概率论与数理统计习题详细解答

合集下载

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

概率论与数理统计课后习题参考答案

概率论与数理统计课后习题参考答案

习题11、(1)同时掷两枚骰子,记录点数之和 {2,3,,12}S =;(2)生产产品知道得到5件正品,记录生产产品的总件数 {5,6,}S =; (3)单位圆任取一点,记录它的坐标 22{(,)1,,}S x y x y x R y R =+<∈∈;(4)将单位长线段分3段,观察各段长度{(,,)1,0,0,0}S x y z x y z x y z =++=>>>。

2、(1)A 与B 都发生,C 不发生:ABC ;(2)ABC 至少一个发生:A B C ;(3)ABC 不多于一个发生:ABAC BC 。

3、对事件ABC ,已知P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求ABC 至少发生一个的概率?解:依题可知,()0P ABC =,则所求的概率为()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+1153000488=⨯---+= 4、将10本书任意地放在书架上,其中有一套4卷成套的书,求概率?解:设事件A 表示“成套的书放在一起”,B 表示“成套的书按卷次顺序排好放在一起”,由概率的古典定义可得所求的概率为 (1)成套的书放在一起:7!4!1()10!30P A ⋅==(2)成套的书案卷次顺序排好放在一起:7!11()10!720P B ⋅==5、从5双不同的鞋子中任取4只,问这4只鞋子不能配成一双的概率是多少?解:设事件A 表示“取出的4只鞋子不能配成一双”,由概率的古典定义可得所求的概率为 44541028()21C P A C ⋅== 6、在电话号码簿中任取一个电话号码,求后面4个数全不相同的概率?解:设事件A 表示“电话号码的后面4个数全不相同”,由概率的古典定义可得所求的概率为4104()0.50410A P A ==7、已知P(非A)=0、3,P(B)=0、4,P(A 非B)=1/2,求P(B|AU 非B)? 解:依题可知,()1()0.7P A P A =-=,()1()0.6P B P B =-=,而()0.55()()0.77P AB P B A P A ===则2()1()7P B A P B A =-=,()()()0.2P AB P A P B A ==,故所求的概率为 ()()()()()P BAB P ABBB P B A B P AB P AB ⎡⎤⎣⎦== ()0.20.25()()()0.70.60.5P AB P A P B P AB ===+-+-8、设AB 是随机事件,P(A)=0、7,P(A-B)=0、3,求P (非(AB))?解:由()()()P A B P A P AB -=-,得()()()0.70.30.4P AB P A P A B =--=-=故 ()1()0.6P AB P AB =-=9、半圆内均匀的投掷一随机点Q ,试求事件A={Q于π/4}的概率?解:事件A 所对应的区域D 如下图所示,由概率的几何定义得所求的概率为()()()m D P A m S ==10、10解:设事件A 表示“这对夫妇正好坐在一起”,(91)!22()(101)!9P A -⋅==-11、已知10只晶体管中有2只是次品,在其中任取两只,每次随机取一只作不放回抽取 解:设事件A 表示“两只都是正品”, B 表示“两只都是次品”, C 表示“一只是正品,一只是次品”, D 表示“第二次取出的是次品”, 由概率的古典定义可得所求的概率为(1)两只都是正品2821028()45A P A A == (2)两只都是次品222101()45A P B A ==(3)一直是正品,一只是次品11128221016()45C C C P C A ⋅⋅== (4)第二次取出的是次品11292101()5C C PD A ⋅== 12、某学生接连参加同一课程的两次考试,第一次及格的概率为p ,如果他第一次及格,则x第二次及格的概率也为p ,如果第一次不及格,第二次及格概率为p/2。

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。

8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。

9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。

但当增⼤置信⽔平时,则相应的置信区间长度总是。

⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。

设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。

三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

概率论与数理统计课后题参考答案

概率论与数理统计课后题参考答案

第一章 基本概念1、试对下列随机试验各写出一个样本空间: (1)掷一颗骰子;(2)一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球; (3)10只产品中有3只是次品,每次从中任取一只(取出后不放回),直到将3只次品全部取出,记录抽取的次数;(4)对某工厂生产的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如果查出2件次品就停止检查,或者查满4件也就停止检查,记录检查结果。

