西城区学习探究诊断_第26章__二次函数
新华东师大版九年级数学下册《26章 二次函数 26.2 二次函数的图象与性质 求二次函数的关系式》教案_6

26.2.7用待定系数法求二次函数表达式学习目标:1、会利用待定系数法求二次函数表达式。
2、学会利用二次函数解决实际问题。
重难点:掌握二次函数的三种表达方式,并能根据实际情况选择适当的形式来求二次函数的表达式。
教学过程:一、复习导入1、求一次函数解析式的方法是什么?先设出函数解析式,再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法。
2、二次函数的一般形式是什么?它有几个待定系数?y=ax2+bx+c(a≠0),有3个待定系数a、b、c3、二次函数的顶点式是什么?它有几个待定系数?y=a(x-h)2+k (a≠0),有3个待定系数a、h、k今天学习用待定系数法求二次函数的解析式。
二、新课讲授例1:已知一个二次函数的图象过点(-1,10)、(1,4)、(0,6)三点,求这个函数的解析式。
教师引导,学生归纳:已知抛物线上任意三点时,通常设为一般式。
思维练习:已知关于x的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=0时,函数值为6,求这个二次函数的解析式.例2:已知抛物线的顶点是(1,2)且过点(2,3),求出对应的二次函数解析式。
教师引导,学生归纳:已知抛物线的顶点与抛物线上另一点时,通常设为顶点式。
思维练习:已知二次函数的图象经过点(2,3),并且当x=1时有最小值2,求出对应的二次函数解析式。
提示:已知条件中的当x=1时有最小值2,也就是抛物线的顶点坐标为(1,2),所以设为顶点式较方便。
巩固练习:1、已知抛物线与x轴两交点坐标为(1,0)、(3,0)且图像过(0,-3),求出对应的二次函数解析式。
2、二次函数的图象过点A(0,5),B(5,0)两点,对称轴为直线x=3,求这个二次函数的解析式.学生完成和评判,教师补充。
三、拓展应用1、引入:已知抛物线y=-x2+4x-3,求它与x轴两交点坐标。
令y=0,则-x2+4x-3=0,解得:x1=1,x2=3∴它与x轴两交点坐标为(1,0),(3,0)。
26.2.2第2课时二次函数y=a(x-h)2的图像和性质课件

(1)函数y=3(x-1)2的图象 与 y=3x2 的 图 象 有 什 么 关 系?它是轴对称图形吗?它 的对称轴和顶点坐标分别 是什么?
y 3x2
y 3x 12
二次函数y=3(x-1)2
与y=3x2的图象形状 相同,可以看作是抛 物线y=3x2整体沿x轴 向右平移了1 个单位
图象是轴对称图形 对称轴是平行于 y轴的直线:x=1.
(x=h)右侧,y随着x的增
轴(x=1)的左侧,当x<1时, y随 着x的增大而增大;在对称轴
y 3x2
称轴是直线:x=1;抛 物线y=-3(x+1)2的
(x=1)右侧,当x>1时, y随着x
X=-1 X=1
顶点是(-1,0);对称轴
的增大而减小.当x=1时,函数
是直线:x=-1.
y的值最大(是0); 抛物线y=-3(x+1)2在对称轴
4.抛物线y=-3(x-1)2可以看作是
(x=-1)的左侧,当x<-1时, y随 抛物线y=-3x2沿x轴向右平移了1
着x的增大而增大;在对称轴 (x=-1)右侧,当x>-1时, y随着 x的增大而减小.当x=-1时,函 数y的值最大(是0).
个单位;抛物线y=-3(x+1)2可以看 作是抛物线y=-3x2沿x轴向左平 移了1个单位.
1.抛物线y=a(x- 二次函数y=a(x-h)2的性质
h)2的顶点是(h,0),
对称轴是平行于y 轴的直线x=h.
X=h
X=h
y ax2
2.当a>0时,抛 物线y=a(x-h)2 在x轴的上方
(除顶点外),它
3.当a>0时,在对称轴 (x=h)的左侧,y随着x的
2015年5月北京市西城区普通中学初三数学-二轮复习研究课-二次函数综合教案

y kx b(k 0) 与图象 N 在第三象限内有两个公共
点 5
作业: 2、已知:关于 x 的一元二次方程-x2+(m+1)x+(m+2)=0 (m>0) . (1)求证:该方程有两个不相等的实数根; (2)当抛物线 y=-x2+(m+1)x+(m+2)经过点(3,0) ,求 该抛物线的表达式; (3)在(2)的条件下,记抛物线 y=-x2+(m+1)x+(m+2) 在第一象限之间的部分 为图象 G,如果直线 y=k(x+1)+4 与图象 G 有公共点,请 结合函数的图象,求直线 y=k(x+1)+4 与 y 轴交点的纵坐标 t 的取值范围. (难点:对于 y=k(x+1)+4 的理解)
y
4 3 2 1 4 3 2 1O 1 2 3 4 1 2 3 4
x
四、提高 (4) : 若将 2 x 3 时的函数图象记为 M, 将图象 M 在 x 轴上方的部分沿 x 轴翻折,图象 M 的其余部分保 持不变,得到一个新图象 N .若经过点 Q (4, 2) 的直线
巩固提高, 难点在于对特殊形 状的图像的理解, 以及边界未知的 确定
思路 3 :将点 A ( -1 , a ) , B ( 3 , a )带入抛物线 求得 m 和 n 的关系式 2m+n=4, y x2 +mx+n ,
再由
4n m 2 4 联立解出 m、n. 4
二、求函数的取值范围 (2) :当 1 x 4 时的函数图象记为 G ,求此时函数 本题关键能运用五点法画出 函数图像,通过数形结合,理解确 定范围与坐标的关系, 由 x 确定 G, 再由 G 对应到 y 轴, 确定 y 的取值 【检测】由自变量求函数值: ① 若 2 x 0 求 y 的取值范围 ② 若 0 x 3 求 y 的取值范围 【变式】由函数值求自变量: ③x 取何值时, y 0 ④x 取何值时, y 3 检测与变式练习, 让学生体会 这一类问题两个不同方向的解法, 强化数形结合的解题意识。 范围。
北京市西城区普通中学2018届初三中考数学复习 二次函数 专题复习练习题 含答案

北京市西城区普通中学2018届初三中考数学复习二次函数 专题复习练习题1.二次函数y =-x 2+bx +c 的图象的最高点是(-1,-3),则b ,c 的值分别是( ) A .b =2,c =4 B .b =2,c =-4 C .b =-2,c =4 D .b =-2,c =-42.如图,二次函数y =x 2+bx +c 的图象过点B(0,-2).它与反比例函数y =-8x的图象交于点A(m ,4),则这个二次函数的表达式为( )A .y =x 2-x -2B .y =x 2-x +2C .y =x 2+x -2D .y =x 2+x +23.已知二次函数图象的对称轴为直线x =-1,函数的最大值为4,且图象经过点(2,-5),则此函数的表达式为________________.4.已知二次函数的图象开口向上,且对称轴在y 轴的右侧,请你写出一个满足条件的二次函数的表达式____________________________________________. 5. 有一个抛物线形桥拱,其最大高度为16 m ,跨度为40 m ,现把它的示意图放在如图所示的平面直角坐标系中,则此抛物线的表达式为______________________.6. 已知二次函数的图象经过原点及点(-12,-14),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的表达式为___________________________________.7.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法中正确的是________.(填序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是x=0.5;④在对称轴左侧,y随x增大而增大.8. 如图,抛物线y=x2+bx+c经过点A(-1,0),B(3,0).请解答下列问题:(1)求抛物线的表达式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE的中点,连结FH,求线段FH的长.9. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式; (2)求截止到几月末公司累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?10.如图,直线y =x +2与抛物线y =ax 2+bx +6(a≠0)相交于点A(12,52)和B(4,m),点P 是线段AB 上异于A 、B 的动点,过点P 作PC⊥x 轴于点D ,交抛物线于点C.(1) 求抛物线的表达式.(2) 是否存在这样的P 点,使线段PC 的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.(3) 求△PAC 为直角三角形时点P 的坐标.11. 分别求出符合下列条件的抛物线y =ax 2的解析式: (1)经过点(-3,2);(2)与y =13x 2开口大小相同,方向相反.12. 二次函数y =ax 2的图象与直线y =2x -1交于点P(1,m). (1)求a ,m 的值;(2)写出二次函数的解析式,并指出x 取何值时,y 随x 的增大而增大?3. 已知二次函数y=mxm2-2.(1)求m的值;(2)当m为何值时,二次函数有最小值?