2020年初升高数学衔接专题13 初高中衔接综合测试A卷(解析版)
2020年初升高衔接数学试卷Word版

2020年初升高衔接数学试卷姓名:成绩:一、选择题(每小题3分,共30分)1.下列关于x的方程中,是一元二次方程的有()21 2 _ _A. x — B .ax bx c 0xC. x 1 x 2 1 D . 3x2 2xy 5y202.化简不二的结果为(),2 1 .3 1A、A/3V2 B 、展& C 、/2 2v3 D 、於24223.已知关于x的方程x kx 6 0的一个根为x 3,则实数k的值为()A. 2 B , 1 C , 1 D . 24.已知全集U=R 集合A={x|1 &x<7}, B={x|x2-7x+10<0} , WJ AH (?RB) =( )A. (1,2) U (5,7)B. [1,2] U [5,7)C. (1,2) U (5,7]D. (1,2] U (5,7)5.有6张写有数字的卡片,它们的背面都相同,现将它们背心早■■面朝上(如图2),从中任意一张是数字3的概率是()■■ ■■A、1B、1 C > - D> - 图 26 3 2 36.已知x、y是实数,,3x+4 +y2— 6y+9=0,则xy的值是()A. 4 B .-4 C . 9 D .-9 4 47、下列图形中,既是轴对称图形,又是中心对称图形的是()★ x aA B C D8.已知两圆的半径分别是5cm和4cm,圆心^距为7cm,那么这两圆的位置关系是()A.相交 B .内切C .外切D .外离9.如图3,。
的半径为5,弦AB的长为8, M是弦AB上的动点,则线段O M长的最小值为()12题图A.2B.3C.4D.510.已知:如图4,。
的两条弦AE BC相交于点D,连接AG BE.若/AC氏60° ,则下列结论中正确的是()A. /AOB= 600 B . ZADB= 60°C. /AEB= 600 D . /AEB= 30°二、填空题(每小题3分,共24分)11.方程x 2 = x 的解是__________________________12.如图所示,五角星的顶点是一个正五边形的五个顶点.这,个五角星可以由一个基本图形(图中的阴影部分)绕中心。
重庆市2020年中考数学试题A卷及详解(word版)

第一部分:重庆市2020年初中学业水平暨高中招生考试数学试题(A 卷)(1-10)第一部分:重庆市2020年初中学业水平暨高中招生考试数学试题解析(A 卷)(11-25)一、选择题1.下列各数中,最小的数是( )A. -3B. 0C. 1D. 22.下列图形是轴对称图形的是( ) A. B. C. D.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为( )A. 32610⨯B. 32.610⨯C. 42.610⨯D. 50.2610⨯4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A. 10B. 15C. 18D. 21 5.如图,AB 是O 的切线,A 切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )A. 40°B. 50°C. 60°D. 70°6.下列计算中,正确的是( ) A. 235= B. 2222+= C. 236= D. 2323=7.解一元一次方程11(1)123x x +=-时,去分母正确的是( ) A. 3(1)12x x +=-B. 2(1)13x x +=-C. 2(1)63x x +=-D. 3(1)62x x +=-8.如图,在平面直角坐标系中,ABC 的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A. 5B. 2C. 4D. 259.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45m CD =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为( )(参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈)A. 76.9mB. 82.1mC. 94.8mD. 112.6m10.若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( )A. 7B. -14C. 28D. -5611.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到AED ,DE与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG 的面积为2,则点F 到BC 的距离为( )A. 5B. 25C. 45D. 43 12.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE △的面积为18,则k 的值为( )A. 6B. 12C. 18D. 24二、填空题13.计算:0(1)|2|π-+-=__________.14.一个多边形的内角和是外角和的2倍,则这个多边形的边数为________.15.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点P (m ,n )在第二象限的概率为__________.16.如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交.则图中的阴影部分的面积为__________.(结果保留π)17.A ,B 两地相距240 km ,甲货车从A 地以40km/h 的速度匀速前往B 地,到达B 地后停止,在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止,两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是()0240,,点D 的坐标是()2.40,,则点E 的坐标是__________.18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.三、解答题19.计算:(1)2()(2)x y x x y ++-; (2)2291369m m m m m -⎛⎫-÷ ⎪+++⎝⎭.20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级平均数众数中位数8分及以上人数所占百分比七年级7.5 a 7 45%八年级7.5 8 b c八年级20名学生的测试成绩条形统计图如图:根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格学生人数是多少?21.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠.(1)若50AOE ∠=︒,求ACB ∠的度数;(2)求证:AE CF =.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261x y x =+性质及其应用的部分过程,请按要求完成下列各小题. (1)请把下表补充..完整,并在图中补全..该函数图象; x… -5 -4 -3 -2 -1 0 1 2 3 4 5 … 261x y x =+ … 1513- 2417- 125- -3 0 3 125 2417 1513 …(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y 轴;( )②该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;( )③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;( )(3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211x x x >-+的解集(保留1位小数,误差不超过0.2).23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=,14342÷=,所以14是“差一数”;19534÷=,但19361÷=,所以19不“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A、B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收人将增加20%9a,求a的值.25.如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中()3,4A --,()0,1B -.(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB △面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线()211110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.26.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF .(1)求证:2CF AD =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.重庆市2020年初中学业水平暨高中招生考试数学试题(A 卷)解析一、选择题1、有理数的大小比较法则:正数大于0,负数小于0,正数大于一切负数;两个负数,绝对值大的反而小.【详解】∵3012-<<<,∴最小的数是-3,故选:A .2、根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是轴对称图形,故本选项正确;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误;故选:A .3、科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】42.62600010⨯=,故选:C .4、根据前三个图案中黑色三角形的个数得出第n 个图案中黑色三角形的个数为1+2+3+4+……+n ,据此可得第⑤个图案中黑色三角形的个数.【详解】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B .5、根据切线的性质可得90?OAB ∠=,再根据三角形内角和求出AOB ∠.【详解】∵AB 是O 的切线 ∴90?OAB ∠=∵20B ∠=︒∴18070AOB OAB B ∠=︒-∠-∠=︒故选D.6、根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【详解】解:AB .2不是同类二次根式,不能合并,此选项计算错误;C ==D .2不是同类二次根式,不能合并,此选项错误;故选:C .7、根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .8、把A 、C 的横纵坐标都乘以2得到D 、F 的坐标,然后利用两点间的距离公式计算线段DF 的长.