解:(1)}6,5,4,3,2,1{=Ω(2))}5,4,3(),5,4,2(),5,3,2(),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1{(=Ω5个球中选3各球进行组合,有1035=C 种。

(3)}109876543{,,,,,,,=Ω最少抽取的次数是每次取出的都是次品;最多抽取的次数是把10只产品全部取出,总能抽出3个是次品。

(4)用数字1代表正品,数字0代表次品;样本空间包括查出2件是次品和查满4件产品这两种情况。

)}1,1,1,0(),1,1,1,1(),1,0,1,1(),1,1,0,1(),0,1,1,1(),0,0,1,1(),0,1,0,1(),0,1,1,0(),0,0,1(),0,1,0(),0,0{(=Ω2、工厂对一批产品作出厂前的最后检查,用抽样检查方法,约定,从这批产品中任意取出4件产品来做检查,若4件产品全合格就允许这批产品正常出厂;若有1件次品就再作进一步检查;若有2件次品则将这批产品降级后出厂;若有2件以上次品就不允许出厂。

试写出这一试验的样本空间,并将“正常出厂”、“再作检查”、“降级出厂”、“不予出厂”这4个事件用样本空间的子集表示。

解:用数字1代表正品,数字0代表次品设=“正常出厂”; =“再作检查”; =“降级出厂”;D =“不予出厂”)}1,1,1,1{(=A)}0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0{(=B)}0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0{(=C )}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0{(=D)}0,0,0,0(),0,0,0,1(),0,0,1,0(),0,1,0,0(),1,0,0,0(),0,0,1,1(),0,1,0,1(),1,0,0,1(),1,1,0,0(),1,0,1,0(),0,1,1,0(),0,1,1,1(),1,0,1,1(),1,1,0,1(),1,1,1,0(),1,1,1,1{(=⋃⋃⋃=ΩDC B A3、设A 、B 、C 是三个事件,试用A 、B 、C 的运算关系表示下列事件: (1)A 与B 都发生,但C 不发生;(2)A 发生,但B 与C 可能发生也可能不发生; (3)这三个事件都发生; (4)这三个事件都不发生; (5)这三个事件中至少有一个发生; (6)这三个事件中最多有一个发生; (7)这三个事件中至少有两个发生; (8)这三个事件中最多有两个发生; (9)这三个事件中恰有一个发生; (10)这三个事件中恰有两个发生。

概率论和数理统计课后习题答案解析

概率论和数理统计课后习题答案解析

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为 P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3}; (3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知 P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为X 0123P 3512036120211201120习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品), 则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p), 若P{X≥1}=59, 求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p), 所以 P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005, 在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数, n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2}, 即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0, 是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1 问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且 F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:X 135Pk 0.30.50.2所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5.F(x)的图形见图.习题4设离散型随机变量X的分布函数为 F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布; (2)P{X<2∣X≠1}.解答:(1)X -113pk 0.40.40.2(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx, -∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答: F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又 \becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为 p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9, 问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c}, 必有1-P{X≤c}=P{X≤c}, 即 P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9, 即 P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282, 所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1, 即1-P{X<x}=0.1,所以1-F(x)=0.1, 即 1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此 x-400060≈1.28, 即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05, 求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645, 从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则 X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述 fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须 200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A, 则P(A)=0.03, 显然X∼b(300,0.03), 即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265, (查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计), 求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2, P{X=0}=e-3/2≈0.223;(2)t=5,λ=5/2, P{X≥1}=1-P{X=0}=1-e-5/2≈0.918.习题6设X为一离散型随机变量,其分布律为X -101pi 1/21-2qq2试求:(1)q的值; (2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1, 且0≤pi≤1,∴ {1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0, 所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1-e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2)dx∫0.10.5(12x2-12x+3) dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且 F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且 a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以 fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0, 即 K2-K-2≥0,亦即(k-2)(K+1)≥0, 解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴ F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为 fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时, FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为 FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y 1231 1/61/91/182 1/3a1/9求a.解答:由分布律性质∑i⋅jPij=1, 可知 1/6+1/9+1/18+1/3+a+1/9=1,解得 a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示: (2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示: (3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求: (1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求: (2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求: (3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且 P{X≥0,Y≥0}=37, P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值: (0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712,同样可求得 P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y}, 故 P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为 f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1, 有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1, 有 F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1, 有 F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式 F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为 f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1, 即 fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它, 因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有 P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a}, 故由上式有 P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到: P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x 22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以 P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V, 可见P{U=i,V=j}=0(i<j).此外,有 P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0, 显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即 {x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为 fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y 的概率密度.解答:据题意,X,Y的概率密度分布为 fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy =∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即 fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而 f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故 FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以 FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此 FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y, 其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0, ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y}, 则 F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z} =1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0, F2(z)={1-e-βz,z≥00,z<0,故 F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试明: P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则 P{a<min{X,Y}≤b}=FZ(b)-FZ(a),。