求出这个最小值,并指出x取何值时,y随x的增大而减小;(3)当m为何值时,二次函数的图象有最高点?求出这个最高点,并指出x取何值时,y随x的增大而增大.14. 如图,已知二次函数y=ax2(a≠0)与一次函数y=kx-2的图象相交于A,B两点,其中A(-1,-1),求△OAB的面积.答案: 1. D 2. A3. y =-x 2-2x +34. 答案不唯一,如y =x 2-x ,y =x 2-2x +85. y =-125x 2+85x6. y =x 2+x 或y =-13x 2+13x7. ①③④8. (1) 抛物线的表达式为:y =x 2-2x -3.(2) ∵点E(2,m)在抛物线上,∴m =4-4-3=-3,∴E(2,-3),∴由勾股定理,得BE =(3-2)2+32=10,∵点F 是AE 的中点,抛物线的对称轴与x 轴交于点H ,即H 为AB 的中点,连结BE(图略),则FH 是三角形ABE 的中位线,∴FH =12BE =12×10=102.9. (1)由图象可知其顶点坐标为(2,-2),故可设其函数关系式为:s =a(t -2)2-2.∵所求函数关系式的图象过点(0,0),∴a(0-2)2-2=0,解得a =12.∴s=12(t-2)2-2,即s =12t 2-2t.(2)把s =30代入s =12(t -2)2-2,得12(t -2)2-2=30.解得t 1=10,t 2=-6(舍去).答:截止到10月末公司累积利润可达30万元.(3)把t=7代入关系式,得s =12×72-2×7=10.5,把t =8代入关系式,得s =12×82-2×8=16,16-10.5=5.5.答:第8个月公司所获利润是5.5万元.10. (1)抛物线的表达式为y =2x 2-8x +6.(2)设动点P 的坐标为(n ,n +2),则点C 的坐标为(n ,2n 2-8n +6),∴PC =(n +2)-(2n 2-8n +6)=-2n 2+9n -4=-2(n -94)2+498,∵12<n<4,∴当n =94时,线段PC 最大且为498. (3)∵△PAC 为直角三角形,(ⅰ)若点P 为直角顶点,则∠APC=90°,由题意易知,PC ∥y 轴,∠APC =45°,因此这种情形不存在.(ⅱ)若点A 为直角顶点,则∠PAC =90°,如图①,过点A(12,52)作AN⊥x 轴于点N ,则ON =12,AN =52.过点A 作AM⊥直线AB ,交x 轴于点M ,则由题意易知,△AMN 为等腰直角三角形,∴MN =AN =52,∴OM =ON +MN =12+52=3,∴M(3,0).设直线AM 的表达式为y =kx +b ,则⎩⎪⎨⎪⎧12k +b =52,3k +b =0,解得⎩⎪⎨⎪⎧k =-1,b =3,∴直线AM 的表达式为y =-x +3①,又抛物线的表达式为y =2x 2-8x +6②,联立①②式,解得x =3或x =12(与点A 重合,舍去),∴C(3,0),即点C ,点M 重合,当x =3时,y =x +2=5,∴P 1(3,5).(ⅲ)若点C 为直角顶点,则∠ACP=90°,∴AC ∥x 轴.∵y=2x 2-8x +6=2(x -2)2-2,∴抛物线的对称轴为直线x =2,如图②,作点A(12,52)关于对称轴x =2的对称点C ,则点C 在抛物线上,且C(72,52).当x =72时,y =x +2=112,∴P 2(72,112).∵点P 1(3,5),P 2(72,112)均在线段AB 上,∴综上所述,点P 的坐标为(3,5)或(72,112).11. 解:(1)∵y =ax 2过点(-3,2),∴2=a ·(-3)2,则a =29,∴解析式为y =29x 2(2)∵y =ax 2与抛物线y =13x 2开口大小相同,方向相反,∴a =-13,∴解析式为y =-13x 212. 解:(1)把(1,m)代入y =2x -1 中,得m =1,所以P(1,1),把(1,1)代入y =ax 2中,得a =1(2)y =x 2,当x>0时,y 随x 的增大而增大 13. 解:(1)m =±2(2)m =2,y 最小=0,x <0时,y 随x 的增大而减小(3)m =-2,最高点(0,0),x <0时,y 随x 的增大而增大14. 解:∵点A(-1,-1)在抛物线y =ax 2(a ≠0)上,也在直线y =kx -2上, ∴-1=a ·(-1)2,-1=k ·(-1)-2, 解得a =-1,k =-1,∴两函数的解析式分别为y =-x 2,y =-x -2.由⎩⎪⎨⎪⎧y =-x 2,y =-x -2,解得⎩⎪⎨⎪⎧x 1=-1,y 1=-1,⎩⎪⎨⎪⎧x 2=2,y 2=-4,∴点B的坐标为(2,-4).∵y=-x-2与y轴交于点G,则G(0,-2),∴S△OAB=S△OAG+S△OBG=12×(1+2)×2=3。
数学北师大版九年级下册第26章 《二次函数》小结与复习(1)doc

第26章《二次函数》复习课(1)教学目标:1、理解二次函数的概念,掌握二次函数的图象与性质;2、能确定抛物线的顶点、对称轴、开口方向,3、能较熟练地理解由抛物线y=ax2经过适当平移得到y=a(x-h)2+k的图象。
重点难点:1、重点:掌握二次函数图象的性质与应用。
2、难点:掌握二次函数y=ax2经过适当平移得到y=a(x-h) 2+k的图象。
教学过程:一、知识回顾1、二次函数的概念形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中,_____是自变量,_____是函数表达式的二次项系数,_____是一次项系数,_____是常数项。
2、二次函数的特殊形式:(1) y=ax2 (2) y=ax2+k(2) y=a(x-h)2 (4)y=a(x-h)2+k3、函数的图象及性质抛物线开口方向对称轴顶点坐标最值增减性y=ax2y=ax2+ky =a(x-h)2y =a(x-h)2+k4、抛物线的一般式与顶点式的互化关系:y =ax 2+bx +c ————→y =a(x +b 2a )2+4ac -b24a对称轴:x=-b 2a 顶点坐标:(-b 2a ,4ac -b 24a )5、各种形式的二次函数的关系二、例题:(1)已知函数4m m2x )2m (y -++=是关于x 的二次函数,求:(1)满足条件的y = ax 2y = ax 2+ ky = a (x – h )2y = a ( x – h )2 + k上下平移左右平移上下平移左右平移 结论: 一般地,抛物线 y = a (x -h )2+k 与y = ax 2形状相同,位置不同。
各种形式的二次函数的关系m 值;(2)m 为何值时,抛物线有最低点?求出这个最低点.这时当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,函数有最大值?最大值是什么?这时当x 为何值时,y 随x 的增大而减小?学生活动:学生四人一组进行讨论,并回顾例题所涉及的知识点,让学生代表发言分析解题方法,以及涉及的知识点。
(汇总)华师大版九年级下册数学第26章 二次函数含答案

华师大版九年级下册数学第26章二次函数含答案一、单选题(共15题,共计45分)1、已知二次函数y=3(x﹣1)2+k的图象上有三点A(,y1),B(2,y 2),C(﹣,y3),则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y12、已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b2﹣4ac=0;③a>2;④ax2+bx+c=﹣2的根为x1=x2=﹣1;⑤若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1>y2.其中正确的个数是()A.2B.3C.4D.53、已知二次函数y=ax2+bx+c(a≠0)的图像如图,则下列结论正确的是()A.abc<0B.b 2-4ac<0C.a-b+c<0D.2a+b=04、二次函数y=x2+1的图象大致是( )A. B. C.D.5、将抛物线y=x2﹣2向左平移1个单位后再向上平移1个单位所得抛物线的表达式为()A.y=(x﹣1)2﹣1B.y=(x+1)2﹣1C.y=(x+1)2+1 D.y=(x﹣1)2+16、二次函数有()A.最大值B.最小值C.最大值D.最小值7、抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc<0;②a+b+c>0;③5a-c=0;④当x<或x>6时,y1>y2,其中正确的个数有()A.1B.2C.3D.48、已知二次函数的与的部分对应值如表:-1 0 2 3 45 0 -4 -3 0下列结论:抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④抛物线与轴的两个交点间的距离是;⑤若是抛物线上两点,则,其中正确的个数是()A.2B.3C.4D.59、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a>0,b>0;②c<0,△<0;③c-4b>0;④4a-2b+c=16a+4b+c.其中正确结论的个数是()A.1B.2C.3D.410、设a、b为常数,且b>0,抛物线y=ax2+bx+a2﹣5a﹣6为下列图形之一,则a的值为()A.6或﹣1B.﹣6或 1C.6D.﹣111、二次函数y=ax2+bx+c的图象如图所示,则下列结论:①b2﹣4ac<0;②a﹣b+c>0;③abc>0;④b=2a中,正确的结论的个数是()A.1个B.2个C.3个D.4个12、抛物线y=2x2+4x﹣3的顶点坐标是()A.(1,﹣5)B.(﹣1,﹣5)C. (﹣1,﹣4)D.(﹣2,﹣7)13、将函数的图象向右平移2个单位.再向下平移4个单位.所得图象的对称轴是()A. B. C. D.14、抛物线y=(x-2)2-1的顶点坐标是()A.(-2,1)B.(-2,-1)C.(2,1)D.(2,-1)15、如图,半圆O的直径AB=4,与半圆O内切的小圆O,与AB切于点M,设1的半径为y,AM=x,则y关于x的函数关系式是()⊙O1A. y=x2+xB. y=-x2+xC. y=-x2-xD. y=x 2-x二、填空题(共10题,共计30分)16、已知二次函数y=ax2﹣2ax+c,当﹣3<x<﹣2时,y>0;当3<x<4时,y<0.则a与c满足的关系式是________.17、二次函数的最大值是________.18、已知抛物线y=ax(x+4),经过点A(5,9)和点B(m,9),那么m=________19、已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(-1,-3.2)及部分图象=1.3和(如图),由图象可知关于x的方程ax2+bx+c的两个根分别是x1=________。