【详解】解:∵以原点为位似中心,在原点的同侧画△DEF ,使△DEF 与△ABC 成位似图形,且相似比为2:1,而A (1,2),C (3,1),∴D (2,4),F (6,2),∴DF故选:D .9、构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE 、EC 、BE 、DF 、AF ,进而求出AB .【详解】解:如图,由题意得,∠ADF =28°,CD =45,BC =60,在Rt DEC中,∵山坡CD的坡度i=1:0.75,∴DEEC=10.75=43,设DE=4x,则EC=3x,由勾股定理可得CD=5x,又CD=45,即5x=45,∴x=9,∴EC=3x=27,DE=4x=36=FB,∴BE=BC+EC=60+27=87=DF,在Rt ADF中,AF=tan28°×DF≈0.53×87≈46.11,∴AB=AF+FB=46.11+36≈82.1,故选:B.10、不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【详解】解:解不等式3132xx-≤+,解得x≤7,∴不等式组整理的7 xx a≤≤⎧⎨⎩,由解集为x≤a,得到a≤7,分式方程去分母得:y−a+3y−4=y−2,即3y−2=a,解得:y=+23a,由y为正整数解,得到a=1,7,1×7=7,故选:A.11、首先求出ABD 的面积.根据三角形的面积公式求出DF ,设点F 到BD 的距离为h ,根据12•BD •h =12•BF •DF ,求出BD 即可解决问题. 【详解】解:∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4,由翻折可知,ADB ≌ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°,∴12•(AF +DF )•BF =4, ∴12•(3+DF )•2=4, ∴DF =1,∴DB =22BF DF +=2212+=5,设点F 到BD 的距离为h ,则12•BD •h =12•BF •DF , ∴h =25, 故选:B .12、先证明OB ∥AE ,得出S △ABE =S △OAE =18,设A 的坐标为(a ,k a ),求出F 点的坐标和E 点的坐标,可得S △OAE =12×3a ×k a=18,求解即可. 【详解】解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线,∴AO=OD ,∴∠ODA=∠OAD ,又∵AD 为∠DAE 的平分线,∴∠OAD=∠EAD ,∴∠EAD=∠ODA ,∴OB ∥AE ,∵S △ABE =18,∴S △OAE =18,设A 的坐标为(a ,k a ), ∵AF=EF ,∴F 点的纵坐标为2k a, 代入反比例函数解析式可得F 点的坐标为(2a ,2k a ), ∴E 点的坐标为(3a ,0),S △OAE =12×3a ×k a=18, 解得k=12,故选:B .二、填空题13、根据零指数幂及绝对值计算即可.【详解】0(1)|2|1+2=3π-+-=;故答案为3.14、由多边形的外角和等于360°,可得多边形的内角和为720°,根据多边形的内角和公式,即可求解.【详解】∵多边形的外角和是360度,多边形的内角和是外角和的2倍,∴内角和是720度,∵720÷180+2=6, ∴这个多边形是六边形.故答案为:6.15、画树状图展示所有16种等可能结果数,利用第二象限内点的坐标特征确定点P (m ,n )在第二象限的结果数,然后根据概率公式求解.【详解】解:画树状图:共有16种等可能的结果数,其中点P (m ,n )在第二象限的结果数为3,所以点P (m ,n )在第二象限的概率=316. 故答案为:316. 16、根据图形可得S 2ABCD S S =-阴影扇形,由正方形的性质可求得扇形的半径,利用扇形面积公式求出扇形的面积,即可求出阴影部分面积.【详解】由图可知,S 2ABCD S S =-阴影扇形,224ABCD S =⨯=,∵四边形ABCD 是正方形,边长为2, ∴=22AC∵点O 是AC 的中点,∴2, ∴2902)3602S ππ︒==︒扇形, ∴S 2=4-ABCD S S π=-阴影扇形,故答案为:4π-.17、先根据CD 段的求出乙货车的行驶速度,再根据两车的行驶速度分析出点E 表示的意义,由此即可得出答案.【详解】设乙货车的行驶速度为/akm h由题意可知,图中的点D 表示的是甲、乙货车相遇点C 的坐标是()0,240,点D 的坐标是()2.4,0∴此时甲、乙货车行驶的时间为2.4h ,甲货车行驶的距离为40 2.496()km ⨯=,乙货车行驶的距离为24096144()km -=∴144 2.460(/)a km h =÷=∴乙货车从B 地前往A 地所需时间为240604()h ÷=由此可知,图中点E 表示的是乙货车行驶至A 地,EF 段表示的是乙货车停止后,甲货车继续行驶至B 地 则点E 的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即404160⨯=即点E 的坐标为(4,160)故答案为:(4,160).18、先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k ,5k ,2k ,7月份总增加的营业额为m ,则7月份摆摊增加的营业额为25m ,设7月份外卖还需增加的营业额为x . ∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5, ∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a ,5a ,7a , 由题意可知:3385552275k m x a k x am k a ⎧+-=⎪⎪+=⎨⎪⎪+=⎩ , 解得:125215k a x a m a ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴512857208a x a a a a ==++, 故答案为:18. 三、解答题 19、(1)利用完全平方公式和整式乘法展开后合并同类型即可; (2)先把分子分母因式分解,然后按顺序计算即可;【详解】(1)解:原式22222x xy y x xy =+++-222x y =+(2)解:原式23(3)3(3)(3)m m m m m m +-+=⋅++- 23(3)3(3)(3)m m m m +=⋅++- 33m =- 20、(1)七年级20名学生的测试成绩的众数找出现次数最多的即可得出a 的值,由条形统计图即可得出八年级抽取的学生的测试成绩的中位数,八年级8分及以上人数除以总人数20人即可得出c 的值;(2)分别比较七年级和八年级的平均数、众数、中位数、8分及以上人数所占百分比即可得出结论;(3)用七八年级的合格总人数除以总人数40人,得到这两个年级测试活动成绩合格的百分比,再乘以1200即可得出答案.【详解】解:(1)七年级20名学生的测试成绩的众数是:7,∴7a =, 由条形统计图可得,八年级抽取的学生的测试成绩的中位数是:787.52+=, ∴7.5b =,八年级8分及以上人数有10人,所占百分比为:50%∴50%c =,(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高;(3)七年级合格人数:18人,八年级合格人数:18人, 181********%108040+⨯⨯=人, 答:估计参加此次测试活动成绩合格的人数有1080人.21、(1)利用三角形内角和定理求出EAO ∠,利用角平分线的定义求出DAC ∠,再利用平行线的性质解决问题即可.(2)证明()AEOCFO AAS 可得结论. 【详解】(1)解:AE BD ⊥,90AEO ∴∠=︒,50AOE, 40EAO , CA 平分DAE ∠,40DAC EAO ,四边形ABCD 是平行四边形,//AD BC ∴,40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥,90AEO CFO ,AOE COF ∠=∠,()AEO CFO AAS ,AE CF ∴=.22、(1)代入x=3和x=-3即可求出对应的y 值,再补全函数图象即可; (2)结合函数图象可从增减性及对称性进行判断;(3)根据图象求解即可.【详解】解:(1)当x=-3时,2618911x y x -==++95=-, 当x=3时,2618911x y x ===++95, 函数图象如下:(2)①由函数图象可得它是中心对称图形,不是轴对称图形;故答案为:×, ②结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;故答案为:√ ,③观察函数图象可得:当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大; 故答案为:√.(3)1x <-,0.28 1.78(0.280.2 1.780.2)x x -<<-±<<±26211x x x =-+时,()2(1)2310x x x +--=得11x =-,2 1.8x =≈,30.3x ≈-, 故该不等式的解集为: x <−1或−0.3<x <1.8.23、(1)直接根据“差一数”的定义计算即可; (2)根据“差一数”的定义可知被5除余4的数个位数字为4或9;被3除余2的数各位数字之和被3除余2,由此可求得大于300且小于400的所有“差一数”.【详解】解:(1)∵49594÷=;493161÷=,∴49不是“差一数”,∵745144÷=;743242÷=, ∴74是“差一数”;(2)∵“差一数”这个数除以5余数为4,∴“差一数”这个数的个位数字为4或9,∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399,∵“差一数”这个数除以3余数为2,∴“差一数”这个数的各位数字之和被3除余2,∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.24、(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,根据题意列出方程组,解方程组即可得到答案;(2)根据题意分别表示A 品种、B 品种今年的收入,利用总收入等于A 品种、B 品种今年的收入之和,列出一元二次方程求解即可得到答案.【详解】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,由题意得1002.410 2.41021600y x x y =+⎧⎨⨯+⨯=⎩,解得400500x y =⎧⎨=⎩. 答:A .B 两个品种去年平均亩产量分别是400、500千克(2)根据题意得:()()()20244001%241%50012%216001%9a a a a ⎛⎫⨯+++⨯+=+ ⎪⎝⎭. 令a %=m ,则方程化为:()()()20244001241500122160019m m m m ⎛⎫⨯+++⨯+=+ ⎪⎝⎭. 整理得10m 2-m =0,解得:m 1=0(不合题意,舍去),m 2=0.1所以a %=0.1,所以a =10,答:a 的值为10.25、(1)将点A 、B 的坐标代入抛物线表达式,即可求解; (2)设AB y kx b =+,求得解析式,过点P 作x 轴得垂线与直线AB 交于点F ,设点()2,41P a a a +-,则(,1)F a a -,1||2PAB B A S PF x x ∆=⋅-23327228a ⎛⎫=-++ ⎪⎝⎭,即可求解; (3)分BC 为菱形的边、菱形的的对角线两种情况,分别求解即可.