八年级数学整式的乘除期末复习检测题
整式乘除复习总结练习(有知识点填空、基本题)

初二数学整式的乘除复习练习§14.1幂的运算§14.1.1同底数幂的乘法1、同底数幂的乘法公式:m n a a ∙= (m 、n 均为正整数) 同底数幂的乘法法则:同底数幂相乘,底数 ,指数 。
2、公式逆用:m na +=(m 、n 均为正整数) 一、填空题1.计算:103×105= .2.计算:(a -b )3·(a -b )5= .3.计算:a·a 5·a 7= .4. 计算:a(____)·a 4=a 20.(在括号内填数)二、选择题1.32x x ∙的计算结果是( ) A.5x ; B.6x ; C.8x ; D.9x . 2.下列各式中,①824x x x =∙,②6332x x x =∙,③734a a a =∙,④1275a a a =+,⑤734)()(a a a =-∙-.正确的式子的个数是( )A.1个;B.2个;C.3个;D.4个.三、解答题1、计算:62753m m m m m m ∙+∙+∙;2、已知8=m a ,32=n a ,求n m a+的值.§14.1.2幂的乘方1、幂的乘方公式:)(a m n = (m 、n 均为正整数) 幂的乘方法则:幂的乘方,底数 ,指数 。
2、公式逆用:mna =( )m =( )n (m 、n 均为正整数)一、选择题1.计算(x 3)2的结果是( )A .x 5B .x 6C .x 8D .x 92.下列计算错误的是( )A .a 2·a=a 3B .(ab )2=a 2b 2C .(a 2)3=a 5D .-a+2a=a二、填空题1.12x =( )2 =( )6 =( )3 =( )4 2.(a 3)4=_____.3.若x 3m =2,则x 9m =_____. §14.1.3积的乘方1、积的乘方公式:)(ab n = (n 为正整数)积的乘方法则:积的乘方,等于把积的每一个因式分别 ,再把所得的幂 。
八年级数学整式的乘除综合训练题

整式的乘除综合测试卷一、选择题:1、下列运算中错误的是………………………………………….( ) A.B. C. D.2、若a ²+2a+b ²-6b+10=0,则………………………………….( )A .a=1,b=3B .a=-1,b=-3C .a=1,b=-3D .a=-1,b=33、计算20072006)3()31(-⨯-得…………………………………( )A 、31B 、3C 、-31D 、-34、若()(5)x a x +-的积中不含x 的一次项,则a 的值为…..( )A 、0B 、5C 、-5D 、5或-55、以下各式的计算,正确的个数有……………………………..( )①a ²〃a ³=a6;②(2xy ²)²=2x ²y4;③(-a+b )(b -a )=a ²-b ²;④(2a -6b )²=4a ²-12ab+36b ²;⑤(1-3x )(3-x )=3-10x+3x ².A .0个B .1个C .2个D .3个6、不论x y 、为何值,代数式22247x y x y ++-+ 的值………..( ) A .总不小于7 B .总不小于2C .可为任何有理数D .可能为负数7、若a 的值使得x ²+4x+a=(x+2)²-1成立,则a 的值为……( )A .5B .4C .3D .28、如果(x ²+px+q )(x ²-3x+2)的展开式中不含x ²项和x 项,则p ,q 的值分别为( )A .p=0,q=0B .p=-3,q=-9C .p=67,q=47 D .p=-3,q=19、已知(a -b )²=7,(a+b )²=13,则a ²+b ²与ab 的值分别是( )A .10,B .10,3C .20,D .20,310、已知(x+y+z )²=25,xy+yz+xz=7,那么x ²+y ²+z ²=……..( )A .-9B .-11C .11D .1811、a 、b 、c 是三角形的三条边长,则代数式,a ²-2ab- c ²+b ²的值( )A 、 大于零B 、小于零C 、等于零D 、与零的大小无关二填空题14、计算(3x -1)(2x +1)=15、计算(14a ²b ²-21ab ²)÷7ab ²=16、计算)5()2(322a a -⋅-=17、已知x+y=5,xy=2,则x ³y+2x ²y ²+xy ³的值等于18、(x -2)(x+3)=19、如果(a+b+1)(a+b-1)=63,那么a+b 的值为20、一个正方形的边长增加2cm ,它的面积就增加24cm ,•这个正方形的边长是21、若│x+y -5│+(xy -6)²=0,则x ²+y ²的值为22、若x ²+x -1=0,则x ³+2x ²+3=23、已知2(4)(9)x x x mx n -+=++,则m n += 24、如果2220,5,x y x y -=+=-则x y -的值是 25、设1x 1x =-,则_______x 1x 22=+26、代数式是一个完全平方式,则k的值是27、从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,•将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图综13-1乙),那么通过计算阴影部分的面积可以验证公式三、解答题:28、计算:(1)、 2)12(-+b a (2)、)32(3)143(222--+-x x x x x(3)、(6x -4)(3x+2); (4)、(3x -2y )²-(3x -y )(3x+y );(5) )2)(2()32(2b a b a b a +--+ (6) []x x y x y y x 28)2()(2÷-+-+29、已知a+b=5,ab=3.,求下列各式的值:(1)+ (2)30、如图综13-2,请用两种不同的方式表示大正方形的面积.根据上述结果可以验证哪个乘法公式?31、已知2a=3,4b=5,8c=7,求8a+c -2b 的值.32、已知A=3x+2,B=2-3x ,C=4x -5.(1)求A 〃B -B 〃C -B ²; (2)当x=-1时,求上式的值.33、已知8xy =满足2256x y xy x y --+=。
