器、话筒、电表、按键、电机、继电器、传感器、开关等。

②基于磁电作用原理的应用主要有:磁控管和行波管等微波电子管、显像管、钛泵、微波铁氧体器件、磁阻器件、霍尔器件等。

③基于磁力作用原理的应用主要有:磁轴承、选矿机、磁力分离器、磁性吸盘、磁密封、磁黑板、玩具、标牌、密码锁、复印机、控温计等。

其他方面的应用还有:磁疗、磁化水、磁麻醉等。

根据使用的需要,永磁材料可有不同的结构和形态。

有些材料还有各向同性和各向异性之别。

软磁材料它的功能主要是导磁、电磁能量的转换与传输。

因此,对这类材料要求有较高的磁导率和磁感应强度,同时磁滞回线的面积或磁损耗要小。

与永磁材料相反,其Br和BHC越小越好,但饱和磁感应强度Bs则越大越好。

软磁材料大体上可分为四类。

①合金薄带或薄片:FeNi(Mo)、FeSi、FeAl等。

②非晶态合金薄带:Fe基、Co基、FeNi基或FeNiCo基等配以适当的Si、B、P和其他掺杂元素,又称磁性玻璃。

③磁介质(铁粉芯):FeNi(Mo)、FeSiAl、羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。

④铁氧体:包括尖晶石型──M++ O·Fe (M++2O3 代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁铅石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。

软磁材料的应用甚广,主要用于磁性天线、电感器、变压器、磁头、耳机、继电器、振动子、电视偏转轭、电缆、延迟线、传感器、微波吸收材料、电磁铁、加速器高频加速腔、磁场探头、磁性基片、磁场屏蔽、高频淬火聚能、电磁吸盘、磁敏元件(如磁热材料作开关)等。

矩磁材料和磁记录材料主要用作信息记录、无接点开关、逻辑操作和信息放大。

这种材料的特点是磁滞回线呈矩形。

旋磁材料具有独特的微波磁性,如导磁率的张量特性、法拉第旋转、共振吸收、场移、相移、双折射和自旋波等效应。

据此设计的器件主要用作微波能量的传输和转换,常用的有隔离器、环行器、滤波器(固定式或电调式)、衰减器、相移器、调制器、开关、限幅器及延迟线等,还有尚在发展中的磁表面波和静磁波器件(见微波铁氧体器件)。