【详解】解:(1)∵抛物线过(3,4)A --,(0,1)B -∴9341b c c -+=-⎧⎨=-⎩∴41b c =⎧⎨=-⎩ ∴241y x x =+-(2)设AB y kx b =+,将点()3,4A --(0,1)B -代入AB y∴1AB y x =-过点P 作x 轴得垂线与直线AB 交于点F设点()2,41P a a a +-,则(,1)F a a - 由铅垂定理可得 1||2PAB B A SPF x x ∆=⋅- ()231412a a a =---+ ()2332a a =-- 23327228a ⎛⎫=-++ ⎪⎝⎭ ∴PAB △面积最大值为278(3)(3)抛物线的表达式为:y =x 2+4x−1=(x +2)2−5,则平移后的抛物线表达式为:y =x 2−5,联立上述两式并解得:14x y -⎧⎨-⎩==,故点C (−1,−4);设点D (−2,m )、点E (s ,t ),而点B 、C 的坐标分别为(0,−1)、(−1,−4);①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E(D ),即−2+1=s 且m +3=t ①或−2−1=s 且m−3=t ②,当点D 在E 的下方时,则BE =BC ,即s 2+(t +1)2=12+32③,当点D 在E 的上方时,则BD =BC ,即22+(m +1)2=12+32④,联立①③并解得:s =−1,t =2或−4(舍去−4),故点E (−1,2);联立②④并解得:s =-3,t =,故点E (-3,-4)或(-3,-);②当BC 为菱形的的对角线时,则由中点公式得:−1=s−2且−4−1=m +t ⑤,此时,BD =BE ,即22+(m +1)2=s 2+(t +1)2⑥,联立⑤⑥并解得:s =1,t =−3,故点E (1,−3),综上,点E 的坐标为:(−1,2)或(34--,,或(34--,或(1,−3).∴存在,1234(12)(34(34(13)E E E E ---+----,,,,,, 26、(1)先证△BAD ≌△CAE ,可得∠ABD =∠ACE =45°,可求∠BCE =90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=,推出454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,然后根据现有条件说明在Rt DCB △中,DE ==,点A ,D ,C ,E 四点共圆,F 为圆心,则CF AF =,在Rt AGC中,推出AG =,即可得出答案; (3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,设PD 为a ,得出BD =,AD BD =,得出a m +=,解出a ,根据BD CE =即可得出答案.【详解】解:(1)证明如下:∵90BAC DAE ∠=∠=︒,∴BAD CAE ∠=∠,∵AB AC =,AD AE =,∴在ABD △和ACE △中BAD CAE AB AC AD AE ∠=∠⎧⎪=⎨⎪=⎩,∴ABD ACE ∆≅∆,∴45ABD ACE ∠=∠=︒,∴90DCE ACB ACE ∠︒=∠+∠=,在Rt ADE 中,F 为DE 中点(同时AD AE =),45ADE AED ∠=∠=︒, ∴AF DE ⊥,即Rt ADF 为等腰直角三角形, ∴22AF DF AD ==, ∵CF DF =,∴2CF AD =; (2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=, ∴454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,在Rt DCB △中,22225DE CD CE CD BD CD =+=+=,∵F 为DE 中点,∴152DE EF DE CD ===, 在四边形ADCE 中,有90CAG DCE ︒∠=∠=,180CZG DCE ︒∠+∠=, ∴点A ,D ,C ,E 四点共圆,∵F 为DE 中点,∴F 为圆心,则CF AF =,在Rt AGC 中,∵CF AF =,∴F 为CG 中点,即CG 2CF 5CD ==,∴222218254AG CG AC CD CD CD =-=-=, 即32BC AG =;(3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,∴60BPD ∠=︒,设PD为a,∴BD=,又AD BD=,∴a m+,=m a1)a=又BD CE∴CE.。
初高中衔接综合测试卷2020

初升高数学衔接班测试题(满分:100分,时间:60分钟) 姓名 成绩一.选择题(每小题5分)1.已知集合},,{c b a s =中的三个元素是C B A ∆的三边,那么C B A ∆一定不是)(A 锐角三角形 )(B 直角三角形 )(C 钝角三角形 )(D 等腰三角形2.已知集合}13|{≤≤-=x x M ,1|{≤=x x P 或}3≥x ,则M,P 之间关系是 )(A P M ⊇ )(B P M ⊇ )(C P M ⊆ )(D MP 3.已知全集{}15,U x x x N =≤≤∈,集合{}1,2,3S =,那么U C S =() A.{}1,2,3,4,5B.{}1,2,3,C.{}4,5D.{}2,3,4 4.已知函数11y x =-,那么 A .函数的单调递减区间为(,1)-∞,(1,)+∞B .函数的单调递减区间为(-∞,1](1,)+∞C .函数的单调递增区间为(,1)-∞,(1,)+∞D .函数的单调递增区间为(-∞,1](1,)+∞5.已知函数f (x )=⎩⎪⎨⎪⎧ x -3x +2,x >0,4,x =0,2x +1,x <0,则f (f (0))=( ) A .6B .-16C .-6D .166.下列各式不是表示y 是x 的函数的是:)(A 125=+y x )(B )0(3≠-=x xy )(C )(122R x y x ∈=+ )(D 133=+y x )(R x ∈7. 若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20052005ab +的值为( ) (A )0 (B )1 (C )1- (D )1或1-8. 已知集合M ={x |x 2=1},N ={x |ax =1},若N ⊆M ,则实数a 的取值集合为( )A .{1}B .{-1,1}C .{1,0}D .{-1,1,0}二. 填空题(每小题5分)9. 3_____}N n ,1n x |x {2∈+=,}x y |y _____{)1,1(2=-10. 已知函数f (x +1)=x +2x ,则f (x )的解析式为________.11. 函数y =的定义域是______________________. 12.已知)(x f 为二次函数,且42)1()1(2++=-++x x x f x f ,则=)(x f. .三 计算题(每题10分) 13.(1)(5分)7|41|<-x (3)(5分)03522>-+x x14. 已知集合A ={x |2a ﹣1<x <a +1},B ={x |0≤x ≤1}.(1)若a =1,求A ∪B ;(2)若A ∩B =∅,求实数a 的取值范围.15已知一次函数()f x 是R 上的增函数,且[()]43f f x x =+,()()()g x f x x m =+.(1)求()f x ;(2)若()g x 在(1,)+∞上单调递增,求实数m 的取值范围.。
初升高数学衔接试题卷答案

初升高数学衔接试题卷答案一、选择题1. A2. C3. B4. D5. E二、填空题6. 37. √28. 2x + 3y = 129. 45°10. √3三、计算题11. 解:原式 = (x + 2)(x - 3) = x^2 - x - 6。
12. 解:原式= √(25 + 10√2) = √((5 + √2)^2) = 5 + √2。
13. 解:原式 = (2a^2 - 3a + 1)(2a^2 + 3a - 1) = 4a^4 - 9a^2 + 1。
四、解答题14. 解:设三角形ABC的三边长分别为a, b, c,根据余弦定理,有: c^2 = a^2 + b^2 - 2ab*cosC代入已知的a, b, C的值,可得c的值。
15. 解:设函数f(x) = ax^2 + bx + c,根据已知条件,可列出方程组:f(0) = c = 0f(1) = a + b + c = 2f(-1) = a - b + c = -1解方程组可得a, b的值,进而得到f(x)的表达式。
16. 解:设圆的方程为(x - h)^2 + (y - k)^2 = r^2,根据圆心和半径,可得h, k, r的值,进而得到圆的方程。
五、证明题17. 解:要证明三角形ABC是等边三角形,需要证明三边相等,即证明a = b = c。
根据已知条件,可列出方程组:a^2 = b^2 = c^2解方程组可得a, b, c的值,进而证明三角形ABC是等边三角形。
六、应用题18. 解:设购买x个苹果,y个橙子,根据题目条件,可列出方程组: x + y = 102x + 3y = 31解方程组可得x, y的值,进而得到购买苹果和橙子的数量。
19. 解:设甲乙两地相距d千米,根据速度和时间的关系,可列出方程:d = v1 * t1 + v2 * t2代入已知的v1, t1, v2, t2的值,可得d的值。
20. 解:设投资x万元,根据利润和投资额的关系,可列出方程:P = k * x - c代入已知的k, c的值,可得x的值,进而得到投资额。
2020年北京十三中分校中考数学统练试卷(6月份) 解析版

2020年北京十三中分校中考数学统练试卷(6月份)一、选择题(本大题共8小题,共16分)1.(2分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×108 2.(2分)关于代数式x+2的值,下列说法一定正确的是()A.比2大B.比2小C.比x大D.比x小3.(2分)如图是由5个相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.4.(2分)将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是()A.43°B.47°C.30°D.60°5.(2分)将抛物线y=x2平移得到抛物线y=(x+3)2,则这个平移过程正确的是()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位6.(2分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=4,AF=6,则AC的长为()A.4B.6C.2D.7.(2分)下列关于函数=2﹣6+12的四个命题:①当=0时,y有最小值12;②为任意实数,=3+时的函数值大于=3﹣时的函数值;③若函数图象过点(,0)和(,0+1),其中>0,>0,则<;④若>3,且是整数,当≤≤+1时,的整数值有(2﹣4)个.其中真命题的序号是()A.①B.②C.③D.④8.(2分)“实际平均续航里程”是指电动汽车的行驶总里程与充电次数的比值,是反映电动汽车性能的重要指标.某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,按年龄不超过40岁和年龄在40岁以上将客户分为A,B两组,从A,B组各抽取10位客户的电动汽车的“实际平均续航里程”数据整理成图,其中“⊙”表示A组的客户,“*”表示B组的客户.