整式的乘除复习试题(3套)

整式的乘除过关测试A一、(时间: 40分钟, 总分: 80分) 选择题(共12小题, 每小题3分, 共36分) )可写成(13.1+m a()()a a D aa C aa a B aa A m m m m ⋅++⋅+3333....()6223124355126663)5(;1243)4(;)3(;)2(;2)1(.2y x xy b b b c c c a a a a a a n n n ==⋅=⋅=+=⋅下列计算:中正确的个数为( )A.0B.1C.2D.3 )(324,0352.3=⋅=-+y x y x 则若A.32B.16C.8D.4())的结果为(计算200920088125.0.4⨯-A.8B.-8C.-1D.无法计算)的是(下列等式中运算不正确.5()()2223243322232442.51025.842.63)2(3.y xy x y x D xy x y x x C b a ab b a B y x y x xy x xy A ++=--=-=⋅-=-()()()()的值为、,则若a a M 10M 102105108.626⨯=⨯⨯⨯ 105M 108M 92M 88M ========a D a C a B a A ,、,、,、,、()()()等于则若m n n x x mx x -++=-+,315.72 251.251.25.25.--D C B A()()()的关系是与的一次项,则展开后不含要使多项式q p x q x px x -++2.822.1.0..===+=pq D pq C q p B q p A()的值是,那么已知ab b a b a 2,3.922=-=+A.-0.5B.0.5C.-2D.2 10.计算: 得( )A.0B.1C.8.8804D.3.960111.现有纸片: 4张边长为a 的正方形, 3张边长为b 的正方形, 8张宽为a 、长为b 的长方形, 用这15张纸片重新拼出一个长方形, 那么该长方形的长为( )A.2a+3bB.2a+bC.a+3bD.无法确定()的最小值是则如果多项式p b a b a p ,2008422.1222++++= A.2005 B.2006 C.2007 D.2008 填空题(共6小题, 每小题3分, 共18分)()()=-⋅-322323.13a a 计算 。
《整式的乘除》测试题

《整式的乘除》测试题班级: 姓名: 得分一、选择题:( 本题共7小题, 每小题2分,共14分)1、计算下列各式结果等于45x 的是( )A 、 225x x •B 、 225x x +C 、 x x +35D 、x x 354+ 2、下列式子可用平方差公式计算的式子是( )A 、))((a b b a --B 、)1)(1(-+-x xC 、))((b a b a +---D 、)1)(1(+--x x3、下列各式计算正确的是( )A 、66322)(b a b a =-B 、5252)(b a b a -=- C 、12443)41(b a ab =- D 、4622391)31(b a b a =- 4、)()(32m m -•- 所得的结果是( )A 、 6m -B 、 6mC 、 7m -D 、 7m5、下列多项式中,没有公因式的是( )A 、)()(y x y x a ++和B 、)()(32b a b a +-+和C 、)(2)(3y x y x b --和D 、 )(6)33(a b b a --和6、把4224y x y x -分解因式,其结果为( ) A 、 ))((2222xy y x xy y x -+ B 、 )(2222y x y x -C 、))((22y x y x y x -+D 、 ))((22xy y x y x xy -+7、当mn m n 6)6(-=- 成立时,则( )A 、 m 、n 必须同时为正奇数B 、 m 、n 必须同时为正偶数C 、 m 为奇数D 、 m 为偶数二、填空题:( 本题共15小题, 每小题2分,共30分)1、••3a a m ( )= 22+m a ; =-•2232])()[(a a2、•+)2(n m ( )=224m n - ; 10010101••-m m =3、若3=x a ,则=x a 2 ; =-•19991999)8()125.0(4、若代数式1322++a a 的值为6 ,则代数式5962++a a 为5、代数式2)(7b a +-的最大值是 ,当代数式取最大值时,a 与b 的关系为 。
初二整式的乘除必考练习题及答案

初二整式的乘除必考练习题及答案乘法练习题:1. 计算下列算式的乘积:a) 5 × 7 =b) 6 × 3 =c) 8 × 4 =d) 9 × 2 =e) 12 × 10 =2. 用竖式计算下列乘法问题:a) 24 × 3 =b) 15 × 6 =c) 27 × 4 =d) 18 × 5 =e) 32 × 12 =3. 用分配律计算下列乘法问题:a) 3 × (5 + 2) =b) 4 × (6 + 1) =c) 2 × (8 + 3) =d) 6 × (9 + 2) =e) 7 × (10 + 6) =除法练习题:1. 计算下列算式的商和余数:a) 14 ÷ 3 = 商____ 余____b) 21 ÷ 4 = 商____ 余____c) 36 ÷ 5 = 商____ 余____d) 47 ÷ 6 = 商____ 余____e) 52 ÷ 7 = 商____ 余____2. 用列竖式计算下列除法问题:a) 56 ÷ 8 = 商____ 余____b) 81 ÷ 9 = 商____ 余____c) 72 ÷ 6 = 商____ 余____d) 96 ÷ 12 = 商____ 余____e) 108 ÷ 9 = 商____ 余____3. 解决下列问题并用整式表达答案:a) Sara家有24个饼干,她打算将它们平均分给3个朋友。
