概率论复习题
[考研数学]概率论考试复习题
![[考研数学]概率论考试复习题](https://img.taocdn.com/s3/m/9b99419fd1d233d4b14e852458fb770bf78a3b74.png)
概率论与数理统计练习1一、选择题:1、设随机事件A 与B 满足A B ⊃,则( )成立。
A.()()P A B P A +=B.()()P AB P A =C.()()P B A P B =D.()()()P B A P B P A -=-2、甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,则目标被击中的概率为( B )。
A.0.5B.0.8C.0.55D.0.63、连续型随机变量X 的密度函数()f x 必满足条件( D )。
A.0()1f x ≤≤B.()f x 为偶函数C.()f x 单调不减D. ()1f x dx +∞-∞=⎰4、设12,,,n X X X 是来自正态总体2(,)N μσ 的样本,则22μσ+的矩估计量是( D )。
A. 211()n i i X X n =-∑ B. 211()1n i i X X n =--∑ C. 221()n i i X n X =-∑ D. 211n i i X n =∑ 5、设总体(,1)X N μ ,123,,X X X 为总体X 的一个样本,若^1231123X X CX μ=++为未知参数μ的无偏估计量,则常数C =( ) A.12 B. 13 C. 15 D. 16二、填空题:1、袋子中装有50个乒乓球,其中20个黄的,30个白的,现有两人依次随机地从袋中各取一球,取后不放回,则第二人取得黄球的概率是 0.42、设A ,B 为两个随机事件,()0.6P A =,()0.2P A B -=,则()P AB = 0.63、已知二维随机向量(,)X Y 的联合分布为则= 0.34、设总体X 服从正态分布2(2,)N σ,1216,,,X X X 是来自总体X 的一个样本,且161116i i X X ==∑,则48X σ-服从 5、若(,)X Y 服从区域22{(,)4}G x y x y =+≤上的均匀分布,则(,)X Y 的联合密度函数为三、计算题:1、设A ,B 为随机事件,且()P A p =,()()P AB P A B =,求()P B 。
大学 概率复习题

第一章 概率论的基本概念 1. 若事件B A ,满足21)|(,31)|(,41)(===B A P A B P A P ,则)(B A P = .2. 若事件B A ,满足7.0)(,4.0)(==B A P A P ,且5.0)|(=B A P ,则)|(A B P = .3. 设有两个相互独立事件A 与B 发生的概率分别为1p 和2p ,则两个事件恰好有一个发生的概率为4.()0.3P A =,()0.5P B =,若A 与B 相互独立,则()P AB = _.5.设B A ,为两个互不相容的事件,且()()0,0>>B P A P ,则 正确. A . ()1=AB P ; B . ()0=B A P ; C . B A =; D . Φ=-B A .6. 设有10件产品,其中有3件次品,从中任取3件,则3件中有次品的概率为( ) A.1201 B.247 C.2417 D.40217、盒中放有红、白两种球各若干个,从中任取3个球,设事件A=“3个中至少有1个白球”,事件B=“3个中恰好有一个白球”,则事件B -A =A .“至少2个白球”B .“恰好2个白球”C .“至少3个白球”D .“无白球”8. A ,B 为两个事件,若B A ⊂,则下列关系式正确的是 . A . )()(B P A P >; B . ()()P A P B ≤; C . 1)()(=+B P A P ; D . ()()P B P A >.9. 设甲袋中装有n只白球,m只红球,乙袋中装有N只白球,M只红球,今从甲袋中任取一个球放入乙袋中,再从乙袋中任意取出一只球.求:(1)从乙袋中取到白球的概率是多少?(2)若从乙袋中取到的是白球,则先前从甲袋中取到白球的概率是多少?10. 发报台分别以概率0.6和0.4发出信号“0”和“1”.由于通讯系统受到干扰,当发出信号“0”时,收报台未必收到信号“0”,而是以概率0.8和0.2收到信号“0”和“1”;同样,当发出信号“1”时,收报台分别以概率0.9和0.1收到信号“1”和“0”.求:(1)收报台收到“0”的概率;(2)当收报台收到信号“0”的时候,发报台确是发出信号“0”的概率.11. 某射击小组有20名射手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人。
概率论复习题题库