下列推断不正确的是()A.A组客户的电动汽车的“实际平均续航里程”的最大值低于B组B.A组客户的电动汽车的“实际平均续航里程”的方差低于B组C.A组客户的电动汽车的“实际平均续航里程”的平均值低于B组D.这20位客户的电动汽车的“实际平均续航里程”的中位数落在B组二、填空题(本大题共8小题,共16分)9.(2分)如果分式的值是0,那么x的值是10.(2分)因式分解:﹣8ax2+16axy﹣8ay2=.11.(2分)如图,AB是⊙O的直径,CD是弦,若BC=1,AC=3,则sin∠ADC的值为.12.(2分)如图,袋子里装有4个球,大小形状完全一样,上面分别标有,0,﹣,,从中任意取2个球.则取到的2个球上的数字都是有理数的概率为:.13.(2分)如图,一人乘雪橇沿坡比1:的斜坡笔直滑下72米,那么他下降的高度为米.14.(2分)新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控.甲、乙两个工厂生产同一种防护口罩,甲厂每天比乙厂多生产口罩5万只,甲厂生产该种口罩40万只所用时间与乙厂生产该种口罩15万只所用时间相同,若设甲厂每天生产口罩x万只,根据题意可列出方程:.15.(2分)在平面直角坐标系xOy中,直线l1:y=k1x+b过A(0,﹣3),B(5,2),直线l2:y=k2x+2.当x≥4时,不等式k1x+b>k2x+2恒成立,写出一个满足题意的k2的值为.16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=14.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.甲、乙、丙的思路和结果均正确的是.三、解答题(本大题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.(5分)计算:()﹣1﹣(2﹣)0﹣2sin60°+|﹣2|.18.(5分)解方程:.19.(5分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.20.(5分)作图题:如图在矩形ABCD中,已知AD=10,AB=6,用直尺和圆规在AD上找一点E(保留作图痕迹),使EC平分∠BED,并求出tan∠BEC的值.21.(5分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=(x≠0)的图象上.(1)求反比例函数y=(x≠0)的解析式和点B的坐标;(2)若将△BOA绕点B按逆时针方向旋转60°得到△BDE(点O与点D是对应点),补全图形,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.22.(5分)已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.23.(6分)如图,AB为⊙O的直径,C、D为圆上的两点,OC∥BD,弦AD与BC,OC 分别交于E、F.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径.24.(6分)“垃圾分类就是新时尚”.树立正确的垃圾分类观念,促进青少年养成良好的文明习惯,对于增强公共意识,提升文明素质具有重要意义.为了调查学生对垃圾分类知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制,单位:分),并对数据(成绩)进行了整理、描述和分析,下面给出了部分信息.a.甲、乙两校学生样本成绩频数分布表及扇形统计图如图:甲校学生样本成绩频数分布表(表1)成绩m(分)频数频率50≤m<60a0.1060≤m<70b c70≤m<8040.2080≤m<9070.3590≤m≤1002d合计20 1.0b.甲、乙两校学生样本成绩的平均分、中位数、众数、方差如表所示:(表2)学校平均分中位数众数方差甲76.77789150.2乙78.180n135.3其中,乙校20名学生样本成绩的数据如下:54726291876988798062808493678787907168 91请根据所给信息,解答下列问题:(1)表1中c=;表2中的众数n=;(2)乙校学生样本成绩扇形统计图中,70≤m<80这一组成绩所在扇形的圆心角度数是度;(3)在此次测试中,某学生的成绩是79分,在他所属学校排在前10名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是;(4)若乙校1000名学生都参加此次测试,成绩80分及以上为优秀,请估计乙校成绩优秀的学生约为人.25.(6分)在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE ⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm 6.9 5.3 4.0 3.3 4.56(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.26.(6分)已知二次函数y=x2﹣2mx+2m2﹣1(m为常数).(1)若该函数图象与x轴只有一个公共点,求m的值.(2)将该函数图象沿过其顶点且平行于x轴的直线翻折,得到新函数图象.①则新函数的表达式为,并证明新函数图象始终经过一个定点;②已知点A(﹣2,﹣1)、B(2,﹣1),若新函数图象与线段AB只有一个公共点,请直接写出m的取值范围.27.(7分)在锐角△ABC中,AB=AC,AD为BC边上的高,E为AC中点.(1)如图1,过点C作CF⊥AB于F点,连接EF.若∠BAD=20°,求∠AFE的度数;(2)若M为线段BD上的动点(点M与点D不重合),过点C作C⊥A于N点,射线EN,AB交于P点.①依题意将图2补全;②在点M运动的过程中,猜想∠A E与∠AD满足的数量关系,并证明.28.(7分)如果的两个端点M,N分别在∠AOB的两边上(不与点O重合),并且除端点外的所有点都在∠AOB的内部,则称是∠AOB的“连角弧”.(1)图1中,∠AOB是直角,是以O为圆心,半径为1的“连角弧”.①图中MN的长是,并在图中再作一条以M,N为端点、长度相同的“连角弧”;②以M,N为端点,弧长最长的“连角弧”的长度是.(2)如图2,在平面直角坐标系xOy中,点M(1,),点N(t,0)在x轴正半轴上,若是半圆,也是∠AOB的“连角弧”求t的取值范围.(3)如图3,已知点M,N分别在射线OA,OB上,ON=4,是∠AOB的“连角弧”,且所在圆的半径为1,直接写出∠AOB的取值范围.2020年北京十三中分校中考数学统练试卷(6月份)参考答案与试题解析一、选择题(本大题共8小题,共16分)1.(2分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×108【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:B.2.(2分)关于代数式x+2的值,下列说法一定正确的是()A.比2大B.比2小C.比x大D.比x小【分析】根据不等式的性质即可求出答案.【解答】解:由于2>0,∴x+2>x,故选:C.3.(2分)如图是由5个相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看共有三层,底层左边是一个小正方形,中层是两个小正方形,上层右边是一个小正方形.故选:D.4.(2分)将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是()A.43°B.47°C.30°D.60°【分析】如图,延长BC交刻度尺的一边于D点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt△CDE中,利用内角和定理求解.【解答】解:如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∠CED=∠α=43°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣43°=47°,故选:B.5.(2分)将抛物线y=x2平移得到抛物线y=(x+3)2,则这个平移过程正确的是()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位【分析】先利用顶点式得到两抛物线的顶点坐标,然后通过点的平移情况判断抛物线平移的情况.【解答】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(﹣3,0),∵点(0,0)向左平移3个单位可得到(﹣3,0),∴将抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选:A.6.(2分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=4,AF=6,则AC的长为()A.4B.6C.2D.【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=6,得出AE=CE=6,BC=BE+CE=10,由勾股定理求出AB的长,再由勾股定理求出AC即可.【解答】解:如图,连接AE,设EF与AC交点为O,∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=6,∴AE=CE=6,BC=BE+CE=4+6=10,∴AB===2,∴AC===2,故选:C.7.(2分)下列关于函数=2﹣6+12的四个命题:①当=0时,y有最小值12;②为任意实数,=3+时的函数值大于=3﹣时的函数值;③若函数图象过点(,0)和(,0+1),其中>0,>0,则<;④若>3,且是整数,当≤≤+1时,的整数值有(2﹣4)个.其中真命题的序号是()A.①B.②C.③D.④【分析】①由对称轴为x=3,可求y的最小值是3;②由x=3+n与x=3﹣n关于x=3对称,可得两点对应的函数值相等;③由图象上点与对称轴距离之间的关系,采用举反例的方法,判断a、b的关系;④求出x=n+1与x=n时对应的函数值的差即可判断函数值的整数点个数.【解答】解:①y=x2﹣6x+12=(x﹣3)2+3,∴当x=3时,y有最小值3,∴①不正确;②函数的对称轴为x=3,x=3+n与x=3﹣n关于x=3对称,∴x=3+n时的函数值等于x=3﹣n时的函数值,∴②不正确;③函数的对称轴为x=3,∵a>0,b>0,当0<b<3时,a>3时,只需点(a,y0)到x=3的距离小于点(b,y0+1)到x=3的距离,也可满足题意,此时a>b,∴③不正确;④当x=n+1时y=(n﹣2)2+3,当x=n时,y=(n﹣3)2+3,∴(n﹣2)2+3﹣[(n﹣3)2+3]=2n﹣5,∵n>3,且n是整数,∴n≤x≤n+1时,y的整数值有(2n﹣4)个,∴④正确;故选:C.8.(2分)“实际平均续航里程”是指电动汽车的行驶总里程与充电次数的比值,是反映电动汽车性能的重要指标.某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,按年龄不超过40岁和年龄在40岁以上将客户分为A,B两组,从A,B组各抽取10位客户的电动汽车的“实际平均续航里程”数据整理成图,其中“⊙”表示A组的客户,“*”表示B组的客户.下列推断不正确的是()A.A组客户的电动汽车的“实际平均续航里程”的最大值低于B组B.A组客户的电动汽车的“实际平均续航里程”的方差低于B组C.A组客户的电动汽车的“实际平均续航里程”的平均值低于B组D.