每个朋友能得到多少个饼干?b) 在一个农场里,有36头牛,农民打算将它们平均分配在6个牲口场。
每个牲口场将有多少头牛?以上是初二整式乘除必考练习题及答案。
希望通过这些题目的练习能够提升你的整式的乘除能力。
加油!。
八年级数学整式的乘除与因式分解复习题1

八年级数学整式的乘除与因式分解复习题Ⅰ:整式的乘法一、单项式乘以单项式1、同底数幂的乘法:同底数幂相乘,,。
用字母表示为:。
(1)x2x5(2)aa6(3)2 2423(4)x m x3m1(5)(x y)2(x y)52、幂的乘方:幂的乘方,,。
用字母表示为:______________(1)(103)5(2)(a4)3(3)(a m)4(4)(a2)3a5(5)(x y)233、积的乘方:积的乘方,。
用字母表示为:________________________.(1)(2a)3(2)(5b)3(3)(xy2)2(4)(3102)3(5)(y x)3(化成以x y为底)4、单项式乘以单项式:单项式乘以单项式,把______________________________________________________________________________________________.(1)a2a6(2) (x4)3(3)(5a2b)(3a)(4)(2x)3(5xy2) (5)(2a)3(3a)25、单项式乘以多项式:单项式与多项式相乘,就是用_____________________________。
(1)(4x2)(3x 1) (2)3a(5a 2b) (3)(x y)(6x) (4)(x 3y)(6x)二、多项式乘以多项式:多项式与多项式相乘,先用___________________________ 。
(1)(3x 1)(x 2) (2)(x 8y)(x y) (3)(x y)(x2xy y2)(4)先计算以下一次二项式乘以一次二项式,而后察看、填空:①(x 2)(x 3) ②(y5)(y 3) ③(m 4)(m 2) ④(n 5)(n 3)(xp)(xq)2)x()(三、填表:单项式的运算规律表项目单项式系数字母的指数举例2x2y 3x2y 5x2y加减法2x2y3x2y x2y 乘法2x2y3xy6x3y2除法6x3y23xy2x2y2乘方3x2y39x4y6稳固练习:下边的计算对不对?假如不对。
2022学年秋学期华东师大版八年级数学上册第十二章《 整式的乘除》检测题及答案解析

2022学年秋学期八年级数学上册第十二章《整式的乘除》检测题(满分120分)一、单选题1.计算:32a a ⋅的结果()A .6a B .5a C .6aD .5a2.计算(﹣a 3)2的结果是()A .a 6B .﹣a 6C .﹣a 5D .a 53.下列运算错误的是()A .325a a a ⋅=B .5510x x x +=C .()222424xy x y =D .33()x x -=-4.已知24816a b ==,,则()33a b -的值为()A .6-B .8C .8-D .8±5.计算43x y ⋅的结果是()A .4xyB .xyC .12xyD .7xy6.下列计算错误的是()A .()23263x x x x--=-+B .()()2232232323m n mnmn m nm n --=-+C .()22322331xy x y xy x y x y--=-D .12221215353n n x y xy x y xy++⎛⎫-=- ⎪⎝⎭7.如果()(3)x m x +-中不含x 的项,则m 的值是()A .2B .2-C .3D .3-8.()()2244542516a ba b +=-,括号内应填()A .2254a b +B .2254a b -C .2254a b --D .2254a b -+9.满足2()()(0)a b b a a b ab ab -+-⋅-=≠的有理数a 和b ,一定不满足的关系是()A .0ab <B .0ab >C .0a b +>D .0a b +<10.下列四种说法中正确的有()①关于x 、y 的方程26199x y +=存在整数解.②若两个不等实数a 、b 满足442222()()a b a b +=+,则a 、b 互为相反数.③若2()4()()0a c a b b c ---=-,则2b a c =+.④若222x yz y xz z xy ---==,则x y z ==.A .①④B .②③C .①②④D .②③④二、填空题11.若24a =,25b =,则2a b +等于_________.12.计算()2323a b a -⋅-=____________.13.已知2()7m n +=,2()3m n -=,则22m n +=______.14.数学课上,老师讲了单项式与多项式相乘:先用单项式乘多项式中的每一项,再把所得的积相加,小丽在练习时,发现了这样一道题:“22x -(3x ﹣■+1)=322642x x y x -+-”那么“■”中的一项是_____.15.对于二次三项式2x mx n ++(m 、n 为常数),下列结论:①若36n =,且()22x mx n x a ++=+,则6a =;②若24m n <,则无论x 为何值时,2x mx n ++都是正数;③若()()23x mx n x x a ++=++,则39m n -=:④若36n =,且()()2x mx n x a x b ++=++,其中a 、b 为整数,则m 可能取值有10个.其中正确的有______.(请填写序号)三、解答题16.(1)计算:()22248m p m ÷(2)计算:25(1)(1)x x x +-(3)因式分解:39x x-(4)因式分解:2(2)8a b ab-+17.根据几何图形的面积可以说明整式的乘法,例如()()22223a b a b a ab b ++=++就可以用图的面积关系来说明.(1)根据图②可以写出的一个等式是______.