北京市西城区2019届中考数学《二次函数》专项复习训练含答案

北京市西城区普通中学2019届初三数学中考复习 二次函数 专项复习训练一、选择题(每小题4分,共32分)1.下列函数中一定是二次函数的是( )A .y =ax 2+bx +cB .y =x 2+3x 3C .y =1x 2+2x +3D .y =2-3x 22.已知抛物线y =(m -1)x 2-mx -m 2+1的图象过原点,则m 的值为( ) A .±1 B .0 C .1 D .-13.在同一平面直角坐标系中,函数y =ax +b 与y =ax 2-bx 的图象可能是( )A B C D4.将抛物线y =x 2-2平移到抛物线y =x 2+2x -2的位置,以下描述正确的是( ) A .向左平移1个单位长度,向上平移1个单位长度 B .向右平移1个单位长度,向上平移1个单位长度 C .向左平移1个单位长度,向下平移1个单位长度 D .向右平移1个单位长度,向下平移1个单位长度5.若函数y =mx 2+(m +2)x +12m +1的图象与坐标轴只有2个公共点,那么m 的值为( )A .0B .0或2C .2或-2D .0,2或-26.抛物线y =x 2+bx +c(其中b ,c 是常数)过点A(2,6),且抛物线的对称轴与线段y =0(1≤x ≤3)有交点,则c 的值不可能是( )A .4B .6C .8D .107.在羽毛球比赛中,某次羽毛球的运动路线可以看作是抛物线y =-14x 2+34x +1的一部分(如图所示,单位:m),则下列说法不正确的是( )A .出球点A 离地面点O 的距离是1 mB .该羽毛球横向飞出的最远距离是3 mC .此次羽毛球最高达到2516mD .当羽毛球横向飞出32m 时,可达到最高点8.如图是抛物线y =ax 2+bx +c(a≠0)的部分图象,其顶点坐标为(1,n),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a -b +c >0;②3a +b =0;③b 2=4a(c -n);④一元二次方程ax 2+bx +c =n -1有两个不相等的实数根.其中正确结论的个数是( )A.1 B.2 C.3 D.4二、填空题(每小题4分,共24分)9.二次函数y=2x2+3x-9的图象与x轴交点的坐标是____________________.10.如图是抛物线y=ax2+bx+c的图象,则由图象可知,不等式ax2+bx+c<0的解集是________.11.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a-2b+c的值为______.12. 科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定科学家经过猜想,推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为________℃.13.已知函数y=x2-2mx+2 017(m为常数)的图象上有三点:A(x1,y1),B(x2,y2),C(x3,y3),其中x1=m-2,x2=m+3,x3=m-1,则y1,y2,y3的大小关系是____________.14.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为________元时,该服装店平均每天的销售利润最大.三、解答题(共44分)15.(10分)如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m 的值和抛物线的表达式;(2)求不等式x 2+bx +c >x +m 的解集.(直接写出答案)16.(10分)杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y =-35x 2+3x +1的一部分,如图所示.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.17.(12分)如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有两道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为S 平方米.(1)求S 与x 的函数关系式及自变量的取值范围;(2)当x 取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,求围成的最大面积.18.(12分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m ≤100)人时,每增加1人,人均收费降低1元;超过m 人时,人均收费都按照m 人时的标准.设景点接待有x 名游客的某团队,收取总费用为y 元. (1)求y 关于x 的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.答案: 一、1---8 DDCCD ABC 二、9. (32,0)和(-3,0)10. -2<x<3 11. 0 12. -113. y 3<y 1<y 2 14. 22 三、15. (1)∵直线y =x +m 经过点A(1,0),∴0=1+m.∴m=-1.∴y=x -1.∵抛物线y =x 2+bx +c 经过点A(1,0),B(3,2),∴⎩⎪⎨⎪⎧0=1+b +c ,2=9+3b +c ,解得⎩⎪⎨⎪⎧b =-3,c =2.∴抛物线的表达式为y =x 2-3x +2 (2)x<1或x>316. (1)y =-35x 2+3x +1=-35(x -52)2+194.故函数的最大值是194,∴演员弹跳离地面的最大高度是194米(2)当x =4时,y =-35×42+3×4+1=3.4=BC.∴这次表演成功17. (1)∵AB=x ,∴BC =24-4x ,∴S =AB·BC=x(24-4x)=-4x 2+24x(0<x <6)(2)S =-4x 2+24x =-4(x -3)2+36,∵0<x <6,∴当x =3时,花圃的面积最大,最大为36平方米(3)∵⎩⎪⎨⎪⎧24-4x≤8,24-4x >0,∴4≤x <6,∴当x =4时,花圃的面积最大,最大为32平方米18. (1)y =⎩⎪⎨⎪⎧120x (0<x≤30),[120-(x -30)]x (30<x≤m),[120-(m -30)]x (x >m ).(2)由(1)可知当0<x≤30或x >m 时,函数值y 都是随着x 的增大而增大的,当30<x≤m 时,y =-x 2+150x =-(x -75)2+5 625,∵a =-1<0,∴当x≤75时,y 随着x 的增大而增大,∴为了让收取的总费用随着团队中人数的增大而增大,m 的取值范围为30<m≤752019-2020学年数学中考模拟试卷一、选择题1.某公司2018年获利润1000万元,计划到2020年年利润达到1210万元设该公司的年利润平均增长率为x,下列方程正确的是()A.1000(1+x)2=1210B.1210(1+x)2=1000C.1000(1+2x)=1210D.1000+10001+x)+1000(1+x)2=12102.某超市设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额超过30元的概率为()A.12B.13C.23D.143.一个塑料袋丢弃在地上的面积约占0.023m2,如果100万个旅客每人丢一个塑料袋,那么会污染的最大面积用科学记数法表示是()A.2.3×104m2B.2.3×106m2C.2.3×103m2D.2.3×10﹣2m24.要使有意义,则x应该满足()A.0≤x≤3B.0<x≤3且x≠1C.1<x≤3D.0≤x≤3且x≠15.如图,在平面直角坐标系中直线与x轴,y轴分别交于A、B两点,C是OB的中点,D是线段AB上一点,若CD=OC,则点D的坐标为()A.(3,9)B.(3,)C.(4,8)D..(4,7)6.