这20位客户的电动汽车的“实际平均续航里程”的中位数落在B组【分析】结合图象,依次判断,利用排除法可求解.【解答】解:由图象可得:A组的客户的电动汽车的“实际平均续航里程”的最大值在350左右,B 组客户的电动汽车的“实际平均续航里程”的最大值在450左右,故A选项不合题意;由图象可得:A组客户的电动汽车的“实际平均续航里程”的数据波动比B组客户的电动汽车的“实际平均续航里程”的数据波动小,即A组客户的电动汽车的“实际平均续航里程”的方差比B组客户的电动汽车的“实际平均续航里程”的方差小,故B选项不合题意;由图象可得:这20位客户的电动汽车的“实际平均续航里程”的从大到小排序,第10位,第11位都在B组,故选项D不合题意;故选项C符合题意,故选:C.二、填空题(本大题共8小题,共16分)9.(2分)如果分式的值是0,那么x的值是0【分析】根据分式为0的条件得到方程,解方程得到答案.【解答】解:由题意得,x=0,故答案是:0.10.(2分)因式分解:﹣8ax2+16axy﹣8ay2=﹣8a(x﹣y)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.11.(2分)如图,AB是⊙O的直径,CD是弦,若BC=1,AC=3,则sin∠ADC的值为.【分析】根据AB是⊙O的直径,求出∠ACB=90°,根据勾股定理,求出AB的长,根据∠ADC=∠ABC,运用锐角三角函数的概念求出答案.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,BC=1,AC=3,由勾股定理得,AB=,∠ADC=∠ABC,∴sin∠ADC=sin∠ABC===,故答案为:.12.(2分)如图,袋子里装有4个球,大小形状完全一样,上面分别标有,0,﹣,,从中任意取2个球.则取到的2个球上的数字都是有理数的概率为:.【分析】根据题意画出树状图得出所有等可能的结果数和取到的2个球上的数字都是有理数的情况数,然后根据概率公式即可求得答案.【解答】解:根据题意画树状图如下:共有12种等可能的结果数,取到的2个球上的数字都是有理数的有2钟,则取到的2个球上的数字都是有理数的概率为=;故答案为:.13.(2分)如图,一人乘雪橇沿坡比1:的斜坡笔直滑下72米,那么他下降的高度为36米.【分析】因为其坡比为1:,则坡角为30度,然后运用正弦函数解答.【解答】解:因为坡度比为1:,即tanα=,∴α=30°.则其下降的高度=72×sin30°=36(米).14.(2分)新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控.甲、乙两个工厂生产同一种防护口罩,甲厂每天比乙厂多生产口罩5万只,甲厂生产该种口罩40万只所用时间与乙厂生产该种口罩15万只所用时间相同,若设甲厂每天生产口罩x万只,根据题意可列出方程:.【分析】设乙厂每天生产该种口罩x万只,则甲厂每天生产该种口罩(x+5)万只,根据工作时间=工作总量÷工作效率结合甲厂生产该种口罩40万只所用时间与乙厂生产该种口罩15万只所用时间相同,即可得出关于x的分式方程.【解答】解:设乙厂每天生产该种口罩x万只,则甲厂每天生产该种口罩(x+5)万只,依题意,得:,故答案为:.15.(2分)在平面直角坐标系xOy中,直线l1:y=k1x+b过A(0,﹣3),B(5,2),直线l2:y=k2x+2.当x≥4时,不等式k1x+b>k2x+2恒成立,写出一个满足题意的k2的值为﹣1.【分析】把A(0,﹣3),B(5,2)代入y=k1x+b,利用待定系数法即可求出直线l1的表达式,根据题意,把x=4代入k1x+b>k2x+2,求出k2的范围,进而求解即可.【解答】解:∵直线l1:y=k1x+b过A(0,﹣3),B(5,2),∴,解得∴直线l1的表达式为y=x﹣3,∵当x≥4时,不等式x﹣3>k2x+2恒成立,∴4﹣3>4k2+2,∴k2<﹣,∴取k2=﹣1满足题意,故答案为﹣1.16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=14.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.甲、乙、丙的思路和结果均正确的是甲和乙.【分析】根据矩形长为12宽为6,可得矩形的对角线长为6,由矩形在该正方形的内部及边界通过平移或旋转的方式,自由地从横放变换到竖放,可得该正方形的边长不小于6,进而可得正方形边长的最小整数n的值.【解答】解:∵矩形长为12宽为6,∴矩形的对角线长为:=6,∵矩形在该正方形的内部及边界通过平移或旋转的方式,自由地从横放变换到竖放,∴该正方形的边长不小于6,∵13<6<15,∴该正方形边长的最小正数n为14.故甲和乙的思路正确,长方形对角线最长,只要对角线能通过就可以,n=14;故答案为:甲和乙.三、解答题(本大题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.(5分)计算:()﹣1﹣(2﹣)0﹣2sin60°+|﹣2|.【分析】首先计算乘方和乘法,然后从左向右依次计算,求出算式()﹣1﹣(2﹣)0﹣2sin60°+|﹣2|的值是多少即可.【解答】解:()﹣1﹣(2﹣)0﹣2sin60°+|﹣2|=2﹣1﹣2×+2﹣=1﹣+2﹣=3﹣218.(5分)解方程:.【分析】观察可得最简公分母是2(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:去分母得,2x+2﹣(x﹣3)=6x,∴x+5=6x,解得,x=1经检验:x=1是原方程的解.19.(5分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.20.(5分)作图题:如图在矩形ABCD中,已知AD=10,AB=6,用直尺和圆规在AD上找一点E(保留作图痕迹),使EC平分∠BED,并求出tan∠BEC的值.【分析】以B为圆心,BC长为半径画弧交AD于E,连接BE,CE,则EC平分∠BED,再根据勾股定理进行计算,即可得到DE的长,进而得出tan∠BEC的值.【解答】解:如图所示,点E即为所求,由题可得,BE=BC=AD=10,∠A=90°,AB=6,∴Rt△ABE中,AE===8,∴DE=AD﹣AE=10﹣8=2,∴Rt△CDE中,tan∠DEC===3,∵CE平分∠BED,∴∠BEC=∠DEC,∴tan∠BEC=3.21.(5分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=(x≠0)的图象上.(1)求反比例函数y=(x≠0)的解析式和点B的坐标;(2)若将△BOA绕点B按逆时针方向旋转60°得到△BDE(点O与点D是对应点),补全图形,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.【分析】(1)将点A(,1)代入y=,利用待定系数法即可求出反比例函数的表达式;(2)先解△OAB,得出∠ABO=30°,再根据旋转的性质求出E点坐标为(﹣,﹣1),即可求解.【解答】解:(1)∵点A(,1)在反比例函数y=的图象上,∴k=×1=.∵A(,1),∴OA=2,由OA⊥OB,AB⊥x轴,易证△OC∽△ABO,∴=,即=,∴AB=4,∴B(,﹣3);(2)∵OB==2,∴sin∠ABO==,∴∠ABO=30°.∵将△BOA绕点B按逆时针方向旋转60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=2,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°.又BD﹣OC=2﹣=,BC﹣DE=4﹣1﹣2=1,∴E(﹣,﹣1),∵﹣×(﹣1)=,∴点E在该反比例函数的图象上.22.(5分)已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.【分析】(1)根据平行线的判定定理得到AB∥EC,推出AB=EC,于是得到结论;(2)根据勾股定理得到,求得AB=2,根据平行四边形的面积公式即可得到结论.【解答】(1)证明:∵∠BAC=∠ACD=90°,∴AB∥EC,∵点E是CD的中点,∴,∵,∴AB=EC,∴四边形ABCE是平行四边形;(2)解:∵∠ACD=90°,AC=4,,∴,∵,∴AB=2,=AB•AC=2×4=8.∴S平行四边形ABCE23.(6分)如图,AB为⊙O的直径,C、D为圆上的两点,OC∥BD,弦AD与BC,OC 分别交于E、F.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径.【分析】(1)根据圆周角定理得到∠ADB=90°,利用平行线的性质得到∠AFO=∠ADB =90°,然后根据垂径定理得到结论;(2)连接AC,如图,利用=得到∠CAD=∠ABC,再证明△ACE∽△BCA,利用相似比计算出AC=2,接着根据圆周角定理得到∠ACB=90°,然后利用勾股定理计算出AB,从而得到⊙O的半径;【解答】(1)证明:∵AB是圆的直径,∴∠ADB=90°,∵OC∥BD,∴∠AFO=∠ADB=90°,∴OC⊥AD∴=.(2)解:连接AC,如图,∵=,∴∠CAD=∠ABC,∵∠ECA=∠ACB,∴△ACE∽△BCA,∴,∴AC2=CE•CB,即AC2=1×(1+3),∴AC=2,∵AB是圆的直径,∴∠ACB=90°,∴AB===2,∴⊙O的半径为.24.(6分)“垃圾分类就是新时尚”.树立正确的垃圾分类观念,促进青少年养成良好的文明习惯,对于增强公共意识,提升文明素质具有重要意义.为了调查学生对垃圾分类知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制,单位:分),并对数据(成绩)进行了整理、描述和分析,下面给出了部分信息.a.甲、乙两校学生样本成绩频数分布表及扇形统计图如图:甲校学生样本成绩频数分布表(表1)成绩m(分)频数频率50≤m<60a0.1060≤m<70b c70≤m<8040.2080≤m<9070.3590≤m≤1002d合计20 1.0b.甲、乙两校学生样本成绩的平均分、中位数、众数、方差如表所示:(表2)学校平均分中位数众数方差甲76.77789150.2乙78.180n135.3其中,乙校20名学生样本成绩的数据如下:54726291876988798062808493678787907168 91请根据所给信息,解答下列问题:(1)表1中c=0.25;表2中的众数n=87;(2)乙校学生样本成绩扇形统计图中,70≤m<80这一组成绩所在扇形的圆心角度数是54度;(3)在此次测试中,某学生的成绩是79分,在他所属学校排在前10名,由表中数据可知该学生是甲校的学生(填“甲”或“乙”),理由是该学生的成绩是79分,略高于甲校的样本成绩数据的中位数77分,符合该生的成绩在甲校排名是前10名的要求;(4)若乙校1000名学生都参加此次测试,成绩80分及以上为优秀,请估计乙校成绩优秀的学生约为550人.【分析】(1)由表格中数据可知,90≤m<100的频数为2,频率d=2÷20=0.1,再根据频率之和为1,求出c即可;根据众数的意义可求出乙班的众数n,(2)扇形统计图中,70≤m<80这一组占整体的1﹣5%﹣20%﹣35%﹣25%=15%,因此所在扇形的圆心角度数为360°的15%;(3)根据中位数的意义,79分处在班级成绩的中位数以上,可得出答案;(4)样本估计总体,样本中优秀占(35%+20%),因此总体1000人的55%是优秀的.