(2)请你计算()()x p x q ++,并画出一个相应的几何图形加以说明.18.试说明:代数式()()()()3626441x x x x x ++-+++的值与x 无关.19.试说明:代数式2222610a b ab b +-++的值一定是一个正数20.已知a =2013,b =2014,c =2015,求a 2+b 2+c 2-ab -bc -ac 的值.21.甲、乙两人各持一张分别写有整式A 、B 的卡片.已知整式224C a a =--,下面是甲、乙二人的对话:甲:我的卡片上写着整式2410A a a =-+,加上整式C 后得到最简整式D ;乙:我用最简整式B 加上整式C 后得到整式2628E a a =-+.根据以上信息,解决下列问题:(1)求整式D 和B ;(2)请判断整式D 和整式E 的大小,并说明理由.22.我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.①分组分解法:例如:()()22222224242x xy y x xy y x y +=+-=-----=(x ﹣y ﹣2)(x ﹣y +2).②拆项法:例如:()22222321412x x x x x +-=++=+--=(x +1﹣2)(x +1+2)=(x ﹣1)(x +3)③十字相乘法:例如:2x +6x ﹣7解:原式=(x +7)(x ﹣1)(1)仿照以上方法,按照要求分解因式:①(分组分解法)22441x x y +-+;②(拆项法)2x ﹣6x +8;③(十字相乘法)2x ﹣5x +6=______.(2)已知:a 、b 、c 为△ABC 的三条边,222a b c ++﹣4a ﹣4b ﹣6c +17=0,求△ABC 的周长.23.我国著名数学家曾说:数无形时少直觉,形少数时难入微,数形结合思想是解决问题的有效途径.请阅读材料完成:(1)算法赏析:若x 满足()()152x x --=,求()()2215x x -+-的值.解:设(1),(5),x a x b -=-=则()()152,x x ab --==(1)(5)4a b x x +=-+-=-∴()()222215......x x a b -+-=+请继续完成计算.(2)算法体验:若x 满足()()3020580x x --=-,求()()223020x x -+-的值;(3)算法应用:如图,已知数轴上A 、B 、C 表示的数分别是m 、10、13.以AB 为边作正方形ABDE ,以AC 为边作正方形ACFG ,延长ED 交FC 于P .若正方形ACFG 与正方形ABDE 面积的和为117,求长方形AEPC 的面积答案解析1.B 【分析】根据同底数幂乘法的计算法则求解即可.【详解】解:325a a a ⋅=,故选B .【点睛】本题主要考查了同底数幂乘法,熟知同底数幂乘法计算法则是解题的关键:同底数幂相乘,底数不变,指数相加.2.A 【分析】直接利用幂的乘方运算和乘方的符号法则计算即可.【详解】解:26332()(==)a a a -,故选:A .【点睛】本题考查幂的乘方运算,乘方的运算法则.熟练掌握相关运算法则是解题关键.3.B 【分析】根据同底数幂的乘法公式,合并同类项法则,积的乘方与幂的乘方公式依次判定即可.【详解】解:A 、33522a a a a +⋅==,故此选项正确,不符合题意;B 、5552x x x +=,故此选项错误,符合题意;C 、()()22222224224xy x y x y =⋅⋅=,故此选项正确,不符合题意;D 、()3333()1x x x -=⋅=--,故此选项正确,不符合题意;故选:B .【点睛】本题考查同底数幂的乘法公式,合并同类项法则,积的乘方与幂的乘方公式,掌握相关公式和法则是解题的关键.4.C 【分析】利用幂的乘方的法则对式子进行整理,再相除,从而可得到a ﹣3b 的值,再代入所求式子进行运算即可.【详解】解:24a = ,816b =,24a ∴=,3216b =,322416a b ∴÷=÷,3222a b --∴=,32a b ∴-=-,()()33328a b ∴-=-=-.故选:C .【点睛】本题主要考查同底数幂的除法,有理数的乘方,解答的关键是对相应的运算法则的掌握.5.C 【分析】根据单项式乘以单项式可进行求解.【详解】解:4312x y xy ⋅=;故选C .【点睛】本题主要考查单项式乘以单项式,熟练掌握运算法则是解题的关键.6.C 【分析】由整式的乘法运算进行计算,然后进行判断,即可得到答案【详解】解:23(2)63x x x x --=-+,故A 正确;223223(23)()23m n mn mn m n m n --=-+,故B 正确;223223(31)3xy x y xy x y x y xy --=--,故C 错误;1222121()5353n n x y xy x y xy ++-=-,故D 正确;故选:C 【点睛】本题考查了整式的乘法运算,解题的关键是掌握运算法则,正确的进行计算7.C 【分析】把原式展开,然后令x 的系数为0,即可得到m 的值.【详解】解:∵原式=x 2+(m -3)x -3m ,∴令m -3=0可得m =3,故选C .【点睛】本题考查多项式的应用,熟练掌握多项式的乘法、合并同类项的方法是解题关键.8.B 【分析】根据平方差公式即可求得.【详解】解:()()22224454542516a bab a b +-=- ,∴括号内应填2254a b -,故选:B .【点睛】本题考查了平方差公式,熟练掌握和运用平方差公式是解决本题的关键.9.A 【分析】分a >b 与a <b 两种情况讨论,针对这两种情况运用完全平方式、去绝对值符号,进行因式分解,进一步利用不等式的性质求解即可.