(完整版)概率论与数理统计习题集及答案

(完整版)概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

概率论和数理统计练习题与答案解析

概率论和数理统计练习题与答案解析

概率论与数理统计练习题集及答案1. 某人射击三次,以A 表示事件“第,次击中目标”,则事件“三次中至多击中目标一次”的正确表示为()(C) A^ Ay 4 + A 4+4 A> A ( D ) 4 A A2. 掷两颗均匀的骰子,它们出现的点数之和等丁 8的概率为() (A) —(B) —(C) —(D)—363636363.设随机事件A^B 互不相容,且P(A)>0,P(B)>0,则( (A ) P(A) = 1-P(B) ( B ) P(AB) = P(A)P(B} (D) P(AB) = 1“7" x> 0 ni,i zt 则 EX=(0 x<0(A)斤(X)= ----- , —s < X < +s1 + x"/^(%) =-O0 < X < +cc(A) J 4| + A T +(B) 4 4 + 4 A+ 4 4(C ) P(A + B) = 14.随机变量X 的概率密度为/(%) =(B) 1 (C) 2(A)-25.下列各函数中可以作为某随机变量的分布函数的是(D)4(B) F2(X ) = <I + X0 X > 0耳(x) = —+——arctanx , - oo < x < +oo42兀6.己知随机变星X的概率密度为办(JV),令Y = —2X ,则y的概率密度/心)为((A ) 2办(-2y ) (D )7 .已知二维随机向量(X,F )的分布及边缘分布如表(D ) i3&设随机变量X~S1、5],随机变量Y~N (2,4),且X 与y 相互独立, 贝 ij£(2xy -y)=(EXY=EX EY,则下列结论不正确的是(1.某人射击三次,以4表示事件“第,次击中目标”,则事件“三次(B )办(-却>且X 与Y 相互独立,贝显=( (A) 3(B) 6(C) 10(D) 129.设X 与y 为任意二个随机变量,方差均存在且为正,若(A ) X 与Y 相互独立 (B ) X 与y 不相关 (C) cov(x,r)= o(D) D(X + r)= DX + Dy答案:1. B2. A 6. D7. D8.C9. A中恰好击中目标一次”的正确表示为(C )(c) 44 + 4 A 4 + 4 人 42.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为(A )(D)-4!3.设随机事件A •与S 互不相容,且P (A )>0,P (B )>0,则(D ) (B) P(AB) = P(A)P(B) (C) P (AIB) = ^^(D) P(AIB) = O/心)为(D )(A ) 3A (-3y ) (B ) A (-|)(07 .己知二维随机向暈(x,y )的分石弋边缘分布如表(A) J 4| + A T +(B ) 4 Ay + 4 & + A 4(A) P(A\B) = P(A) 4.随机变量X 的概率密度为/(x )=: X e(O,rt),则£;X= ( A )(A)扌(B) 1(C)£(D)35.随机变量X 的分布函数F (x )= A-(l + Q严2°,则A= ( B )x<0(A) 0 (B) 1(D) 36.己知随机变量X 的概率密度为厶W , 则y 的概率密度(A) -(B) -(C)-(D)-8483&设随机变量XV 相互独立,且X~饭16,0.5), y 服从参数为9的泊 松分布,则 D(X-2y + l)= ( C )9•设(XM)为二维随机向量,则X 与y 不相关的充分必要条件是(D ) (A) X 与 y 相互独立 (B) E(X + Y) = EX + EY (C) DXY = DX DY (D) EXY = EX • EY一、填空题:L 设是两个随机事件,P(A) = 0.5, P (A + B) = 0.8, (1)若A 与B 互不相容,则P(B) = __________ ; (2)若4与B 相互独立,则P(B)= _______ .2.—袋中装有20个球,其中4个黑球,6个白球,先后两次从袋中各 取一球(不放回).已知第一次取出的是黑球,则第二次取出的仍 是黑球的概率为 _____ .3. 