反比例函数myx=的图像在第二、四象限内,则点(,1)m-在()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,AB是⊙O的直径,点C是圆上任意一点,点D是AC中点,OD交AC于点E,BD交AC于点F,若BF=1.25DF,则tan∠ABD的值为()A .23B C .35D .8.下列运算正确的是( ) A .ab•ab=2abB .(3a )3=9a 3C .3(a≥0)D =9.如图,△ABC 中,AB=AC=15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为21,则BC 的长为( )A.16B.14C.12D.610.若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则-a b 的值为( )A.1B.3C.14-D.7411.数学课上,老师提出问题:“一次函数的图象经过点A (3,2),B (-1,-6),由此可求得哪些结论?”小明思考后求得下列4个结论:①该函数表达式为y=2x-4;②该一次函数的函数值随自变量的增大而增大;③点P (2a ,4a-4)在该函数图象上;④直线AB 与坐标轴围成的三角形的面积为8.其中错误的结论是( ) A .①B .②C .③D .④12.如图,已知AB=8,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE ,点P ,C ,E 在一条直线上,∠DAP=60°.M ,N 分别是对角线AC ,BE 的中点.当点P 在线段AB 上移动时,点M ,N 之间的距离最短为( ).A .B .C .2D .3二、填空题13.定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线被称为:“直角抛物线”.如图,直线l :y =15x+b 经过点M(0,14),一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3),…B n (n ,y n ) (n 为正整数),依次是直线l 上的点,第一个抛物线与x 轴正半轴的交点A 1(x 1,0)和A 2(x 2,0),第二个抛物线与x 轴交点A 2(x 2,0)和A 3(x 3,0),以此类推,若x 1=d(0<d <1),当d 为_____时,这组抛物线中存在直角抛物线.14.如图,已知△ABO 顶点A (-3,6),以原点O 为位似中心,把△ABO 缩小到原来的13,则与点A 对应的点A'的坐标是________.15.已知二元一次方程组5351x y x y -=⎧⎨+=⎩的解是方程kx -8y -2k +4=0的解,则k 的值为____.16.因式分解:32a a +=______. 17.关于x 的方程=3的解为_____.18.如图,矩形ABCD 周长为30,经过矩形对称中心O 的直线分别交AD ,BC 于点E ,F .将矩形沿直线EF 翻折,A′B′分别交AD ,CD 于点M ,N ,B'F 交CD 于点G .若MN :EM =1:2,则△DMN 的周长为_____.三、解答题 19.先化简分式(311x x x x --+)÷21xx -,再从不等式组3(2)24251x x x x --≥⎧⎨-<+⎩的解集中取一个非负整数值代入,求原分式的值.20.阅读下列材料,解决问题:12345678987654321这个数有这样一个特点:各数位上的数字从左到右逐渐增大(由1到9,是连续的自然数),到数9时,达到顶峰,以后又逐渐减小(由9到1),它活像一只橄榄,我们不妨称它为橄榄数.记第一个橄榄数为a 1=1,第二个橄榄数为a 2=121,第三个橄榄数为a 3=12321……有趣的是橄榄数还是一个平方数,如1=12,121=112,12321=1112,1234321=11112……而且,橄榄数可以变形成如下对称式:1111⨯=2222121121⨯=++3333331232112321⨯=++++……根据以上材料,回答下列问题(1)11111112= ;将123454321变形为对称式:123454321= .(2)一个两位数(十位大于个位),交换其十位与个位上的数字,得到一个新的两位数,将原数和新数相加,就能得到橄榄数121,求这个两位数.(3)证明任意两个橄榄数a m ,a n 的各数位之和的差能被m ﹣n 整除(m =1,2…9,n =1,2…9,m >n ) 21.某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据:从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下: 甲班65 75 75 80 60 50 75 90 85 65 乙班90 55 80 70 55 70 95 80 65 70(2)整理描述数据:按如下分数段整理、描述这两组样本数据:在表中:m=______,n=______. (3)分析数据:①两组样本数据的平均数、中位数、众数如表所示: 在表中:x=______,y=______.②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有______人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.22.如图,在平面直角坐标系中,直线y=34x+6与x、y轴分别交于点A,点B,双曲线的解析式为kyx=(1)求出线段AB的长(2)在双曲线第四象限的分支上存在一点C,使得CB⊥AB,且CB=AB,求k的值;(3)在(1)(2)的条件下,连接AC,点D为BC的中点,过D作AC的垂线BF,交AC于B,交直线AB于F,连AD,若点P为射线AD上的一动点,连接PC、PF,当点P在射线AD上运动时,PF2-PC2的值是否发生改变?若改变,请求出其范围;若不变,请证明并求出定值。
北京市西城区九年级上册《二次函数》教材分析

北京市西城区九年级上册《二次函数》教材分析第 - 2 - 页第 - 3 - 页象和性质,二次函数与一元二次方程的联系,用二次函数的图象和性质解决实际问题.教学重点:二次函数的图象和性质及其应用.教学难点:①二次函数与一元二次方程的联系;②运用数形结合的数学思想解决二次函数问题.三、本章的学习目标1.通过对实际问题的分析,体会二次函数的意义.2.会用描点法画出二次函数的图象,通过图象了解二次函数的性质.3.会用配方法将数字系数的二次函数的表达式化为y=a(x h)2+k的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单实际问题.4.会利用二次函数的图象求一元二次方程的近似解.第 - 4 - 页5.*知道给定不共线三点的坐标可以确定一个二次函数.四、考试说明要求A层次B层次C层次了解二次函数的意义;会用描点法画出二次函数的图象;通过图象了解二次函数的性质;会用配方法将数字系数的二次函数的表达式转化为y=a(x h)2+k的形式;会利用二次函数的图象求一元二次方程的近似解. 能根据已知条件确定二次函数的表达式;能确定二次函数图象的开口方向;能用配方法确定二次函数图象的顶点坐标和对称轴.运用二次函数的有关内容解决有关问题.五、本章的知识结构第 - 5 - 页第 - 6 - 页六、课时安排:本章教参安排为12课时,实际教学约需15课时,可分配如下(仅供参考):22.1二次函数的图象和性质(共8课时)二次函数的概念 (1课时)二次函数y =ax 2的图象和性质 (1课时)二次函数y =ax 2+c 的图象和性质(1课时)二次函数y =a (x -h )2的图象和性质 (1课时)二次函数y = a (x -h )2+k 的图象和性质(1课时)二次函数y =ax 2+bx +c 的图象和性质 实际问题 二次函数 利用二次函数的图象和性质求解实际问题的答案 目标二次函数的解析式二次函数的图象 二次函数的性质描点画图图象特征几何变换函数最值 函数增减性 函数对称性(1课时)二次函数解析式的确定(2课时)22.2二次函数与一元二次方程(共1课时)22.3实际问题与二次函数(共4课时)实际问题与二次函数(2课时)二次函数综合问题(2课时)数学活动与小结(共2课时)七、教学建议1. 注重研究函数的方法教学,为学生探究具体新函数积累数学活动经验学生已经学习了函数的有关概念,及具体的初等函数---一次函数和反比例函数,本章是学生第三次研究具体函数的过程,应该让学生建立在已有研究经验的基础上,体会函数思想,掌握研究函数的一般方法.教材安排学习函数过程大致包括以下内容:(1)通过具体实例认识这种函数;(2)研究这种函数的图象和性质;(3)探索这种函数与相应方程(不等式)的关系;(4)利用这种函数解决实际问题.第 - 7 - 页2.注意由浅入深、循序渐进地理解二次函数的概念对二次函数的概念有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则,分三步来展开这部分的内容.第一步,从学生熟悉问题背景引入相应的二次函数入手,由具体到一般,建立二次函数的概念.第二步,利用变换的观点研究二次函数的图象,通过函数图象研究二次函数的性质,体现函数解析式与图象的关系.第三步,在二次函数模型的应用过程中,通过建立二次函数模型以及模型的求解,更全面地体会二次函数的本质.