【详解】解:①当a >b 时,则()()()()()()()22220a b b a a b a b ab b a a b a b a b -+-⋅-=-+---=-=-=,与ab ≠0矛盾,故排除;②当a <b 时,则()()()()()()2222a b b a a b a b b a b a a b ab -+-⋅-=-+=-=--,∴22242a ab b ab -+=,∴222520a ab b -+=,∴(2a −b )(a −2b )=0,∴2a =b 或a =2b ,当b =2a 且a <b 时,则b −a =a >0,∴b >a >0,∴可能满足的是ab >0,a +b >0;当a =2b 且a <b 时,则a −b =b <0,∴a <b <0,∴可能满足的是:ab >0,a +b <0,故一定不能满足关系的是ab <0,故选:A .【点睛】本题主要考查了因式分解的应用,不等式的性质.本题的切入点是就a 、b 的大小讨论,再分解因式利用不等式的性质求解.10.B 【分析】将26x y +提公因式2得2(3)x y +,由x 、y 为整数,则2(3)x y +为偶数,因为199为奇数,即原等式不成立,即可判断①;将442222()()a b a b +=+,整理得222()0a b -=,即得出22a b =,由于实数a 、b 不相等,即得出a 、b 互为相反数,故可判断②;2()4()()0a c a b b c ---=-整理得2(2)0a c b +-=,即得20a c b +-=,即2a c b +=,故可判断③;由222x yz y xz z xy ---==,得出2222x xz y yz y xy z xz ⎧+=+⎨+=+⎩,即可变形为222211()()2211()()22x z y z y x z x ⎧+=+⎪⎪⎨⎪+=+⎪⎩,可以得出x y z ==或0x y z ++=,故可判断④.【详解】∵262(3)x y x y +=+,∴如果x 、y 为整数,那么2(3)x y +为偶数,∵199为奇数,∴26199x y +=不存在整数解,故①错误;442222()()a b a b +=+444422222a b a b a b +++=442220a b a b +-=222()0a b -=∴22a b =,∵实数a 、b 不相等,∴a 、b 互为相反数,故②正确;2()4()()0a c ab bc ---=-222244440a ac c ab ac b bc -+-++-=()()22440a cb ac b +-++=2(2)0a c b +-=∴20a c b +-=,即2a c b +=,故③正确;∵222x yz y xz z xy ---==∴2222x xz y yzy xy z xz ⎧+=+⎨+=+⎩,∴2222222211441144x xz z y yz y xy x z xz ⎧++=++⎪⎪⎨⎪++=++⎪⎩,即222211()()2211()()22x z y z y x z x ⎧+=+⎪⎪⎨⎪+=+⎪⎩,∴11()2211()22x z y z y x z x ⎧+=±+⎪⎪⎨⎪+=±+⎪⎩,∴x y z ==或0x y z ++=,故④不一定正确.综上可知正确的有②③.故选B .【点睛】本题考查因式分解,整式的混合运算.熟练掌握完全平方公式是解题关键.11.20【分析】逆用同底幂的乘法法则即可得到解答.【详解】解:2a+b =2a ×2b =4×5=20,故答案为20.【点睛】本题考查幂的乘法法则,熟练掌握同底幂的乘法法则的逆运用是解题关键.12.336a b 【分析】利用单项式乘单项式的法则计算即可.【详解】解:()3332236b a a a b -⋅-=;故答案为:336a b .【点睛】本题考查了单项式乘单项式,熟练掌握运算法则是解题的关键.13.5【分析】利用完全平方公式计算即可求出所求.【详解】解:22227m n m n mn +=++= ()①,22223m n m n mn -=+-=()②,∴①+②得:22210m n +=(),则225m n +=,故答案为:5【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.14.2y 【分析】利用多项式除以单项式法则计算()()32226422x x y x x -+-÷-即可得出“■”中的项,然后利用单项式乘多项式的法则进行计算验证即可.【详解】解:∵()()32226422x x y x x-+-÷-()()()322222226242x x x y x x x =÷-÷-÷--+-321x y =-+即23222321642x x y x x y x --+-+-()=,∴“■”中的一项是2y .故答案为:2y .【点睛】此题考查了单项式乘多项式和多项式除以单项式,熟练掌握运算法则是解本题的关键.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.15.②③④【分析】根据完全平方公式可以得a 2=36,从而得出6a =±,于是易判断结论①;根据24m n<得出240n m ->,通过配方将多项式2x mx n ++变形为224 24m n m x -⎛⎫++ ⎪⎝⎭判断②说法正确;利用多项式乘多项式化简()()23x mx n x x a ++=++对比系数可判断③;利用因式分解的方法对各种类型进行分析即可判断④.【详解】解:① 若n =36,且x 2+mx +n =()2x a +,则有x 2+mx +36=x 2+2ax +a 2,∴a 2=36,解得:a =6±,故①说法错误;② m 2<4n ,240n m ∴->,2x mx n ∴++22222222+ 44+ 444 024m m x mx n m m x mx n m n m x =++-⎛⎫=++-⎪⎝⎭-⎛⎫=++ ⎪⎝⎭>故无论x 为何值时,2x mx n ++都是正数,故②说法正确;③ x 2+mx +n =()()3x x a ++,∴x 2+mx +n =x 2+(a +3)x +3a ,∴m =a +3,n =3a ,∴3m -n =3(a +3)-3a =3a +9-3a =9故③说法正确;④ n =36,且x 2+mx +n =()()x a x b ++,∴x 2+mx +36=()2x a b x ab +++,∴m a b =+,n =36,a 、b 为整数,∴相应的数对为:-1和-36,1和36,-2和-18,2和18,-3和-12,3和12,-4和-9,4和9,-6和-6,6和6共10对,因此m 的值可能有10个,故④说法正确.