设离散型随机变量X 的概率分布为P{X=k}=3a , R = l,2,…,则常数d= _________ .4. 设随机变量X 的分布函数为,x<Q,0<x<2,且X 与y 相互独立,贝|^= ( B )(A) -14(B) 13 (C) 40 (D) 41F(x) = iax,x>2 0,P {1<X<3} =5. 设随机变量X 的概率分布为则 £(3X2+3) =46. 如果随机变量X 服从[a,b] h 的均匀分布,且£(X) = 3, D(X) = -,贝ia= ____ , b= _____ .7. 设随机变量X, Y 相互独立,且都服从参数为0.6的0-1分布,则P[X=Y} =8•设X, y 是两个随机变量,E(X) = 2, £(%") = 20,答案:1. 0.3, 0.6 4.5 /2.- 36. 1. 57. 0.52& 212.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为,,,则密码能译出的概率为 _____ .则常数d = E(y)=3,F(y-) = 34> Pxr = 0.5 ,则D(X-Y)=5.1.设A^B 是两个随机事件, P(B)= _________ .P(A) = 0・3 , P (AB) = P(A B) > 则3.设随机变量X 的概率分布为P{X=k ] = -^,k=l, 2,3,4,5,则卩{|<7}=sin X, 0<x<— 贝g21 兀 1 , X > —25•设随机变量X 服从[1,3]上的均匀分布,则丄的数学期望X7. 设X, Y 是两个随机变量,互独立,则X + Y~ _______ •8. ________________ 设随机变量X'X 相互独立,且都服从[0,2]上的均匀分布,则 D (3X,-X,)= .9.设随机变星X 和y 的相关系数为0.5 , E(X)= E{Y) = Q ,E(X-)=E(Y-) = 2,则£(X+Y)2 = _____________ .4•设随机变量X 的分布函数为F{x )= < 6•设随机变量^2相互独立,则P{X^=X,} =1 2X , ■11133 ppJ 2 23亍X ~N (O ,32), 丫~川(1,牢),X 与y 相其概率分布分别为27. Na 5-) 二、有三个箱子,第一个箱子中有3个黑球1个口球,第二个箱子中 有3个黑球3个口球,第三个箱子中有3个黑球5个口球.现随机地 选取一个箱子,再从这个箱子中任取1个球.(1)求取到的是口球的 概率;(2)若已知取出的球是口球,求它属于第二个箱子的概率•解:设事件A 表示该球取自第,个箱子(/ = 1,23).事件B 表示取 到口球.3 111 3 1 5 11P(B)=zm)p(^-A)=-x-.-x-.-x-=_三. 某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是0.2.在一天中,若三部机器均无故障,则该厂可获取 利润2万元;若只有一部机器发生故障,则该厂仍可获取利润1万元; 若有两部或三部机器发生故障,则该厂就要亏损0.5万元.求该厂一 天可获取的平均利润.答案:1. 0.72.4. 0.55.9. 6P(B)设随机变量X 表示该厂一天所获的利润(万元),则X 可能取2JT.5,且P{X=2} = 0・y =0.512,P{X=1} = C ;X O ・2X O ・82 =0.384,P{X=-0・5} = l-0・512-0・384 = 0・104・所以 £(X) = 2x0512 + 1x0384+(-0.5)x0,104 = 1.356 (万元)四、设随机向星(X,Y )的密度函数为八3)= {罗°笃丁 3 ⑴求 P{X<y };(2)求XM 的边缘密度,并判断X 与y 的独立性.解:P[X < y) = jj f (X,y)dxdy = J= {^2x(1 — x")dx = 0.5 ;x<y由氏(兀)齐0) = /(兀』)知随机变量x,y 相互独立・匸4兀)込=2x, I 0 ,J ;4xydx=2y, 0 ,0<x<l其它0<y<l其它y=2x + i 的密度函数解法一:y 的分布函数为F,(y) = P{r<y} = P{2X + l<>} = P{X<^) = F,(^:两边对y 求导,得解法二:因为y = 2x + l 是OMxMl 上单调连续函数,所以注:x*(y ) = ¥为y = 2x + l 的反函数。