教学中,要让学生经历知识发生发展的全过程,引导学生用好节前问题、探究、思考、归纳等教材设计的环节,给学生充分的自主探究时间,让学生真正理解函数概念,提升学习能力.3. 注重数学思想方法的教学本章教学始终沿着由特殊到一般的研究思路,一般二次函数的图象和性质是从最简单的二第 - 8 - 页次函数y=x2出发逐步深入探讨的.类比思想在研究的过程中多次体现,对于y=ax2的研究分a>0和a<0,研究完a>0的情况,a<0的情况就可以类比a>0的情况进行讨论.数形结合的思想贯穿二次函数讨论的始终,每一个二次函数的研究都展现了从解析式到图象,再从图象到性质的过程.另外,利用函数模型解决实际问题是数学应用的一个重要方面,利用好本章的实际问题背景,培养学生的数学建模的思想.八、具体内容建议(一) 二次函数的概念概念的引入要突出过程,引导学生从丰富的实例中列出函数关系式,观察共性,归纳概念的本质特征,在整个过程中,要给学生充分的观察、比较、分析、概括的时间,要让学生体验到二次函数与生活的紧密联系.另外,通过本节课的教学,可以再次熟悉列函数关系式的方法,突出方程思想,为实际问题与二次函数的学习奠定基础.(二) 二次函数的图象和性质第 - 9 - 页第 - 10 - 页 y =ax 2的图象和性质的教学是二次函数教学的基础,要把这节课作为一节新函数的探究过程,如何画图,如何看图,如何归纳性质,都是本节它函数就可以类比研究了.作图方法:五点法图象特征:图象形状、开口方向、开口大小、对称轴、顶点(最高点、最低点)函数性质:对称性、增减性和最值 y =ax 2的图象和性质a >0 a <0示意图图象形状抛物线 开口向上开口向下 y =x 2 y =ax 2(a y =ax 2+k y =a (x -y =a (x -y =ax 2+bx 目几何几何x y O x y O开口a 越大,开口越小;a 越小, 开口越大. 对称轴y 轴(直线x=0) 顶点坐标最低点(0,0) 最高点(0,0) 最值 当x =0时,y 有最小值是0. 当x =0时,y 有最大值是0.增减性 当x ≤0时,y 随x 的增大而减小;当x >0时,y 随x 的增大而增大. 当x ≤0时,y 随x 的增大而增大,当x >0时,y 随x的增大而减小.例题与练习:1.确定下列二次函数图象的开口方向、对称轴和顶点坐标.①25y x =-;②2152y x =+;③23(4)y x =-+;④24(2)7y x =+-. 2.写出下列抛物线的开口方向、对称轴和顶点坐标.①x x y 232+= ②x x y 22+-= ③8822-+-=x x y ④34212+-=x x y3. 已知二次函数223=--y x x(1)把它变为2=-+的形y a x h k()式:_________________________________(2)它的图象是抛物线2y x=向_______平移______个单位长度,又向______平移______个单位长度后得到的.(3)它的图象与x轴的交点坐标为_______________,与y轴的交点坐标为_______________(4)它的图象开口方向为________________ (5)对称轴方程为________________,顶点坐标为________________(6)x的取值范围为________时,y随x的增大而增大;x的取值范围为________时,y随x的增大而减小(7)当x__________时,y>0 ; x________时,y=0 ; x_________时,y<0(8)当x=__________时,y有最_______值,这个最____值是____________________(9)当-3<x<3时,观察图象直接写出函数值y 的取值的范围________________(三)二次函数y=ax2+bx+c (a≠0)图象的变换——平移、对称、旋转平移:函数y=ax2+bx+c (a≠0)图象的平移要抓住顶点的平移(也可以是其它关键点的平移),a 不变翻折:要抓住顶点的变化及其它关键点的变化.*结论:抛物线y=ax2+bx+c关于x轴对称的抛物线解析式是y= -ax2-bx-c抛物线y=ax2+bx+c关于y轴对称的抛物线解析式是y= ax2-bx+c旋转:绕某一定点旋转180°:要抓住顶点的变化,a取相反数.结论:抛物线y=a(x-h)2+k绕顶点旋转180°后的解析式为y= -a(x-h)2+k例题与练习:1.将抛物线y=-2x2向上平移1个单位,得到的抛物线是( )A. y =-2(x +1)2B. y =-2(x -1)2C. y =-2x 2+1D. y =-2x 2-12.将抛物线233y x 向右平移3个单位长度,得到新抛物线的表达式为( ) A .2333y x B .23y x C .2332y x D .236y x3. 将抛物线22x y =向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )A .5)3(22--=x y B .5)3(22++=x y C .5)3(22+-=x y D .5)3(22-+=x y4.将二次函数y=x 2+2x ﹣1的图象沿x 轴向右平移2个单位长度,得到的函数表达式是( )A .y =(x +3)2﹣2B .y =(x +3)2+2C .y =(x ﹣1)2+2D .y =(x ﹣1)2﹣25.抛物线5422---=x xy 经过平移得到22x y -=,平移方法是( )A .向左平移1个单位,再向下平移3个单位B .向左平移1个单位,再向上平移3个单位C .向右平移1个单位,再向下平移3个单位D .向右平移1个单位,再向上平移3个单位 6.将抛物线221216y x x =-+绕它的顶点旋转180°,所得抛物线的解析式是( ).A .221216y x x =--+B .221216y x x =-+-C .221219y x x =-+-D .221220y x x =-+-7.将抛物线12+=x y 绕原点O 旋转180°,则旋转后抛物线的解析式为( )A. 2x y -=B. 12+-=x yC. 12-=x yD. 12--=x y 8.设二次函数2143y x x =-+的图象为C 1.二次函数22(0)y ax bx c a =++≠的图象与C 1关于y 轴对称. (1)求二次函数22y ax bx c =++的解析式; (2)当3x -<≤0时,直接写出2y 的取值范围; (3)设二次函数22(0)y ax bx c a =++≠图象的顶点为点A ,与y 轴的交点为点B ,一次函数3y kx m =+( k ,m 为常数,k ≠0)的图象经过A ,B 两点,当23y y <时,直接写出x 的取值范围.(四) 确定二次函数解析式 一般式:y =ax 2+bx +c (a ≠0) 顶点式:y =a (x -h )2+k (a ≠0)交点式(双根式):y =a (x -x 1)( x -x 2) (a ≠0) , 其中x1、x2是抛物线与x轴交点的横坐标用待定系数法确定抛物线的解析式一般需要两个或三个独立条件,灵活的选用不同方法设并求出抛物线的解析式是解与抛物线相关问题的关键.例题与练习:1.已知二次函数的图象过(1,0),(-1,-4)和(0,-3)三点,求这个二次函数解析式.2. 抛物线的顶点坐标是(1,-4),且与x轴的交点坐标是(-1,0). 求这个二次函数解析式.3. 已知二次函数的图象与x轴交点的横坐标分别是x1=-3,x2=1,且与y轴交点为(0,-3),求这个二次函数解析式.4.已知抛物线与x轴的交点坐标是(-1,0),(-3,0)且函数有最小值-5.求这个二次函数解析式.5. 抛物线过(-1,-1)点,它的对称轴是直线x+2=0,且在x轴上截得线段的长度为4,求此抛物线的解析式.6. 抛物线22平移后经过点(0,3)y xB,求平移A,(2,3)后的抛物线的表达式.(五)a,b,c的符号对抛物线形状位置的影响a的符号开口方向b的符号对称轴的位置:对称轴在y轴左侧⇔a,b同号;对称轴在y轴右侧⇔a,b异号;b=0⇔caxy+=2⇔对称轴是y轴.c的符号与y轴交点位置:c>0⇔抛物线与y轴交点在y轴正半轴;c<0⇔抛物线与y轴交点在y轴负半轴;c=0⇔抛物线bxaxy+=2⇔抛物线过原点.△的符号与x轴交点个数:△>0⇔抛物线与x轴有两个交点(x1, 0), (x2, 0);△=0⇔抛物线与x轴有一个交点(ab2-, 0);△<0⇔抛物线与x轴没有交点.例题与练习:1.对于抛物线2y ax bx c=++(0≠a)(1)若顶点是原点,则;(2)若经过原点,则;(3)若顶点在y轴上,则;(4)若顶点在x 轴上,则 ;(5)若抛物线与x 轴有两个交点, 则 ;(6)若抛物线与x 轴有一个交点, 则 ;(7)若抛物线与x 轴没有交点, 则 ;(8)若经过(1,0)点,则 ; 若经过(-1,0)点,则 ;(9)若函数值恒为正,则________________;若函数值恒为负,则__________________.2. 如图,二次函数)0(2≠++=a c bx ax y 的图象的对称轴是直线x =1,则下列结论,①b 2>4ac ②2a +b =0;③a +b +c >0,④a -b +c <0,⑤当x >1时,y 随x 的增大而减小,⑥b c 32<;其中正确的有 .3.