综上所述,正确的说法有:②③④.故答案为:②③④.【点睛】本题主要考查多项式乘多项式,难点在于判断多项式值的情况时,往往需要将多项式进行变形,将其变成一个或几个式子平方与某一代数式的和形式,配方是配二次三项式中一次项系数一半的平方.16.(1)222m p (2)4255x x -(3)(3)(3)x x x +-(4)2(2)a b +【分析】(1)根据幂的运算法则和合并同类项法则计算即可;(2)先用平方差公式计算,再运用单项式乘多项式的法则计算即可;(3)先提取公因式,再运用平方差公式分解即可;(4)先进行整式运算,再因式分解即可.【详解】解:(1)()42222222416882m m p m m p m p =÷=÷(2)25(1)(1)x x x +-=225(1)x x -=4255x x -(3)32()()(9933)x x x x x x x -=-=+-(4)2(2)8a b ab -+=22448a ab b ab -++=2244a ab b ++=2(2)a b +.【点睛】本题考查了整式的运算和因式分解,解题关键是熟记乘法公式和因式分解的方法,准确熟练的进行计算.17.(1)()()2222252a b a b a ab b++=++(2)()()()2x p x q x p p x pq ++=+++,图见解析(答案不唯一)【分析】(1)应用多项式乘法乘多项式的法则进行计算即可得出答案;(2)应用多项式乘法乘多项式的法则进行计算即可得出答案.(1)解:根据题意可得,(a +2b )(2a +b )=2a 2+5ab +2b 2.故答案为:(a +2b )(2a +b )=2a 2+5ab +2b 2.(2)(x +p )(x +q )=x 2+qx +px +pq =x 2+(p +q )x +pq ,图形如下:【点睛】本题主要考查了多项式乘法,熟练掌握多项式乘法的乘法法则进行求解是解决本题的关键.18.见解析【分析】原式利用多项式乘以多项式,单项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.【详解】证明:∵()()()()3626441x x x x x ++-+++()()226218662444x x x x x x =+++-+++226218662444x x x x x x =+++--++10=化简后的结果不含x ,∴代数式()()()()3626441x x x x x ++-+++的值与x 无关.【点睛】本题主要考查整式的混合运算,解答此类题目的基本思路是:将所给的代数式逐项展开并合并同类项后,所得的结果为一个常数,即可得证.19.见解析【分析】根据因式分解,将代数式分解为()()2231b a b ++-+,进而根据平方的非负性即可求解.【详解】证明:2222610a b ab b +-++=2222691a ab b b b +-++++=()()2231b a b ++-+∵()()220,30a b b ≥+≥-,∴()()2231b a b ++-+≥1,∴代数式2222610a b ab b +-++的值一定是一个正数【点睛】本题考查了完全平方公式因式分解,掌握因式分解的方法是解题的关键.20.3【分析】先将原式分子分母同时乘以2,再将分子配方成三个完全平方式,然后代入数据计算即可.【详解】原式=()22222a b c ab bc ac++---=2222222222a b c ab bc ac ++---=()()()2222222222a ab b a ac c b bc c ++-+-+-+=()()()2222a b a c b c -+-+-,因为a =2013,b =2014,c =2015,所以原式=()()()2222013201420132015201420152-+-+-=1412++=3.21.(1)22266,512D a a B a =-+=+(2)E D >,理由见解析【分析】(1)根据题意得:D =A +C ,B =E -C ,把各自的整式代入,去括号合并即可得到结果;(2)利用作差法判断D 与E 的大小即可.(1)解:∵2410A a a =-+,224C a a =--,2628E a a =-+∴D =A +C 2241024a a a a =-++--2266a a =-+,B =E -C()2262824a a a a =-+---2262824a a a a =-+-++2512a =+,∴22266,512D a a E a =-+=+;(2)E D >,理由如下:∵22266,628D a a E a a =-+=-+()22626682E D a a a a -+∴-=--+22266628a a a a =-++--2442a a =++()24411a a =+++()2211a =++>0E D∴>【点睛】此题考查了整式的加减,运用完全平方公式因式分解,熟练掌握去括号法则与合并同类项法则是解本题的关键.22.(1)①(2x +y +1)(2x -y +1)②(x -4)(x -2)③(x -2)(x -3)(2)7【分析】(1)①将原式化为()22441x x y ++-,再利用完全平方公式和平方差公式分解即可;②将原式化为2x -6x +9-1,再利用完全平方公式和平方差公式分解即可;③直接利用十字相乘法分解即可;(2)先利用完全平方公式对等式222a b c ++-4a -4b -6c +17=0的左边变形,再根据偶次方的非负性可得出a ,b ,c 的值,然后求和即可得出答案.