概率论与数理统计答案完整版

概率论与数理统计答案完整版

概率论与数理统计答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】习题答案第1章三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的 (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = ,P (B ) = ,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少 (2) 在什么条件下P (AB )取到最小值,最小值是多少 解:因为)()()()(B A P B P A P AB P -+≤,又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==.(2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=+=. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以 .1)(1)(p A P B P -=-=4.已知P (A ) = ,P (A – B ) = ,试求)(AB P .解:因为P (A – B ) = ,所以P (A )– P(AB ) = , P(AB ) = P (A )– , 又因为P (A ) = ,所以P(AB ) =– =,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少 解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k :法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k-=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k=-25C法五:考虑对立事件:410C k=-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P 9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0 x ,y 1} 事件A =“两数之和小于6/5”= {(x ,y ) : x + y 6/5} 因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间 ={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题八某油品公司的桶装润滑油标定重量为10千克。

商品检验部门从市场上随机抽取10桶,称得它们的重量(单位:千克)分别是,,,,,,,,,. 假设每桶油实际重量服从正态分布.试在显着性水平01.0=α下,检验该公司的桶装润滑油重量是否确为10千克,试给出检验的p 值的计算公式.解:问题归结为检验如下假设10:10:10≠↔=μμH H此处n=10,01.0=α,S=.25.321=⎪⎭⎫⎝⎛-αn t ,于是拒绝域为253.010246.025.325.30=⨯=⨯≥-nS X μ而253.006.01006.100<=-=-μX ,所以我们接受原假设,即桶装润滑油重量确为10千克。

可以算得,该检验的P 值为{}5.0771.010/246.01006.10/10=≥=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-≥--n T P n S X P μ 假设香烟中尼古丁含量服从正态分布,现从某牌香烟中随机抽取20支,其尼古丁含量的平均值6.18=X 毫克,样本标准差S=毫克,取显着性水平01.0=α,我们能否接受“该种香烟的尼古丁含量的均值18=μ毫克” 的断言解:问题归结为检验如下假设18:18:10≠↔=μμH H此处n=20,01.0=α,S=.86.221=⎪⎭⎫⎝⎛-αn t ,于是拒绝域为53.1204.286.29.2||0=⨯=⨯≥-nS X μ而53.16.0186.18||0<=-=-μX ,所以我们接受原假设,即我们接受“该种香烟的尼古丁含量的均值18=μ毫克”的断言.(1)考虑正态总体),(2σμN 和假设检验问题0100::μμμμ>↔≤H H证明:当2σ已知时,则拒绝域为ασμZ nX ≥-0的检验的显着性水平为α。