已知二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表:x ﹣1 0 1 3y ﹣3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为x =1;③当x <1时,函数值y 随x 的增大而增大;④方程ax 2+bx+c=0有一个根大于4,其中正确的结论有( )A .1个B .2个C .3个D .4个4.如图,抛物线2y ax bx c =++过点()1,0-,且对称轴为直线1x =,有下列结论: ①0abc <;②1030a b c ++>;③抛物线经过点()14,y 与点()23,y -,则12y y >;④无论,,a b c 取何值,抛物线都经过同一个点,0c a ⎛⎫- ⎪⎝⎭;⑤20am bm a ++≥,其中所有正确的结论是 . 5.如图,抛物线2y ax bx c =++(0a ≠)的对称轴为直线2x =-,与x 轴的一个交点在(3,0)-和(4,0)-之间,其部分图象如图所示,则下列结论:①40a b -=;②0c <;x y O 1-1③30a c -+>;④242a b atbt ->+(t 为实数);⑤点19(,)2y -,25(,)2y -,31(,)2y -是该抛物线上的点,则123y y y <<,正确的个数有( )A .4个B .3个C .2个D .1个6.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1,其中正确的是( )A . ①②③B . ①③④C .①③⑤D .②④⑤(六)二次函数与一元二次方程、一元二次不等式的关系(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x= x0时,函数的值是0,因此x= x0是一元二次方程ax2+bx+c=0的一个根.二次函数y=ax2+bx+c(a≠0)一元二次方程ax2+bx+c=0(a≠0)从形的角度从数的角度抛物线y=ax2+bx+c与x 轴有公共点,公共点的横坐标是x0当x= x0时,函数的值是0x= x0是一元二次方程ax2+bx+c=0的一个根(2)二次函数y=ax2+bx+c(a≠0)的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点,这对应着一元二次方程ax2+bx+c=0根的三种情况(没有实数根,有两个相等的实数根,有两个不相等的实数根)及一元二次方程ax2+bx+c=0根的判别式的三种情况.二次函数y=ax2+bx+c(a≠0)的图象与x轴的位置关系一元二次方程ax2+bx+c=0(a≠0)根的情况一元二次方程ax2+bx+c=0(a≠0)根的判别式没有公共点没有实数根△<0有一个公共点有两个相等的实数根△=0有两个公共点有两个不相等的实数根△>0(3)二次函数与一元二次方程、二次不等式的关系二次函数y=ax2+bx+c (a>0)的图象示意图一元二次方程ax2+bx+c=0(a>0)的根的情况*不等式ax2+bx+c>0(a>0)的解集*不等式ax2+bx+c<0(a>0)的解集△>0有两个不相等的实x<x1或x>x2x1<x<x2(x1<x2)O xyy(4)利用二次函数的图象求一元二次方程的近似解例题与练习:1. 下表是一组二次函数235yx x 的自变量x 与函数值y 的对应值: x 11.1 1.2 1.3 1.4 y 10.49 0.04 0.59 1.16 那么方程2350x x 的一个近似解是( )A. 1B. 1.1C. 1.2D. 1.3数根x 1,x 2 (x 1<x 2) △=0有两个相等的实数根x 1,x 2 x≠x 1 (x 1=x 2) 无解 △<0无实数根 x 取任意实数 无解x O y y 3212. 二次函数2(0)y ax bx c a =++≠的图象如图所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根; (2)写出不等式20axbx c ++>的解集; (3)写出y 随x 的增大而减小的自变量x 的取值范围; (4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.3.如图,抛物线2y ax =与直线y =bx +c 的两个交点坐标分别为()2,4A -,()1,1B ,则关于x 的方程20ax bx c --=的解为_____________.4.若1x 、2x (12x x <)是方程()()1x a x b --=(a b <)的两个根, 则实数1x 、2x 、a 、b 的大小关系是 .5.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,a ≠0).则方程2(2)0a x m b +++=的解是 .6. 如果关于x 的函数2(2)1y ax a x a =++++的图象与x 轴只有一个公共点,求实数a 的值.7. 已知二次函数c x x y ++=22. (1)当c =-3时,求出该二次函数的图象与x 轴的交点坐标;(2)若-2<x <1时,该二次函数的图象与x轴有且只有一个交点,求c 的取值范围.(七)实际问题与二次函数1、最值问题根据实际问题的题意所求的函数关系式是二次函数,再解决最值问题:步骤:①列出函数解析式;②求自变量x 的取值范围; ③求a b x 2-=的值; ④判断a b x 2-=的值是否在x 的取值范围中: 若在,a b ac y 442-=最值;若不在,利用图象在端点处找最值或利用增减性找最值.2、抛物线形问题①建立适当的平面直角坐标系;②根据题意将已知条件翻译成已知点的坐标;(注意点在各象限中的符号)③求出抛物线的解析式;④利用解析式解决实际问题.例题与练习:1.如图,有长为30m 的铁丝网,一面利用墙(墙的最大可用长度为10m ),围成中间隔有一道铁丝网(平行于AB )的矩形花圃,设花圃一边AB 的长为x m ,花圃的面积为y m ².(1)求y 与x 的函数关系式(2)AB 为多长时,花圃的面积为63cm 22.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y (个)与销售单价x (元)有如下关系:y =﹣x +60(30≤x ≤60).设这种双肩包每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? CA D B(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?3. 如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20米,如果水位上升3米,则水面CD 的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?(八)与二次函数有关的代数综合题1.(15年27). 在平面直角坐标系xOy 中,过点(0,2)且平行于x 轴的直线,与直线1y x =-交于点A ,点A 关于直线1x =的对称点为B ,抛物线21:C y x bx c =++经过点A ,B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十六章 二次函数测试1 二次函数y =ax 2及其图象学习要求1.熟练掌握二次函数的有关概念.2.熟练掌握二次函数y =ax 2的性质和图象.课堂学习检测一、填空题1.形如____________的函数叫做二次函数,其中______是目变量,a ,b ,c 是______且______≠0.2.函数y =x 2的图象叫做______,对称轴是______,顶点是______.3.抛物线y =ax 2的顶点是______,对称轴是______.当a >0时,抛物线的开口向______;当a <0时,抛物线的开口向______.4.当a >0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______.5.当a <0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______. 6.写出下列二次函数的a ,b ,c .(1)23x x y -= a =______,b =______,c =______. (2)y =πx 2a =______,b =______,c =______.(3)105212-+=x x ya =______,b =______,c =______. (4)2316x y --= a =______,b =______,c =______.7.抛物线y =ax 2,|a |越大则抛物线的开口就______,|a |越小则抛物线的开口就______.8.二次函数y =ax 2的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)y =2x 2如图( );(2)221x y =如图( ); (3)y =-x 2如图( ); (4)231x y -=如图( );(5)291x y =如图( );(6)291x y -=如图( ).9.已知函数,232x y -=不画图象,回答下列各题.(1)开口方向______; (2)对称轴______; (3)顶点坐标______;(4)当x ≥0时,y 随x 的增大而______; (5)当x ______时,y =0;(6)当x ______时,函数y 的最______值是______.10.画出y =-2x 2的图象,并回答出抛物线的顶点坐标、对称轴、增减性和最值.