常用的材料已形成系列,有Ni系、Mg系、Li系、YlG系和BiCaV 系等铁氧体材料;并可按器件的需要制成单晶、多晶、非晶或薄膜等不同的结构和形态。

压磁材料这类材料的特点是在外加磁场作用下会发生机械形变,故又称磁致伸缩材料,它的功能是作磁声或磁力能量的转换。

常用于超声波发生器的振动头、通信机的机械滤波器和电脉冲信号延迟线等,与微波技术结合则可制作微声(或旋声)器件。

由于合金材料的机械强度高,抗振而不炸裂,故振动头多用Ni系和NiCo系合金;在小信号下使用则多用Ni系和NiCo系铁2 / 17氧体。

非晶态合金中新出现的有较强压磁性的品种,适宜于制作延迟线。

压磁材料的生产和应用远不及前面四种材料。

展望磁电共存这一基本规律导致了磁性材料必然与电子技术相互促进而发展,例如光电子技术促进了光磁材料和磁光材料的研制。

磁性半导体材料和磁敏材料和器件可以应用于遥感、遥则技术和机器人。

人们正在研究新的非晶态和稀土磁性材料(如FeNa合金)。

磁性液体已进入实用阶段。

某些新的物理和化学效应的发现(如拓扑效应)也给新材料的研制和应用(如磁声和磁热效应的应用)提供了条件。

参考书目戴礼智编著:《金属磁性材料》,上海人民出版社,上海, 1973。

周志刚等编著:《铁氧体磁性材料》,科学出版社,北京,1981。

李荫远、李国栋编著:《铁氧体物理学》第二版,科学出版社,北京,1983。

具有铁磁性能的材料。

电工技术中常用的磁性材料可分为高磁导率、低矫顽力、低剩磁的软磁材料和高矫顽力、高剩磁的永磁材料两大类。

永磁材料又称硬磁材料。

磁性是物质的一种基本属性。

物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。

铁磁性和亚铁磁性物质为强磁性物质,其他均为弱磁性物质。

磁性材料有各向同性和各向异性之分。

各向异性材料的磁性能依方向不同而异。

因此,在使用各向异性材料时,必须注意其磁性能的方向。

电工领域中常用的磁性材料都属于强磁性物质。

反映磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。

磁化曲线和磁滞回线反映磁性材料磁化特性的曲线。

可以用于确定磁性材料的一些基本特性参量如磁导率μ、饱和磁通密度Bs、剩余磁场强度即矫顽力Hc、剩余磁通密度即剩磁Br,以及磁滞损耗P等。

基本磁化曲线是铁磁物质以磁中性状态为出发点,在反复磁化过程中B 随H 变化规律的曲线,简称磁化曲线(图1)。

它是确定软磁材料工作点的依据。

B 和H 的关系如下: B=μ0(H+M )式中μ0为真空磁导率(又称磁常数),在国际单位制(SI)中,其值为μ=4π×10-70亨/米;H为磁场强度,单位为安/米(A/m);M 为磁化强度,单位为安/米(A/m)。

图中磁化到饱和时的B值称为饱和磁通密度Bs,相应的磁场强度为 Hs。

通常,要求磁性材料有高的Bs值。

磁化曲线上任一点的B 与H 之比就是磁导率μ,即对于各向同性的导磁物质μ=B/H,常用的是相对磁导率μr=μ/μ0,它是无量纲的纯数,用以表示物质的磁化能力。

因此,按μr的大小,把各类物质划分为:μr<1的抗磁性物质,μr>1的顺磁性物质,μr1的强磁性物质。

根据B-H 曲线可以描绘出μ-H3 / 17曲线,图中μm和μi分别称为最大磁导率和初始磁导率。

μi是在低磁场下使用软磁材料的一个重要参量。

图2表示外磁场H 变化一周时B 随H变化而形成的闭合曲线。

由于B 的变化滞后于H,这个现象称为磁滞。

闭合曲线称为磁滞回线。

图中可见,当Hs降为零时,B 并不回到零,而仅到b点,此值(Br)称为剩余磁通密度,简称剩磁。

若要使Br降到零,需加一反磁场,这个反磁场强度的绝对值称为磁感应矫顽力,简称矫顽力Hrrc。

B与Bs之比称为剩磁比或称开关矩形比(B/Bs),它表征矩磁材料磁滞回线接近矩形的程度。

磁滞回线的形状和面积直接表征磁性材料的主要磁特性。

软磁材料的磁滞回线窄,故矫顽力低,磁滞损耗也低(图3a),常用于电机、变压器、继电器的铁心磁路。

若磁滞回线窄而接近于矩形(称为矩磁材料)(图3c),则这种软磁材料不仅矫顽力低而且Br/Bs值也高,适宜作记忆元件和开关元件。

永磁材料其磁滞回线面积宽大(图3b),Br和Hc都大,经饱和磁化后,储存的磁场能量大。

常用作发电机、电动机的永磁磁极和测量仪表、扬声器中的永磁体等。

磁损耗单位重量的磁性材料在交变磁场中磁化,从变化磁场中吸收并以热的形式耗散的功率称为磁损耗或铁损耗P。

它主要由磁滞损耗和涡流损耗引起。

其中由磁滞现象引起的能量损耗称为磁滞损耗,它与磁滞回线所包围的面积成正比。

磁滞损耗功率Ph可由下式计算Ph=кhBmn V式中为频率(Hz);Bm为最大磁通密度(T);指数 n为经验参数,和Bm大小有关;V为磁性材料的体积;кh为与铁磁物质性质有关的系数。

在交变磁场中导电物质(包括铁磁物质)将感应出涡流,由涡流产生的电阻损耗称为涡流损耗。

涡流损耗的功率Pe可由下式计算 P2e=кeBmnV式中кe为与材料的电阻率、截面大小、形状有关的系数。

Ph和Pe是衡量电工设备、仪表产品质量好坏的重要参数。

具有强磁性的材料。

这类材料微观特征是相邻原子或离子磁矩呈有序排列,从而显示出铁磁性或亚铁磁性。

相关文档
最新文档