【解答】解:(1)d=2÷20=0.1,c=1﹣0.1﹣0.1﹣0.2﹣0.35=0.25,乙班成绩出现次数最多的数是87分,共出现3次,因此乙班的众数为87,故答案为:0.25,87;(2)360°×(1﹣5%﹣20%﹣35%﹣25%)=360°×15%=54°,故答案为:54;(3)甲,因为该学生的成绩是79分,略高于甲校的样本成绩数据的中位数77分,符合该生的成绩在甲校排名是前10名的要求;(4)1000×(35%+20%)=550(人),故答案为:550.25.(6分)在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE ⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm 6.9 5.3 4.0 3.3 3.5 4.56(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 3.2 cm.【分析】根据题意作图测量即可.【解答】解:(1)60(2)取点、画图、测量,得到数据为3.5故答案为:3.5(3)由数据得(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE =EF.即y=x所以,当(2)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.2.26.(6分)已知二次函数y=x2﹣2mx+2m2﹣1(m为常数).(1)若该函数图象与x轴只有一个公共点,求m的值.(2)将该函数图象沿过其顶点且平行于x轴的直线翻折,得到新函数图象.①则新函数的表达式为y=﹣x2+2mx﹣1,并证明新函数图象始终经过一个定点;②已知点A(﹣2,﹣1)、B(2,﹣1),若新函数图象与线段AB只有一个公共点,请直接写出m的取值范围.【分析】(1)△=(﹣2m)2﹣4(2m2﹣1)=0,即可求解;(2)①翻折后的抛物线的解析式的顶点不变,开口相反,可得新函数的表达式,当x=0时,y=﹣1,即可求解;②当m>0时,如上图实线部分,新函数图象与线段AB只有一个公共点,则函数不过点B,即m>1;当m<0时,同理可得:m<﹣1,即可求解.【解答】解:(1)∵△=(﹣2m)2﹣4(2m2﹣1)=0,∴m=±1,即函数图象与x轴只有一个公共点时,m的值为±1;。
初升高数学衔接测试题

初升高数学衔接测试题初升高数学衔接班测试题(满分:100分,时间:120分钟)一.选择题(每小题3分)21.若 $2x-5<x^2$,则 $4x-4x^2+1+2x-2$ 等于()。
A。
$4x-5$,B。
$-3$,C。
$3$,D。
$5-4x$22.已知关于 $x$ 的不等式 $2x^2+bx-c>x$ 的解集为$\{x|x3\}$,则关于 $x$ 的不等式 $bx^2+cx+4\geq 0$ 的解集为()。
A。
$\{x|x\leq -2$ 或 $x\geq 2\}$,B。
$\{x|x\leq -1$ 或$x\geq 2\}$,C。
$\{x|-1\leq x\leq 2\}$,D。
$\{x|x\leq -2$ 或$x\geq 2\}$3.化简 $\dfrac{1}{2}-\dfrac{1}{2+1}+\dfrac{2}{3+1}$ 的结果为()A。
$3+\dfrac{2}{3}$,B。
$3-\dfrac{2}{3}$,C。
$2+\dfrac{2}{3}$,D。
$3+\dfrac{2}{2}$4.若 $0<a<1$,则不等式 $(x-a)(x-a^{-1})<0$ 的解为()A。
$\{x|aa^{-1}\}$,C。
$\{x|xa\}$,D。
$\{x|a<x<a^{-1}\}$5.方程 $x^2-4|x|+3=0$ 的解是()A。
$x=\pm 1$ 或 $x=\pm 3$,B。
$x=1$ 和 $x=3$,C。
$x=-1$ 或 $x=-3$,D。
无实数根。
6.已知 $(a+b)=7$,$(a-b)=3$,则 $a+b$ 与 $ab$ 的值分别是()A。
$4,1$,B。
$2,3$,C。
$5,1$,D。
$10,2$7.已知 $y=2x$ 的图像是抛物线,若抛物线不动,把$x$ 轴,$y$ 轴分别向上,向右平移 $2$ 个单位,那么在新坐标系下抛物线的解析式是()A。
初升高衔接数学题加答案

初升高衔接数学题加答案一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不规则三角形答案:B2. 已知x^2 - 5x + 6 = 0,求x的值。
A. x = 2B. x = 3C. x = -2D. x = -3答案:B3. 一个数列的前三项为1,2,3,若每一项都等于前一项的平方,那么第四项是:A. 4B. 8C. 9D. 16答案:C4. 一个圆的半径为r,圆心到圆上任意一点的距离都等于r,这个圆的面积是:A. πr^2B. 2πrC. r^2D. 2r^2答案:A5. 若函数f(x) = 2x - 3,求f(5)的值。
A. 7B. 4C. 2D. 1答案:A6. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的结果。
A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 2, 3, 4, 5}答案:B7. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. -8答案:A8. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A9. 一个二次方程x^2 + 2x + 1 = 0的解是:A. x = -1B. x = 1C. x = -2D. x = 2答案:A10. 若a和b互为相反数,且a + b = 0,那么a的值是:A. 0B. 1C. -1D. 无法确定答案:D二、填空题(每题2分,共20分)1. 若一个数的立方等于-27,则这个数是______。
答案:-32. 一个数的绝对值是5,则这个数可以是______或______。
答案:5 或 -53. 一个直角三角形的斜边长为5,若一条直角边长为3,则另一条直角边长为______。
答案:44. 若a = 3b,且b ≠ 0,则a和b的比例是______。
初升高衔接数学测试(附解答)

初升高衔接数学测试(附解答)初升高衔接数学测试(附解答)一.填空题。
(每题3分,共30分)1. 已知函数f(x) = x^2 - 4x + 3,则f(1) = ______。
解答:f(1) = 1^2 - 4 × 1 + 3 = 1 - 4 + 3 = 0。
2. 设x = 2,则函数f(x) =x^3 - 3|x|的值为______。
解答:f(2) = 2^3 - 3 × 2 = 8 - 6 = 2。
3. 设一次函数y = kx + 3的图象过点(2, 7),则k的值为______。
解答:代入已知点得7 = k × 2 + 3,整理得k = (7 - 3)/2 = 4/2 = 2。
4. 已知x^2 + k = (x - 2)(x + 3),则k的值为______。
解答:展开右侧得x^2 + k = x^2 + x - 6,比较系数得k = -6。
5. 一个三位数的1/10是5,将这个三位数加上55后得到一个四位数,这个四位数是________。
解答:设三位数为xyz,其中x、y、z表示个位、十位和百位数字。
根据题意得到两个方程:(1)1/10 * 100 * x + 1/10 *10 * y + 1/10 * z = 5;(2)100 * x + 10 * y + z + 55 = 1000 * x+ 100 * y + 10 * z。
计算得x = 4,y = 4,z = 5,所以四位数为4445。
6. 一根绳子长45米,把它剪成3段,第一段比第二段短3米,第二段比第三段短2米,则第一段的长度是________。
解答:设第一段的长度为x,根据题意得到两个方程:(1)x + (x + 3) + (x + 3 + 2) = 45;(2)x + 5 = x + 3。
解得x = 13,所以第一段的长度是13米。
7. 甲、乙两人连续投掷硬币,甲方先开始,投得正面得1分,反面得0分;乙方投得正面得2分,反面得0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初高中天衣无缝衔接教程(2020版)专题13初高中衔接综合测试A 卷1.某农业大镇2018年葡萄总产量为1.2万吨,预计2020年葡萄总产量达到1.6万吨,求葡萄总产量的年平均增长率,设葡萄总产量的年平均增长率为x ,则可列方程为( )A .2 1. 2(1) 1.6x +=B .2 1. 6(1) 1.2x -=C . 1. 2(12) 1.6x +=D .()21.21 1.6x +=【答案】A【解析】解:由题意知,葡萄总产量的年平均增长率为x ,根据“2018年葡萄总产量为1.2万吨,预计2020年葡萄总产量达到1.6万吨”可得:21.2(1) 1.6x +=. 故选:A . 2.下列四个选项中,可以表示2111x x x -++的计算结果的选项是( ) A .21x -B .1x -C .()21x -D .()211x x -+【答案】B【解析】 解:2211(1)(1)11111x x x x x x x x x -+--===-++++ 故选:B.3.若分式242x x --的值为0,则x 的值为( ) A .±2B .2C .﹣2D .4【答案】C【解析】解:由题意可得:240x -=且20x -≠,解得:2x =-故选C.4.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD 沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D.13 2【答案】B【解析】作CH⊥AB于H,如图.∵菱形ABCD的边AB=8,∠B=60°,∴△ABC为等边三角形,∴CH=32AB=43,AH=BH=4.∵PB=3,∴HP=1.在Rt△CHP中,CP=22(43)1=7.∵梯形APQD沿直线PQ折叠,A的对应点A′,∴点A′在以P点为圆心,P A为半径的弧上,∴当点A′在PC上时,CA′的值最小,∴∠APQ=∠CPQ,而CD∥AB,∴∠APQ=∠CQP,∴∠CQP=∠CPQ,∴CQ=CP=7.故选B.本题考查了菱形的性质.解答本题的关键是确定A ′在PC 上时CA ′的长度最小.5.如图,在ABC ∆中,D ,E 分别是BC ,AC 的中点,AD 与BE 交于点G .若6BG =,则EG =( )A .4.5B .4C .3.5D .3【答案】D【解析】解:∵D ,E 分别是BC ,AC 的中点,∴点G 是△ABC 的重心,∴26BG EG ==,∴3EG =,故选D .6.如图,在ABCD 中,30,,2,DBC CD BD CD AC BD ∠=⊥=、交于点O ,则AC 的长是()A .4B .7C .23D .5【答案】B【解析】解:∵30,,2,DBC CD BD CD ∠=⊥=∴BC=2CD=4∴224223+=∵ABCD∴OD=12, AC=2OC∴=∴.故答案为B .7.△ABC 是直角三角形,则下列选项一定错误的是( )A .∠A -∠B=∠CB .∠A=60°,∠B=40°C .∠A+∠B=∠CD .