综合、运用、诊断一、填空题11.在下列函数中①y =-2x 2;②y =-2x +1;③y =x ;④y =x 2,回答:(1)______的图象是直线,______的图象是抛物线. (2)函数______y 随着x 的增大而增大. 函数______y 随着x 的增大而减小. (3)函数______的图象关于y 轴对称. 函数______的图象关于原点对称. (4)函数______有最大值为______. 函数______有最小值为______.12.已知函数y =ax 2+bx +c (a ,b ,c 是常数).(1)若它是二次函数,则系数应满足条件______. (2)若它是一次函数,则系数应满足条件______. (3)若它是正比例函数,则系数应满足条件______.13.已知函数y =(m 2-3m )122--m m x的图象是抛物线,则函数的解析式为______,抛物线的顶点坐标为______,对称轴方程为______,开口______. 14.已知函数y =m 222+-m m x+(m -2)x .(1)若它是二次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. (2)若它是一次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. 15.已知函数y =m mm x+2,则当m =______时它的图象是抛物线;当m =______时,抛物线的开口向上;当m =______时抛物线的开口向下.二、选择题16.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( ) A .y =x (x +1) B .xy =1C .y =2x 2-2(x +1)2D .132+=x y17.在二次函数①y =3x 2;②2234;32x y x y ==③中,图象在同一水平线上的开口大小顺序用题号表示应该为( )A .①>②>③B .①>③>②C .②>③>①D .②>①>③ 18.对于抛物线y =ax 2,下列说法中正确的是( )A .a 越大,抛物线开口越大B .a 越小,抛物线开口越大C .|a |越大,抛物线开口越大D .|a |越小,抛物线开口越大 19.下列说法中错误的是( )A .在函数y =-x 2中,当x =0时y 有最大值0B .在函数y =2x 2中,当x >0时y 随x 的增大而增大C .抛物线y =2x 2,y =-x 2,221x y -=中,抛物线y =2x 2的开口最小,抛物线y=-x 2的开口最大D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点三、解答题20.函数y =(m -3)232--m mx 为二次函数.(1)若其图象开口向上,求函数关系式;(2)若当x >0时,y 随x 的增大而减小,求函数的关系式,并画出函数的图象.拓展、探究、思考21.抛物线y =ax 2与直线y =2x -3交于点A (1,b ).(1)求a ,b 的值;(2)求抛物线y =ax 2与直线y =-2的两个交点B ,C 的坐标(B 点在C 点右侧); (3)求△OBC 的面积.22.已知抛物线y =ax 2经过点A (2,1).(1)求这个函数的解析式;(2)写出抛物线上点A 关于y 轴的对称点B 的坐标; (3)求△OAB 的面积;(4)抛物线上是否存在点C ,使△ABC 的面积等于△OAB 面积的一半,若存在,求出C 点的坐标;若不存在,请说明理由.测试2 二次函数y =a (x -h )2+k 及其图象学习要求掌握并灵活应用二次函数y =ax 2+k ,y =a (x -h )2,y =a (x -h )2+k 的性质及图象.课堂学习检测一、填空题1.已知a ≠0,(1)抛物线y =ax 2的顶点坐标为______,对称轴为______. (2)抛物线y =ax 2+c 的顶点坐标为______,对称轴为______. (3)抛物线y =a (x -m )2的顶点坐标为______,对称轴为______.2.若函数122)21(++-=m m xm y 是二次函数,则m =______.3.抛物线y =2x 2的顶点,坐标为______,对称轴是______.当x ______时,y 随x 增大而减小;当x ______时,y 随x 增大而增大;当x =______时,y 有最______值是______. 4.抛物线y =-2x 2的开口方向是______,它的形状与y =2x 2的形状______,它的顶点坐标是______,对称轴是______.5.抛物线y =2x 2+3的顶点坐标为______,对称轴为______.当x ______时,y 随x 的增大而减小;当x =______时,y 有最______值是______,它可以由抛物线y =2x 2向______平移______个单位得到.6.抛物线y =3(x -2)2的开口方向是______,顶点坐标为______,对称轴是______.当x ______时,y 随x 的增大而增大;当x =______时,y 有最______值是______,它可以由抛物线y =3x 2向______平移______个单位得到.二、选择题7.要得到抛物线2)4(31-=x y ,可将抛物线231x y =( )A .向上平移4个单位B .向下平移4个单位C .向右平移4个单位D .向左平移4个单位8.下列各组抛物线中能够互相平移而彼此得到对方的是( ) A .y =2x 2与y =3x 2 B .2212+=x y 与2122+=x yC .y =2x 2与y =x 2+2D .y =x 2与y =x 2-2 9.顶点为(-5,0),且开口方向、形状与函数231x y -=的图象相同的抛物线是( )A .2)5(31-=x yB .5312--=x yC .2)5(31+-=x yD .2)5(31+=x y三、解答题10.在同一坐标系中画出函数=+=221,321y x y 3212-x 和2321x y =的图象,并说明y 1,y 2的图象与函数221x y =的图象的关系.11.在同一坐标系中,画出函数y 1=2x 2,y 2=2(x -2)2与y 3=2(x +2)2的图象,并说明y 2,y 3的图象与y 1=2x 2的图象的关系.综合、运用、诊断一、填空题12.二次函数y =a (x -h )2+k (a ≠0)的顶点坐标是______,对称轴是______,当x =______时,y 有最值______;当a >0时,若x ______时,y 随x 增大而减小. 1314.抛物线1)3(212-+-=x y 有最______点,其坐标是______.当x =______时,y 的最______值是______;当x ______时,y 随x 增大而增大.15.将抛物线231x y =向右平移3个单位,再向上平移2个单位,所得的抛物线的解析式为______.二、选择题16.一抛物线和抛物线y =-2x 2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为( ) A .y =-2(x -1)2+3 B .y =-2(x +1)2+3 C .y =-(2x +1)2+3 D .y =-(2x -1)2+317.要得到y =-2(x +2)2-3的图象,需将抛物线y =-2x 2作如下平移( )A .向右平移2个单位,再向上平移3个单位B .向右平移2个单位,再向下平移3个单位C .向左平移2个单位,再向上平移3个单位D .向左平移2个单位,再向下平移3个单位三、解答题18.将下列函数配成y =a (x -h )2+k 的形式,并求顶点坐标、对称轴及最值.(1)y =x 2+6x +10 (2)y =-2x 2-5x +7(3)y =3x 2+2x (4)y =-3x 2+6x -2(5)y =100-5x 2 (6)y =(x -2)(2x +1)拓展、探究、思考19.把二次函数y =a (x -h )2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数1)1(212-+=x y 的图象.(1)试确定a ,h ,k 的值;(2)指出二次函数y =a (x -h )2+k 的开口方向、对称轴和顶点坐标.测试3 二次函数y =ax 2+bx +c 及其图象学习要求掌握并灵活应用二次函数y =ax 2+bx +c 的性质及其图象.课堂学习检测一、填空题1.把二次函数y =ax 2+bx +c (a ≠0)配方成y =a (x -h )2+k 形式为______,顶点坐标是______,对称轴是直线______.当x =______时,y 最值=______;当a <0时,x ______时,y 随x 增大而减小;x ______时,y 随x 增大而增大.2.抛物线y =2x 2-3x -5的顶点坐标为______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大.3.抛物线y =3-2x -x 2的顶点坐标是______,它与x 轴的交点坐标是______,与y 轴的交点坐标是______.4.把二次函数y =x 2-4x +5配方成y =a (x -h )2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______.5.