第一章 随机事件与概率第一部分 作业1. 将三封信任意投到四个信筒中,求三封信都投到同一信箱和分别投到三个不同信箱的概率。
2. 设,A B 是任意二事件,其中A 的概率不等于0和1,证明:(|)(|)P B A P B A =是事件A 与B 独立的充分必要条件。
3. 甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品,从甲箱中任取3件产品放入乙箱,求:从乙箱中任取一件产品是次品的概率。
4. 三台机器独立的运转着,三台机器不发生故障的概率分别为0.9、0.8和0.7,求三台机器至少有一台发生故障的概率。
第二部分 综合练习一、填空题1. 已知()0.5,()0.25P A P B A ==,则()P AB = 。
2. 试在一次试验中事件A 发生的概率为p ,则在4次重复独立试验中。
事件A 至多有一次不发生的概率是 。
3. 设A 表示事件“掷一颗骰子出现偶数点”,B 表示事件“掷一颗骰子出现2点”则A 与B 的关系是 。
4. 将3个球随机地放入4个盒子中,则事件“盒中球个数最多为1”的概率为 .5. 设在三次独立试验中,事件A 发生的概率都相等。
若已知A 至少发生一次的概率为0.784,则A 在一次试验中发生的概率为 。
二、选择题1. 对于任意两事件A 和B ,( ) A. 若AB ≠Φ,则A 和B 一定独立 B. 若AB ≠Φ,则A 和B 可能独立 C. 若AB =Φ,则A 和B 一定独立 D. 若AB =Φ,则A 和B 一定不独立2. 某人向同一目标独立重复射击,每次击中目标的概率为(01)p p <<,则此人第4次射击恰好是第2次命中目标的概率为( ) A. 23(1)p p - B. 26(1)p p - C. 223(1)p p - D. 226(1)p p - 3. 设事件A 与事件B 互不相容,则( ) A. ()0P A B = B. ()()()P AB P A P B = C. ()1()P A P B =- D.()1P A B ⋃= 4. 设事件A B ⊂且0()1P A <<,则必有( )A. ()(())P A P A A B ≥+B. ()(())P A P A A B ≤+C. ()()P B P B A ≥D. ()()P B P B A ≤5. 随机事件A 、B 适合B A ⊂,则以下各式错误的是( )。
概率论复习题

第1章 随机事件及其概率一、填空题1、已知,5.0)(=A P ,6.0)(=B P ,2.0)(=B A P 则=)(AB P _______________.2、已知,25.0)()()(===C P B P A P ,15.0)()(==BC P AB P ,0)(=AC P 则A 、B 、C 至少有一个发生的概率为_______________.3、把9本书随意放在书架上,指定的3本放在一起的概率为_____________.4、包括甲、乙在内的n 个人排队,他们之间恰有r 个人的概率为____________.5、设A 、B 、C 为三个事件,则“至少有一个事件不发生”可表示为______________.6、设A 、B 、C 为三个事件,则“至多只有一个事件发生”可表示为______________.7、设31)(=A P ,41)(=B P ,61)(=AB P ,则=)(B A P ______________. 8、假设3.0)(=A P , 2.0)(=B P ,∅=AB ,则)(B A P ⋃=_________________. 9、设31)(=A P ,41)(=B P ,21)(=⋃B A P ,则=⋃)(B A P ______________. 10、假设5.0)(=A P , 4.0)(=B P ,3.0)(=B A P ,则)(B A P ⋃=_________________. 11、两封信随机的投入到四个邮筒中,则前两个邮筒内没有信的概率为________________.12、两封信随机的投入到四个邮筒中,则前两个邮筒内都有信的概率为________________. 13、袋中有5个白球,3个黑球,从中一次任取两球,则取到的两球中有黑球的概率为______________.14、袋中有5个白球,3个黑球,从中一次任取两球,则取到的两球都是黑球的概率为______________.15、袋中有4黑6白大小相同的10个小球,现在从中不放回地任取两球,两个全是黑球的概率________________.16、甲、乙两人独立的射击同一目标,他们击中目标的概率分别为0.9和0.8,则在一次射击中目标被击中的概率为______________.17、某城市发行A,B 两种报纸,在这两种报纸的订户中,订阅A 报的有45%,订阅B 报的有30%,同时订阅两种报纸的有15%,则只订一种报纸的概率为___________________. 18、从一批产品中抽取3件,以i A 表示第i 次抽到废品,则事件“第一次和第二次至少抽到一件废品”可表示为_______________.19、设n 个人围成圆圈,甲、乙是其中两人。
概率复习题-答案