若2σ未知 则拒绝域为)(10ασμ-≥-n t nX的检验的显着性水平为α.(2)在习题中, 对4.2=σ毫克和S=毫克两种情况,我们能否接受“该牌的香烟尼古丁含量不超过毫克”的断言证明:(1)取显着水平α>0,对于正态总体),(2σμN 和假设检验问题0100::μμμμ>↔≤H H因0H 中的均值μ都比1H 中的μ小,所以从直观上看,较合理的检验法则应当是:若观察值X 与0μ的差过分大,即0μ-X >c 时,我们拒绝接受0H .采用与书中类似的讨论,可以推出ασZ nc =于是拒绝域为ασμZ nX ≥-0类似地,当2σ未知 则拒绝域为 )(10ασμ-≥-n t n X .(2) 第1种情况,4.2=σ,问题归结为检验如下假设5.17:18:10>↔=μμH H此处n=20,01.0=α,4.2=σ.33.2=αZ ,于是拒绝域为25.12033.24.20=⨯=≥-nZ X ασμ而25.11.15.176.180<=-=-μX ,所以我们接受原假设,即我们接受“该种香烟的尼古丁含量的均值5.17=μ毫克”的断言.第2种情况,S=,问题归结为检验如下假设5.17:18:10>↔=μμH H此处n=20,01.0=α,S=.33.21=-n t ,于是拒绝域为36.153.2204.2)(10=⨯=≥--αμn t nS X而36.11.175.16.180<=-=-μX ,所以我们接受原假设,即我们接受“该种香烟的尼古丁含量的均值5.17=μ毫克”的断言.设某厂生产的产品尺寸服从正态分布),(2σμN ,规定标准尺寸为120毫米,现从该厂抽得5件产品 测量其尺寸分别为119,120,,,试判断产品是否符合规定要求,即检验假设120:120:10≠↔=μμH H (显着性水平α=.解:问题归结为检验如下假设120:120:10≠↔=μμH H此处n=5,05.0=α,经计4.0=S .查表78.2)025.0(1=-n t ,于是拒绝域为497.078.254.0)(||210=⨯=≥--αμn t nS X而样本观察值5.119=X ,497.05.0|1205.119|||0>=-=-μX ,所以我们不接受原假设,即可判断产品不符合规定要求.设甲、乙两煤矿所产的煤中含煤粉率分别为)5.7,(1μN 和)6.2,(2μN 为检验这两个煤矿的煤含煤粉率有无明显差异,从两矿中取样若干份,测试结果如下:甲矿 :,,,,,乙矿 :,,,试在显着性水平α=下,检验“含煤粉率无差异” 这个假设。

解:问题归结为检验如下假设211210::μμμμ≠↔=H H此处55.721==,m σ;46.222==,m σ,查表得96.12/=αZ ,在显着性水平α=下的拒绝域为87.246.255.796.122212/=+⨯=+≥-nmZ Y X σσα 经计算样本观察值185.21==Y ,X ,87.25.3185.21>=-=-Y X ,因此我们不接受原假设,即可判断这两个煤矿的煤含煤粉率有明显差异,甲矿的煤含煤粉率高于乙矿的煤含煤粉率。

比较A 、B 两种小麦品种蛋白质含量,随机抽取A 种小麦10个样品,测得3.14=X ,21S =.随机抽取B 种小麦5个样品,测得7.11=Y ,22S =,假定这两种小麦蛋白质含量都服从正态分布,且具有相同方差,试在01.0=α水平下,检验两种小麦的蛋白质含量有无差异。

解:问题归结为检验如下假设211210::μμμμ≠↔=H H此处已知2221σσ=未知;21S =,22S =,16.1251014.0462.192)1()1(22212=-+⨯+⨯=-+-+-=n m S n S m S 查表得01.3)005.0(2=-+n m t ,在显着性水平α=下的拒绝域为78.101.316.1510510)2(2=⨯⨯⨯+=+≥--+αn m St mn n m Y X 样本观察值78.16.27.113.14>=-=-Y X ,因此我们不接受原假设,即可判断A 种小麦的蛋白质含量高于B 种小麦的蛋白质含量。

由于存在声音反射的原因,人们在讲英语时在辅音识别上会遇到麻烦。

有人随机选取了10个以英语为母语的人(记为A 组)和10个以英语为外国语的人(记为B 组),进行了试验,下面记录了他们正确反应的比例(%).A 组:93,85,89,81,88,88,89,85,85,87,B 组:76,84,78,73,78,76,70,82,79,77.假定这些数据都来自正态总体,且具有公共方差,试在α=下,检验这两组的反应是否有显着差异解:问题归结为检验如下假设211210::μμμμ≠↔=H H此处已知2221σσ=未知;经计算22123.3=S ,22203.4=S ,3.132101003.4923.392)1()1(2222212=-+⨯+⨯=-+-+-=n m S n S m S 查表得1.2)025.0(2=-+n m t ,在显着性水平α=下的拒绝域为42.31.23.1310101010)2(2=⨯⨯⨯+=+≥--+αn m St mn n m Y X 经计算样本观察值,3.7787==Y ,X 42.37.93.7787>=-=-Y X ,因此我们不接受原假设,即可判断A 组的反应高于B 的反应。