∠A :∠B :∠C=1:1:2【答案】B【解析】解:A 、∵∠A ﹣∠B =∠C ,∴∠A =∠B +∠C ,∵∠A +∠B +∠C =180°,∴2∠A =180°,∴∠A =90°,∴△ABC 是直角三角形,故A 选项是正确的;B 、∵∠A =60°,∠B =40°,∴∠C =180°﹣∠A ﹣∠B=180°﹣60°﹣40°=80°,∴△ABC 是锐角三角形,故B 选项是错误的;C 、∵∠A +∠B =∠C ,∠A +∠B +∠C =180°,∴2∠C =180°,∴∠C =90°,∴△ABC 是直角三角形,故C 选项是正确的;D 、∵∠A :∠B :∠C =1:1:2,∴∠A +∠B =∠C ,∵∠A +∠B +∠C =180°,∴2∠C =180°,∴∠C=90°,∴△ABC是直角三角形,故D选项是正确的;故选:B.8.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C.AB CBBD CD=D.AD ABAB AC=【答案】C【解析】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D 正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.9.如图,在平行四边形ABCD中,E为CD上一点,DE∶EC=2∶3,连接AE、BD,且AE、BD交于点F,则DF∶BF等于()A.2∶5 B.2∶3 C.3∶5 D.3∶2【答案】A【解析】解:∵四边形ABCD为平行四边形,∴AB∥CD,且AB=CD.∵DE ∶EC =2∶3, ∴DE DC =DE DE EC +=25=DE BA. ∵AB ∥CD ,∴DEF BAF △△∽,∴DF BF =DE BA =25. 故选:A .10.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠ 【答案】A【解析】当a=5时,原方程变形为-4x-1=0,解得x=-14; 当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根, 所以a 的取值范围为a≥1.故选A .11.如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC 、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE , 连结 DE , 则 DE 长的最小值是( )A 2B .2C .22D .4【答案】B【解析】 解:设 AC=x ,BC=4﹣x ,∵△CDA ,△BCE 均为等腰直角三角形,∴CD=22x ,CE=22(4﹣x), ∵∠ACD=45°,∠BCE=45°,∴∠DCE=90°,∴DE²=CD²+CE²=()()2222114482422x x x x x +-=-+=-+ ∵根据二次函数的最值,∴当 x 取 2 时 ,DE 取最小值 ,最小值为:2.故答案为B.12.如图,抛物线2y ax bx c =++(,,a b c 是常数,0a ≠)与x 轴交于,A B 两点,顶点()P m n ,给出下列结论:①20a c +<;②若122311,,,,,222y y y ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在抛物线上,则123y y y >>;③关于x 的方程20ax bx k ++=有实数解,则k c n >-;④当1n a =-时,ABP ∆为等腰直角三角形,其中正确的结论是( )A .①②B .①③C .②③D .②④ 【答案】D【解析】解:∵-2b a <12,a >0, ∴a >-b ,∴2a=a +a >a -b∵x=-1时,y >0,∴a-b+c >0,∴2a+c >a-b+c >0,故①错误;若13,2y ⎛⎫- ⎪⎝⎭,21,2y ⎛⎫- ⎪⎝⎭,31,2y ⎛⎫ ⎪⎝⎭在抛物线上,由图象法可知,y1>y2>y3;故②正确;∵抛物线与直线y=t有交点时,方程ax2+bx+c=t有解,t≥n,∴ax2+bx+c-t=0有实数解要使得ax2+bx+k=0有实数解,则k=c-t≤c-n;故③错误;设抛物线的对称轴交x轴于H.∵2414ac ba a-=-,∴b2-4ac=4,∴x=22ba-±,∴|x1-x2|=2a,∴AB=2PH,∵BH=AH,∴PH=BH=AH,∴PAB△是直角三角形,∵PA=PB,∴PAB△是等腰直角三角形,故④正确.故选D.13.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx =(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A .43B .12C .3D .6【答案】C【解析】 解:作AD ⊥x 轴于D ,MN ⊥x 轴于N ,∵四边形OABC 是平行四边形, ∴OA =BC ,AB =OC ,OA ∥BC ,∴∠BCN =∠AOC =60°.设OA =a ,由▱OABC 的周长为7,∴OC =72-a , ∵∠AOC =60°,13,2OD a AD ∴==, 13,22A a a ⎛⎫∴ ⎪⎝⎭, ∵M 是BC 的中点,BC =OA =a ,∴CM =12a , 又∠MCN =60°, 13,44CN a MN a ∴==, ∴ON =OC +CN =71732424a a a -+=-,73,243M a a ⎛⎫∴- ⎪⎝⎭, ∵点A ,M 都在反比例函数k y x=的图象上, 3137322244a a a a ⎛⎫∴⋅=-⋅ ⎪⎝⎭,解得a =2, (1,3)A ∴,133k ∴=⨯=.故选:C .14.如图,等边三角形ABC 边长是定值,点O 是它的外心,过点O 任意作一条直线分别交AB ,BC 于点D ,E ,将△BDE 沿直线DE 折叠,得到△B′DE ,若B′D ,B′E 分别交AC 于点F ,G ,连接OF ,OG ,则下列判断错误的是( )A .△ADF ≌△CGEB .△B′FG 的周长是一个定值C .四边形FOEC 的面积是一个定值D .四边形OGB'F 的面积是一个定值【答案】D【解析】A 、连接OA 、OC ,∵点O 是等边三角形ABC 的外心,∴AO平分∠BAC,∴点O到AB、AC的距离相等,由折叠得:DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=12(∠FAD+∠ADF),由折叠得:∠BDE=∠ODF=12(∠DAF+∠AFD),∴∠OFD+∠ODF=12(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△OAF=S△AOC=13S△ABC(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+△ADF=S四边形OFAD=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC-S△OFG,过O 作OH ⊥AC 于H ,∴S △OFG =12•FG•OH , 由于OH 是定值,FG 变化,故△OFG 的面积变化,从而四边形OGB'F 的面积也变化,故选项D 不一定正确;故选D .15.已知抛物线2231y ax ax a =-++()0a ≠图象上有两点()11,A x y 、()22,B x y ,当121x x <<-时,有12y y <;当112x -≤≤时,1y 最小值是6.则a 的值为( )A .1-B .5-C .1或5-D .1-或5-【答案】B【解析】解:∵2231y ax ax a =-++ ∴2239124y a x a a ⎛⎫=--++ ⎪⎝⎭,即该抛物线的对称轴为x=32 ∵121x x <<-时,12y y <∴a <0 ∵x=32在112x -≤≤范围内, ∴当x=32时有最大值,x=-1时有最小值 ∴()()221311=6---++a a a整理得2450a a +-=,解得a=1(舍去)或a=-5故答案为B .16.若α、β为方程2x 2-5x-1=0的两个实数根,则2235++ααββ的值为( )A .-13B .12C .14D .15 【答案】B【解析】根据一元二次方程的根与系数的关系,可知2α2﹣5α﹣1=0,α+β=-52b a =,α·β=12c a =-,因此可得2α2=5α+1,代入2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1=5×52+3×(-12)+1=12. 故选B.17.写出一个满足735a <<的整数a 的值为________.【答案】3、4或5【解析】∵2<7<3,5<35<6,∴2<a<6,∴整数a 的值为3、4或5,故答案为:3、4或5. 18.在矩形ABCD 中,8AB =,6BC =.点O 为对角线AC 上一点(不与A 重合),⊙O 是以点O 为圆心,AO 为半径的圆.当⊙O 与矩形各边的交点个数为5个时,半径OA 的范围是________.【答案】154049OA << 【解析】如图所示,⊙2O 与矩形有4个交点,当2O 再往点C 运动一点就会与矩形有5个交点,⊙3O 与矩形有6个交点,当3O 往点A 运动一点就与矩形有5个交点,所以,⊙O 在⊙2O 与⊙3O 之间时与矩形有5个交点,过点2O 作2O E CD ⊥,过点3O 作3O F BC ⊥,设⊙O 的半径为r ,∵在Rt △ABC 中,8AB =,6BC =,∴AC=10∵2O E AD ∥ ∴22O C O E AC AD =, ∴10106r r -=, ∴154r =, ∵3O F AB ∥,∴33O C O F AC AB= ∴10108r r -=, 409r =, ∴154049OA <<, 故答案为:154049OA <<. 19.如图,一艘船由A 港沿北偏东65︒方向航行30km 至B 港,然后再沿北偏西40︒方向航行至C 港,C 港在A 港北偏东20︒方向,则A ,C 两港之间的距离为______km .【答案】15265【解析】解:根据题意得,652045CAB ∠=︒-︒=︒,402060ACB ∠=︒+︒=︒,30AB =,过B 作BE AC ⊥于E ,90AEB CEB ∴∠=∠=︒,在Rt ABE ∆中,45ABE ∠=︒,30AB =,2152AE BE AB ∴===在Rt CBE ∆中,60ACB ∠=︒, 356CE BE ∴==, 15256AC AE CE ∴=+=+,A ∴,C 两港之间的距离为(15256)km +, 故答案为:15265+.20.一透明的敞口正方体容器装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α,(CBE α∠=,如图1所示),此时液面刚好过棱CD ,并与棱'BB 交于点Q ,此时液体的形状为直三棱柱,三视图及尺寸如图2所示,当正方体平放(正方形ABCD 在桌面上)时,液体的深度是__________dm .【答案】1.5【解析】解:∵由图知:CQ ∥BE ,BQ=4,CQ=5,根据勾股定理得:22543BQ =-=(dm ),液体的体积为:1344=242⨯⨯⨯(dm 3), 液体深度为:24÷(4×4)=1.5(dm ),故答案为:1.521.已知ABC 的周长为1,连接其三边中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,以此类推,则第2019个三角形周长为______.【答案】201812【解析】 由题意可得,第1个三角形的周长是1,第2个三角形的周长是12, 第3个三角形的周长是2111222⨯=, 第4个三角形的周长是23111222⨯=, 则第2019个三角形的周长是201812, 故答案为:201812. 