<概率论>试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,。
则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7. 已知随机变量X的密度为,且,则________ ________8. 设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~或~。
特别是,当同为正态分布时,对于任意的,都精确有~或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于.22.设是来自正态总体的样本,令则当时~。
23.设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24.设X1,X2,…X n为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P (A+B) = P (A);(B)(C)(D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为(A)“甲种产品滞销,乙种产品畅销”;(B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。
概率论期末考试复习题及答案

第一章1.设P (A )=31,P (A ∪B )=21,且A 与B 互不相容,则P (B )=____61_______。
2。
设P (A )=31,P (A ∪B )=21,且A 与B 相互独立,则P (B )=______41_____.3.设事件A 与B 互不相容,P (A )=0.2,P (B)=0。
3,则P(B A )=___0.5_____。
4.已知P (A )=1/2,P (B )=1/3,且A,B 相互独立,则P (A B )=________1/3________。
A 与B 相互独立5.设P(A )=0。
5,P (A B )=0.4,则P (B |A )=___0。
2________。
6.设A ,B 为随机事件,且P (A)=0.8,P(B)=0。
4,P(B|A )=0。
25,则P (A |B )=____ 0。
5______.7.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________ 0。
6________.8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于____12/55____。
9.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=___0。
21_____。
10.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间生产的概率. 3518第二章1。
设随机变量X~N (2,22),则P {X ≤0}=___0。
1587____。
(附:Φ(1)=0。
8413) 设随机变量X~N (2,22),则P {X ≤0}=(P {(X-2)/2≤-1} =Φ(-1)=1—Φ(1)=0。
概率论复习题(3课时)

概率论复习题一 填空1、一批产品的废品率为0.1,每次抽取1个,观察后放回去,下次再取1个,共重复3次,则3次中恰有两次取到废品的概率是 .2、袋中有12个大小规格相同的球,其中含有2个红球,从中任取3个球,则取出的3个球中红球个数ξ的概率分布为 .3、设在10只晶体管中有两个次品,从中任取两次,每次取一个,作不放回抽样,设{=A 第一次取得正品第二取得次品},则=)(A P .4、一批产品中,一、二、三、等品率分别为0.8、0.16、0.04,若规定一、二等品为合格品,求产品的合格率: . 6、设)(x F 为ξ的分布函数,则对任意的b a ,)(b a <,有=-)()(a F b F .8、若ξ)2,5(~2N ,则{}32<-ξP= .10、设[][]⎩⎨⎧∉∈=c x c x xx ,00,02)(ϕ ,是一随机变量的概率密度函数,则c= 。
11、已知,1-=ξE 3=ξD ,则[])2(32-ξE = . 12、设有20个某种零件,其中16个一级品,4个二级品,今从中任取3个,则至少有一个一级品的概率 .13、 C B A ,,三人入学考试合格的概率分别是52,21,32,三人中恰有两人合格的概率是 。
14、加工一件产品需要经过三道工序,第一、二、三道工序不出废品的概率分别为0.95,0.85,0.9。
若三道工序是否出废品是相互独立的,则经过三道工序而不出废品的概率为 。
15、某批产品一等品率为8.0,进行重复抽样检验,共取出4件样品。
设ξ表示4件样品中的一等品数,则ξ的概率分布为 ;4件样品中至少有2件一等品的概率为 ;4件样品中一等数ξ的最可能值是 。
16、一批产品20件,其中有8件是次品,从这批产品中随机抽取5件,设ξ表示这5件中的次品数,则ξ的分布律是 (只要求写出分布律,不用计算具体数值)。
17、随机变量ξ的概率分布如下表则 =ξE ;=ξD 。
18、已知ξ服从)4,150(2N ,则140(P <=≤)160ξ ,=≤)150(ξP 。
(完整)概率复习题及答案