(1)解:①22441x x y +-+=()22441x x y ++-=()2221x y +-=(2x +y +1)(2x -y +1);②2x -6x +8=2x -6x +9-1=()23x --1=(x -3-1)(x -3+1)=(x -4)(x -2);③2x -5x +6=(x -2)(x -3);故答案为(x-2)(x-3)11(2)解:∵222a b c ++-4a -4b -6c +17=0,∴(2a -4a +4)+(2b -4b +4)+(2c -6c +9)=0,∴()()()222223a b c -+-+-=0,∴a =2,b =2,c =3,∴a +b +c =2+2+3=7.∴△ABC 的周长为7.【点睛】本题考查了因式分解的方法及其在几何图形问题中的应用,读懂题中的分解方法并熟练掌握整式乘法公式是解题的关键.23.(1)过程见解析,12(2)1260(3)54【分析】(1)根据完全平方公式可得a 2+b 2=(a +b )2-2ab 求解即可;(2)按(1)方法进行即可求解;(3)正方形ACFG 的边长为13-m ,面积为(13-m )2,正方形ABDE 的边长为10-m ,面积为(10-m )2,可得(13-m )2+(10-m )2=117,设13-m =p ,10-m =q ,则p 2+q 2=(13-m )2+(10-m )2=117,p -g =13-m -10+m =3,利用222()()2p q p q pq +--=求解即可.(1)解:设(1),(5),x a x b -=-=则()()152,x x ab --==(1)(5)4a b x x +=-+-=-∴()()2215x x -+-22a b =+=(a +b )2-2ab =(-4)2-2×2=16-4=12.(2)解:设(30),(20)x a x b -=-=,则(30)(20)580x x ab --==-,a +b =10,()()22223020x x a b -+-=+2()2100(1160)1260a b ab =+-=--=;(3)解:正方形ACFG 的边长为13-m ,面积为(13-m )2,正方形ABDE 的边长为10-m ,面积为(10-m )2,则有(13-m )2+(10-m )2=117,设13-m =p ,10-m =q ,则p 2+q 2=(13-m )2+(10-m )2=117,p -q =13-m -10+m =3,所以长方形AEPC 的面积为:222()()11795422p q p q pq +---===.【点睛】本题主要考查了完全平方公式和数形结合思想,灵活变形完全平方公式成为解答本题的关键.。
初二整式的乘除综合复习及测试题(全章参考用)

aa b b 图1 图2(第10题图) 整式的乘除综合复习一、选择题1、下列计算正确的是 ( )A 、3x -2x =1B 、3x+2x=5x 2C 、3x·2x=6xD 、3x -2x=x 2、如图,阴影部分的面积是( ) A 、xy 27B 、xy 29C 、xy 4D 、xy 23、下列计算中正确的是( ) A 、2x+3y=5xy B 、x·x 4=x 4 C 、x 8÷x 2=x 4 D 、(x 2y )3=x 6y 34、在下列的计算中正确的是( ) A 、2x +3y =5xy ; B 、(a +2)(a -2)=a 2+4; C 、a 2•ab =a 3b ; D 、(x -3)2=x 2+6x +95、下列运算中结果正确的是( )A 、633·x x x =; B 、422523x x x =+;C 、532)(x x =; D 、222()x y x y +=+. 6、下列说法中正确的是( )。
A 、2t 不是整式;B 、y x 33-的次数是4;C 、ab 4与xy 4是同类项;D 、y1是单项式 7、ab 减去22b ab a +-等于 ( )。
A 、222b ab a ++;B 、222b ab a +--;C 、222b ab a -+-;D 、222b ab a ++-8、下列各式中与a -b -c 的值不相等的是( ) A 、a -(b+c ) B 、a -(b -c ) C 、(a -b )+(-c ) D 、(-c )-(b -a ) 9、已知x 2+kxy+64y 2是一个完全式,则k 的值是( ) A 、8 B 、±8 C 、16 D 、±1610、如下图(1),边长为a 的大正方形中一个边长为b 的 小正方形,小明将图(1)的阴影部分拼成了一个矩形, 如图(2)。
这一过程可以验证( ) A 、a 2+b 2-2ab =(a -b )2 ; B 、a 2+b 2+2ab =(a +b )2 ;C 、2a 2-3ab +b 2=(2a -b )(a -b ) ;D 、a 2-b 2=(a +b ) (a -b )二、填空题11、(1)计算:32()x x -=· ;(2)计算:322(3)a a -÷= .12、单项式z yx n 123-是关于x 、y 、z 的五次单项式,则n ;13、若244(2)()x x x x n ++=++,则_______n =14、当2y –x=5时,()()6023252-+---y x y x = ;15、若a 2+b 2=5,ab =2,则(a +b )2= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
英才学校整式的乘除期末复习检测题 班级 姓名 学号 得分_________
一、选择题(每题2分,共20分)
1.下列运算中,正确的是 ( )
A .2054a a a =
B .4312a a a =÷
C .532a a a =+
D .a a a 45=-
2.÷c b a 468( )=224b a ,则括号内应填的代数式是 ( )
A 、c b a 232
B 、232b a
C 、c b a 242
D 、
c b a 2421 3.下列从左边到右边的变形,属于因式分解的是 ( )
A. 1)1)(1(2-=-+x x x
B.