22.若关于x 的方程(x ﹣4)(x 2﹣6x +m )=0的三个根恰好可以组成某直角三角形的三边长,则m 的值为_____. 【答案】659【解析】设某直角三角形的三边长分别为a 、b 、c ,依题意可得x ﹣4=0或x 2﹣6x +m =0,∴x =4,x 2﹣6x +m =0,设x 2﹣6x +m =0的两根为a 、b ,∴(﹣6)2﹣4m >0,m <9,根据根与系数关系,得a +b =6,ab =m ,则c =4,①c为斜边时,a2+b2=c2,(a+b)2﹣2ab=c2∴62﹣2m=42,m=10(不符合题意,舍去);②a为斜边时,c2+b2=a2,42+(6﹣a)2=a2,a=133,b=6﹣a=53,∴m=ab=13353=659故答案为659.23.如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C1 ,它与x轴交于两点O,A;将C1绕点A旋转180°得到C2,交x轴于A1;将C2绕点A1旋转180°得到C3,交x轴于点A2......如此进行下去,直至得到C2018,若点P(4035,m)在第2018段抛物线上,则m的值为________.【答案】-1【解析】由抛物线C1:y=-x(x-2),令y=0,∴-x(x-2)=0,解得∴与x轴的交点为O(0,0),A(2,0).抛物线C2的开口向上,且与x轴的交点为∴A(2,0)和A1(4,0),则抛物线C2:y= (x-2)(x-4);抛物线C3的开口向下,且与x轴的交点为∴A1(4,0)和A2(6,0),则抛物线C3:y= -(x-4)(x-6);抛物线C4的开口向上,且与x轴的交点为∴A2(6,0)和A3(8,0),则抛物线C4:y=(x-6)(x-8);同理:抛物线C2018的开口向上,且与x轴的交点为∴A2016(4034,0)和A2017(4036,0),则抛物线C2018:y=(x-4034)(x-4036);当x=4035时,y= 1×(-1)-1.故答案为:-1.24.如图,已知二次函数4(2)(4)9y x x =-+-的图象与x 轴交于A 、B (点B 在点A 的右侧)两点,顶点为C ,点P 是y 轴上一点,且使得PB PC -最大,则PB PC -的最大值为_________.【答案】5【解析】解:由题意可知:A 、B 、C 的坐标分别为(-2,0)、(4,0)、(1,4)设P 点坐标为(0,p )如图,当P 、C 、B 不在同一条直线上,根据三角形的三边关系有:PC-PB <BC,∴当P 、C 、B 在同一条直线上,PC-PB=BC,即此时PC-PB 有最大值BC∴BC=()2241(04)5-+-=故答案为5.25.如图,AB 为O 的直径,BC ,AD 为O 的切线,直线OC 交DA 延长线于E ,DC DE =.(1)求证:CD 是O 的切线;(2)若60E ∠=︒,1AE =,求阴影部分的周长.【答案】(1)证明见解析;(2)阴影部分的周长是236π+【解析】(1)证明:如图,过点O 作OH ⊥CD ,垂足为H ,连接OD ,∵BC ,AD 为⊙O 的切线,∴∠CBO =∠OAE =90°,又OB =OA ,∠BOC =∠EOA ,∴BOC ≌AOE (ASA ),∴OC =OE ,又DC =DE ,∴DO 平分∠ADE ,OD ⊥CE ,∴OH =OA ,∴OH =OB ,又∵OH ⊥CD ,∴CD 是⊙O 的切线;(2)解:∵在Rt AEO 中,∠E =60°, ∴tan 3OA E AE ∠==∵AE =1,∴3OA =∵OD ⊥CE ,∴∠DOA =90°-∠EOA =∠E =60°,∠DOH =90°-∠COH =90°-∠COB =90°-∠AOE =∠E =60°,tan60333 DH DA OA︒==⋅=⨯=,∴弧AH的长是120323ππ⋅=,∴阴影部分的周长是2363π+.26.如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)求证:BD⊥CB;(2)求四边形ABCD 的面积;(3)如图2,以A 为坐标原点,以AB、AD所在直线为x轴、y轴建立直角坐标系,点P在y轴上,若S△PBD=14S四边形ABCD,求P的坐标.【答案】(1)证明见解析;(2)36m2;(3)P 的坐标为(0,-2)或(0,10).【解析】(1)证明:连接BD.∵AD=4m,AB=3m,∠BAD=90°,∴BD=5m.又∵BC=12m,CD=13m,∴BD2+BC2=CD2.∴BD⊥CB;(2)四边形ABCD 的面积=△ABD 的面积+△BCD 的面积=12×3×4+12×12×5=6+30=36(m2).故这块土地的面积是 36m 2;(3)∵S △PBD =14S 四边形ABCD ∴12•PD•AB=14×36, ∴12•PD×3=9, ∴PD =6,∵D (0,4),点 P 在 y 轴上,∴P 的坐标为(0,-2)或(0,10).27.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动,如图,在一个坡度(坡比1:2.4i =)的山坡AB 上发现一棵古树CD ,测得古树低端C 到山脚点A 的距离26AC =米,在距山脚点A 水平距离6米的点E 处,测得古树顶端D 的仰角48AED ∠=(古树CD 与山坡AB 的剖面、点E 在同一平面内,古树CD 与直线AE 垂直),求古树CD 的高度约为多少米? (结果保留一位小数,参考数据480.74,sin ≈cos 480.67,tan 48 1.11≈︒≈)【答案】23.3米【解析】解:延长DC 交直线EA 于点F ,则DFEF ,∴设CF =k ,由i =1:2.4,则AF =2.4k ,在Rt △ACF 中,由勾股定理得, 222CF AF AC +=∴2222.426k k +=,解得:k =10,∴CF =10,AF =24,∴EF =AF +AE =30.在Rt △DEF 中,tanE =DF EF∴tan 483030 1.1133.3DF tan EF E ︒≈⨯===⨯33.31023.3CD DF CF ∴=-≈-=故古树CD 的高度约为23.3米.28.化简(1)()()()2224323m m m m m +- (2)2(6)(3)(3)x x x +++-(3)211a a a --- 【答案】(1)m 6;(2)12x +45;(3)11a -. 【解析】(1)()()()2224323m m m m m +- =8634m m m m m +-=868m m m +-=6m ;(2)2(6)(3)(3)x x x +++-=2212369x x x +++-=1245x +;(3)211aaa---=2(1)(1)11a a aa a+----=2211a aa-+-=11a-.29.抛物线23y ax bx=++(a b,为常数,0a≠)与x轴交于()20A-,,()60B,两点,与y轴交于C点.设该抛物线的顶点为M,其对称轴与x轴的交点为N.(1)求该抛物线的解析式;(2)P为线段MN(含端点M N,)上一点,()0Q n,为x轴上一点,且PQ PC⊥.①求n的取值范围;②当n取最大值时,将线段CQ向上平移t个单位长度,使得线段CQ与抛物线有两个交点,求t的取值范围.【答案】(1)2134y x x=-++;(2)①748n≤≤;②49316t<【解析】解:(1)∵点()20A-,,()60B,在抛物线上,∴423036630a ba b-+=⎧⎨++=⎩,.解得14a=-,1b=.∴该抛物线的解析式为2134y x x=-++;(2)①由()221132444y x x x=-++=--+,得M(2,4),设P 点坐标为(2,m ),其中04m ≤≤,则()22223PC m =+-,()2222PQ m n =+-,2223CQ n =+,∵PQ PC ⊥,∴在△PCQ 中,222PC PQ CQ +=,即()()2222222323m m n n +-++-=+, 整理得()221137342228n m m m ⎛⎫=-+=-+ ⎪⎝⎭,0≤m≤4, ∴当32m =时,n 取得最小值为78; 当4m =时,n 取得最大值为4,∴n 的取值范围是748n ≤≤; ②由①知,当n 取最大值4时,4m =.此时()40Q ,, ∵点()03C ,, ∴线段CQ 的解析式为334y x =-+, 设CQ 向上平移t 个单位长度后的解析式为334y x t =-++. 如图,当线段CQ 向上平移,使点Q 恰好在抛物线上时,线段CQ 与抛物线有两个交点,此时点Q '的坐标()43Q ',.将()43Q ',代入334y x t =-++,得3t =. 当线段CQ 继续向上平移,线段CQ 与抛物线只有一个交点时, 由2134334y x x y x t ⎧=-++⎪⎪⎨⎪=-++⎪⎩, 得13(2)(6)344x x x t -+-=-++.化简,得2740x x t -+=. 由49160t ∆=-=,解得4916t =. ∴t 的取值范围是49316t <.30.如图1所示,已知直线y =kx +m 与抛物线y =ax 2+bx +c 分别交于x 轴和y 轴上同一点,交点分别是点B (6,0)和点C (0,6),且抛物线的对称轴为直线x =4;(1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使△PBC 是直角三角形?若存在请直接写出P 点坐标,不存在请说明理由;(3)如图2,点Q 是线段BC 上一点,且CQ=1023,点M 是y 轴上一个动点,求△AQM 的最小周长.【答案】(1)y =21462x x -+;(2)存在,点P 的坐标为(4,﹣2)或(4,10)或(4,17P (4,317);(3)5【解析】解:(1)∵抛物线y =ax 2+bx +c 与x 轴交于点A 、B 两点,对称轴为直线x =4,∴点A 的坐标为(2,0).∵抛物线y =ax 2+bx +c 过点A (2,0),B (6,0),C (0,6),4203660,6a b c a b c c ++=⎧⎪∴++=⎨⎪=⎩解得a =12,b =﹣4,c =6. ∴抛物线的解析式为:y =21462x x -+; (2)设P (4,y ),∵B (6,0),C (0,6), ∴BC 2=62+62=72,PB 2=22+y 2,PC 2=42+(y ﹣6)2,当∠PBC =90°时,BC 2+PB 2=PC 2,∴72+22+y 2=42+(y ﹣6)2,解得:y =﹣2,∴P (4,﹣2);当∠PCB =90°时,PC 2+BC 2=PB 2,∴42+(y ﹣6)2+72=22+y 2,解得:y =10,∴P (4,10);当∠BPC =90°时,PC 2+PB 2=BC 2.∴42+(y ﹣6)2+22+y 2=72,解得:y =3 .∴P (4,3+)或P (4,3-.综合以上可得点P 的坐标为(4,﹣2)或(4,10)或(4,)或P (4,3). (3)过点Q 作QH ⊥y 轴于点H ,∵B (6,0),C (0,6),∴OB =6,OC =6,∴∠OCB =45°,∴∠CQH =∠HCQ =45°,∵CQ =3,∴CH =QH 10,3=∴OH =1086,33-= ∴点Q 的坐标为(108,33), 在x 轴上取点G (﹣2,0),连接QG 交y 轴于点M ,则此时△AQM 的周长最小,∴AQ 2210845(2)()33-+= QG 221085(2)()333++= ∴AQ +QG 45855,+= ∴△AQM 的最小周长为5。