〈概率论〉试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,.则=3.若事件A和事件B相互独立, ,则4。
将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0。
5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7。
已知随机变量X的密度为,且,则________________8。
设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________ 10。
若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12。
用()的联合分布函数F(x,y)表示13。
用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15。
已知,则=16.设,且与相互独立,则17。
设的概率密度为,则=18。
设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19。
设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或~。
特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于。
22.设是来自正态总体的样本,令则当时~。
23。
设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计复习
一、关于概率论基本概念与运算(包括事件运算和概率运算,主要以填空形式考核)
1. 设A ,B ,C 是三个随机事件。
事件“A ,B ,C 至少有两个发生”用A ,B ,C 表示为
2. 设 A ,B ,C 是三个随机事件. 事件“A ,B ,C 中至少有一个不发生”可用A ,B ,C 表示为
3. 设随机事件A 和B,P(A)=0.7,P(A-B)=0.3 ,则 “事件A 和B 同时发生” 的对立事件的概率为
4. 已知 )(A P =0.7, )(B P =0.4, )(B A P =0.2, , 则)(B A P -)=______
二、关于古典概型、条件概率、全概率公式和贝叶斯公式等
5. 一运动员投篮5次,每次投中的概率为0.8,则至少投中一次的概率为
6. 一社团有10名一年级学生,8名二年级学生,5名三年级学生,7名四年级学生,在其中任选4名
学生,则四个年级各有一名学生的概率为 ;在其中任选8名学生,有3名一年级学生的概率为 .
7. 对某一目标依次进行了三次独立的射击, 设第一、二、三次射击命中概率分别为0.4, 0.5, 0.7, 则三次
射击中恰好有一次命中的概率为________,三次射击至少有一次命中的概率为_______
8. 已知发送方发出0和1两种信号的比例为3:2,发出信号0时,接受方误收为信号1的概率为0.1,
发送方发出信号1时,误收为0的概率为0.05,现接收到一个信号0,问发出的信号是1的概率为多少?
三、随机变量的分布(包括数字特征的计算)
9.
设随机变量X 的分布函数为: 20,0()()/2,011,1x F x x x x x <⎧
⎪=+≤≤⎨⎪>⎩
, (1)
计算 ()2130..<<X P ;(2))(X E 10. 设随机变量Y X 与的联合分布律为
Y X
1 2 3 1
1/9 2/9 3/9 2
0 1/9 1/9 3 0 0 1/9
求: (1) 2=X 条件下, 3=Y 的条件概率; (2) {}Y X P <; (3)关于X 的边缘分布律; (4) X 和Y 的协方差;
(5) 判断Y X 与是否相关,是否相互独立.
11. 已知),(Y X 的概率密度为
2,0,01(,)0,Ax y x x f x y ⎧<<<<=⎨⎩
其他 求:(1)A ; (2) 关于变量Y 的边缘概率密度函数()Y f x ; (3) {}5.0>X P ; (4) ()Y E ,()Y D
四、数字特征
12. 设随机变量X 在区间 [0, 1] 上服从均匀分布, 则X Y e =的数学期望为_____
13. 设随机变量X 的期望EX=3,方差DX=1, 则期望()21E X ⎡⎤-⎣⎦
=_______ 14. 若)3(~πX , 则()X E 52-= , ()X D 52-=________
15. 设),(~2σμN X , 则)(σμ
-X E =
16. 设)(X D =16, )(Y D =9, 相关系数0.5XY ρ=, 则()D X Y -=______
17. 盒中有7个球, 其中4个白球, 3个黑球, 从中任抽3个球, 求抽到白球数X 的数学期望EX 和方差DX.
18. 一工厂生产的某种设备的寿命X 服从指数分布,概率密度为
()⎪⎩⎪⎨⎧>=-其它
,00 ,414/x e x f x 工厂规定出售的设备若在一年之内损坏可以予以调换,工厂售出一台设备盈利100元,调换一台厂方需要花费300元。
试求厂方出售一台设备净盈利的数学期望。
五、中心极限定理
19. 用一机床制造大小相同的零件, 标准重为1kg, 由于随机误差, 每个零件重量在(0.95,1.05)kg 上均匀分布, 设每个零件重量相互独立, 制造1200个零件,问总重量大于1202kg 的概率是多少?
20. 某种袋装糖, 标注净重为200克. 已知每袋中有20粒糖, 每粒糖的重量是随机变量, 相互独立且服从相同的分布, 其数学期望为10克, 标准差为0.1克, 规定一袋糖的实际重量与标注净重的差的绝对值不超过1克为合格品, 试求合格的概率.。