1)2(122+-=+-x x x x C. )4)(4(422y x y x y x -+=- D. )3)(2(62-+=--x x x x
4、如果:()159382b a b a n m m =⋅+,则 ( )
A 、2,3==n m
B 、3,3==n m
C 、2,6==n m
D 、5,2==n m
5.若x 2+2(m -3)x +16是完全平方式,则m 的值等于…………………( )
A.3
B.-5
C.7.
D.7或-1
6、下列多项式相乘,不能用平方差公式计算的是( )
A 、(x -2y )(2y +x )
B 、(-2y -x )(x +2y )
C 、(x -2y )(-x -2y )
D 、(2y -x )(-x -2y )
7、下列各式是完全平方式的是(
) A 、412+-x x B 、241x +
C 、22b ab a ++
D 、122-+x x 8、矩形ABCD 中,横向阴影部分是长方形,另一部分是平行四边形,依照图中标注的数据,图中空白部分的面积为 ( )
A 、2c ac ab bc ++-
B 、2c ac bc ab +--
C 、ac bc ab a -++2
D 、ab a bc b -+-22
9、将x 4+8分解因式正确的是( ) A 、(x 4-16) B 、(x 2+4)(x 2-4) C 、(x 2+4)(x +2)(x -2) D 、(x 2+2)(x 2-2)2 10、把a 4-2a 2b 2+b 4分解因式,结果是( )
A 、a 2(a 2-2b 2)+b 4
B 、(a 2-b 2)2
C 、(a -b )4
D 、(a +b )2⋅(a -b )2
二、填空题(每题2分,共20分)
12
-12-12-12-12
-
11.计算 -a ⋅(-a )2⋅(-a )3=______ ._______2142=÷-a b a ._____)2(23=-a
12.计算:.___________________)3)(2(=+-x x (-2x -3)(-2x +3)=_____________
13.计算:._________________)12(2=-x (2x -2)(3x +2)=___________。
14.因式分解:.__________42=-x a 2+a +
=____________1-9y 2=_____________ 15.若35,185==y
x , 则y x 25-=
16.若122=+a a ,则1422++a a =
17.代数式是完全平方式,m =___________。
18.已知03410622=++-+n m n m ,则n m += .
19、201220115335⎛⎫⎛⎫⋅ ⎪ ⎪⎝⎭⎝⎭= 。
已知51=+x x ,那么221x
x +=_______。
20、多项式16x 2+1加上一个单项式后,使它构成一个整式的完全平方式,那么加上的这个单项式可
以是_____________________(写出一个即可)
三、解答题
21.计算题 (每题3分,共30分)
(1) (2)(-6a 2b 5c )÷(-2ab 2)2 (3)、ab b a b a 4)58(2
23÷-
(4) (-2a 2)(3ab 2-5ab 3). (5)(3y +2)(y -4)-3(y -2)(y -3)
(6))32)(32()2(2y x y x y x -+-+ (7) )32)(32(+--+y x y x
(8)、()()()()233232222x y x xy y
x ÷-+-⋅ (10)、(x +3)(x -3)(x 2
-9)
142439x mx ++2342()()n n ⋅
22.分解因式(12分)
① 2
216ay ax - ①a a a 1812223-+-
(3) (x +2)(x -6)+16 (4) 1222-+-b ab a (提示:=(a -b )2-1)
23、解方程或不等式:(6分)
(1)、17)5)(1()1(2=+---x x x (2)、)10(13)13()52(222->++-x x x
24、先化简,再求值:(a +b )(a -2b )-(a +2b )(a -b ),其中a =2, b =-1(6分)
25、(6分)如图,某市有一块长为()b a +3米,宽为()b a +2米的长方形地块,①规划部门计划将阴
影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?①并求出当3=a ,2
=b
时的绿化面积.
附加题.
1、探索:(10分)
11)(1(2-=+-x x x ) 1)1)(1(32-=++-x x x x 1)1)(1(423-=+++-x x x x x 1)1)(1(5234-=++++-x x x x x x ......
①试求122222223456++++++的值 ①判断122222
2200620072008++++++ 的值的个位数是几?
2.已知:m 2=n+2,n 2=m+2;求:m 3-2mn+n 3的值.(10分)。