某厂生产的瓶装纯净水要求标准差02.0=σ升,现在从超级市场上随机抽取20瓶这样的纯净水,发现它们所装水量的样本标准差S=0.03升.假定瓶装纯净水装水量服从正态分布,试问在显着性水平α=下,我们能否认为它们达到了标准差02.0=σ升的要求解:问题归结为检验如下假设22122002.0:02.0:≠↔=σσH H这里n=20,()85.32025.0221921==⎪⎭⎫ ⎝⎛-χαχn ,()90.8975.02121921==⎪⎭⎫ ⎝⎛--χαχn 。

又已知S=,因为85.3275.4202.003.019)1(2222>=⨯=-σS n 所以我们不接受原假设,即可判断该厂生产的瓶装纯净水不符合标准差02.0=σ升的要求。

试写出检验的推导过程. 见教材。

略试对习题的数据,检验假设2221122210::σσσσ≠↔=H H解:因为m=n=10,在显着性水平α=下的拒绝域为()03.4025.029,91,12221==⎪⎭⎫⎝⎛≥--F F S S n m α()248.003.41)025.0(1975.0219,99,91,12221====⎪⎭⎫⎝⎛-≤--F F F S S n m α而642.003.423.3222221==S S ,)03.4,248.0(642.0∈所以两组的方差无差异。

某种导线要求电阻标准差不超过欧姆,今在生产的一批导线中随机抽取9根 测量后算得S=欧姆.设电阻测量值服从正态分布,问在α=下,能否认为这批导线的电阻值满足原来的要求解:问题归结为检验如下假设221220005.0:005.0:>↔=σσH H这里n=9,()()51.1505.02821==-χαχn 。

又已知S=,因为51.1568.1505.007.08)1(22202>=⨯=-σS n 所以我们不接受原假设,即认为这批导线的电阻值不满足原来的要求。

孟德尔豌豆试验中 有一次观测到黄色和绿色豆子的数目分别为70和27,试在显着性水平α=下, 检验“黄色和绿色豆子的数目为3:1”的理论。

解:定义随机变量⎩⎨⎧=.0,1若豆是绿色若豆是黄色,,X 记)0(),1(21====X P p X P p ,我们要检验假设41,43:210==p p H (1)将),(+∞-∞分成两个区间),21(1+∞=I ,)21,(2-∞=I(2)计算每个区间上的理论频数,这里n=70+27=9775.7243971=⨯=np ,25.2441972=⨯=np (3)实际频数,901=f ,272=f(4)416.025.24)25.2427(75.72)75.7270(222=-+-=χ 查表得416.084.3)05.0()05.0(2121>==-χχk ,所以我们接受原假设,即认为黄色和绿色豆子的数目为3:1。

在一个复杂试验中,孟德尔同时考虑豌豆的颜色和形状,一共有四种组合:(黄,圆),(黄,非圆),(绿,圆),(绿,非圆),按孟德尔理论这四类应有9:3:3:1的比例 在一次观察中,他发现这四类观测到的数目分别为315,101,108和32,试在α=下,检验“9:3:3:1” 这个理论。

解:定义随机变量记)4()3()2(),1(4321========X P ,p X P ,p X P p X P p ,我们要检验假设161163163,169:43210====,p ,p p p H (1)将),(+∞-∞分成四个区间),5.3(],5.3,5.2(],5.2,5.1(],5.1,(4321+∞===-∞=I I I I ,)21,(2-∞=I(2)计算每个区间上的理论频数,这里n=315+101+108+32=55675.34161556,25.104163556,75.3121695564321=⨯==⨯===⨯=np np np np (3)实际频数,32,108,101,3154321====f f f f(4)75.34)75.3432(25.104)25.104108(25.104)25.104101(75.312)75.312315(22222-+-+-+-=χ470.021763.013489.010132.001619.0=+++=查表得470.0348.9)05.0()05.0(2321>==-χχk ,所以我们接受原假设,即接受“9:3:3:1” 这个理论。

相关文档
最新文档