已知二次函数y =x 2+4x -3,当x =______时,函数y 有最值______,当x ______时,函数y 随x 的增大而增大,当x =______时,y =0.6.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______.7.抛物线y =2x 2先向______平移______个单位就得到抛物线y =2(x -3)2,再向______平移______个单位就得到抛物线y =2(x -3)2+4.二、选择题8.下列函数中①y =3x +1;②y =4x 2-3x ;;422x xy +=③④y =5-2x 2,是二次函数的有( ) A .② B .②③④ C .②③ D .②④9.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( )A .向下,(0,4)B .向下,(0,-4)C .向上,(0,4)D .向上,(0,-4) 10.抛物线x x y --=221的顶点坐标是( ) A .)21,1(- B .)21,1(- C .)1,21(-D .(1,0)11.二次函数y =ax 2+x +1的图象必过点( )A .(0,a )B .(-1,-a )C .(-1,a )D .(0,-a )三、解答题12.已知二次函数y =2x 2+4x -6.(1)将其化成y =a (x -h )2+k 的形式;(2)写出开口方向,对称轴方程,顶点坐标; (3)求图象与两坐标轴的交点坐标; (4)画出函数图象;(5)说明其图象与抛物线y =x 2的关系; (6)当x 取何值时,y 随x 增大而减小; (7)当x 取何值时,y >0,y =0,y <0;(8)当x 取何值时,函数y 有最值?其最值是多少? (9)当y 取何值时,-4<x <0;(10)求函数图象与两坐标轴交点所围成的三角形面积.综合、运用、诊断一、填空题13.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线的顶点是原点,则____________;(2)若抛物线经过原点,则____________;(3)若抛物线的顶点在y轴上,则____________;(4)若抛物线的顶点在x轴上,则____________.14.抛物线y=ax2+bx必过______点.15.若二次函数y=mx2-3x+2m-m2的图象经过原点,则m=______,这个函数的解析式是______.16.若抛物线y=x2-4x+c的顶点在x轴上,则c的值是______.17.若二次函数y=ax2+4x+a的最大值是3,则a=______.18.函数y=x2-4x+3的图象的顶点及它和x轴的两个交点为顶点所构成的三角形面积为______平方单位.19.抛物线y=ax2+bx(a>0,b>0)的图象经过第______象限.二、选择题20.函数y=x2+mx-2(m<0)的图象是( )21.抛物线y=ax2+bx+c(a≠0)的图象如下图所示,那么( )A.a<0,b>0,c>0B.a<0,b<0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<022.已知二次函数y=ax2+bx+c的图象如右图所示,则( )A.a>0,c>0,b2-4ac<0B.a>0,c<0,b2-4ac>0C.a<0,c>0,b2-4ac<0D.a<0,c<0,b2-4ac>023.已知二次函数y =ax 2+bx +c 的图象如下图所示,则( )A .b >0,c >0,∆=0B .b <0,c >0,∆=0C .b <0,c <0,∆=0D .b >0,c >0,∆>024.二次函数y =mx 2+2mx -(3-m )的图象如下图所示,那么m 的取值范围是( )A .m >0B .m >3C .m <0D .0<m <325.在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )26.函数xaby b ax y =+=221,(ab <0)的图象在下列四个示意图中,可能正确的是( )三、解答题27.已知抛物线y =x 2-3kx +2k +4.(1)k 为何值时,抛物线关于y 轴对称; (2)k 为何值时,抛物线经过原点.28.画出23212++-=x x y 的图象,并求:(1)顶点坐标与对称轴方程;(2)x 取何值时,y 随x 增大而减小? x 取何值时,y 随x 增大而增大?(3)当x 为何值时,函数有最大值或最小值,其值是多少? (4)x 取何值时,y >0,y <0,y =0? (5)当y 取何值时,-2≤x ≤2?拓展、探究、思考29.已知函数y 1=ax 2+bx +c (a ≠0)和y 2=mx +n 的图象交于(-2,-5)点和(1,4)点,并且y 1=ax 2+bx +c 的图象与y 轴交于点(0,3).(1)求函数y 1和y 2的解析式,并画出函数示意图; (2)x 为何值时,①y 1>y 2;②y 1=y 2;③y 1<y 2.30.如图是二次函数y =ax 2+bx +c 的图象的一部分;图象过点A (-3,0),对称轴为x=-1,给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确的是________________.(填序号)测试4 二次函数y =ax 2+bx +c 解析式的确定学习要求能根据条件运用适当的方法确定二次函数解析式. 一、填空题1.二次函数解析式通常有三种形式:①一般式________________;②顶点式________ __________;③双根式__________________________(b 2-4ac ≥0).2.若二次函数y =x 2-2x +a 2-1的图象经过点(1,0),则a 的值为______.3.已知抛物线的对称轴为直线x =2,与x 轴的一个交点为),0,23( 则它与x 轴的另一个交点为______.二、解答题4.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,求:(1)对称轴方程____________; (2)函数解析式____________;(3)当x ______时,y 随x 增大而减小; (4)由图象回答:当y >0时,x 的取值范围______; 当y =0时,x =______;当y <0时,x 的取值范围______.5.抛物线y =ax 2+bx +c 过(0,4),(1,3),(-1,4)三点,求抛物线的解析式.6.抛物线y =ax 2+bx +c 过(-3,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式.7.抛物线y=ax2+bx+c的顶点为(2,4),且过(1,2)点,求抛物线的解析式.8.二次函数y=x2+bx+c的图象过点A(-2,5),且当x=2时,y=-3,求这个二次函数的解析式,并判断点B(0,3)是否在这个函数的图象上.9.抛物线y=ax2+bx+c经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.10.抛物线过(-1,-1)点,它的对称轴是直线x+2=0,且在x轴上截得线段的长度为,22求抛物线的解析式.综合、运用、诊断11.抛物线y=ax2+bx+c的顶点坐标为(2,4),且过原点,求抛物线的解析式.12.把抛物线y=(x-1)2沿y轴向上或向下平移后所得抛物线经过点Q(3,0),求平移后的抛物线的解析式.13.二次函数y=ax2+bx+c的最大值等于-3a,且它的图象经过(-1,-2),(1,6)两点,求二次函数的解析式.14.已知函数y1=ax2+bx+c,它的顶点坐标为(-3,-2),y1与y2=2x+m交于点(1,6),求y1,y2的函数解析式.拓展、探究、思考15.如图,抛物线y=ax2+bx+c与x轴的交点为A,B(B在A左侧),与y轴的交点为C,OA=OC.下列关系式中,正确的是( )A .ac +1=bB .ab +1=cC .bc +1=aD .c ba=+1 16.如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直,若小正方形边长为x ,且0<x ≤10,阴影部分的面积为y ,则能反映y 与x 之间的函数关系的大致图象是( )17.如图,在直角坐标系中,Rt △AOB 的顶点坐标分别为A (0,2),O (0,0),B (4,0),把△AOB 绕O 点按逆时针方向旋转90°得到△COD .(1)求C ,D 两点的坐标;(2)求经过C ,D ,B 三点的抛物线的解析式; (3)设(2)中抛物线的顶点为P ,AB 的中点为M (2,1),试判断△PMB 是钝角三角形,直角三角形还是锐角三角形,并说明理由.测试5 用函数观点看一元二次方程学习要求1.理解二次函数与一元二次方程的关系,掌握抛物线与x 轴的交点与一元二次方程两根之间的联系,灵活运用相关概念解题.2.掌握并运用二次函数y =a (x -x 1)(x -x 2)解题.课堂学习检测一、填空题1.二次函数y=ax2+bx+c(a≠0)与x轴有交点,则b2-4ac______0;若一元二次方程ax2+bx+c=0两根为x1,x2,则二次函数可表示为y=_________ ____________.2.若二次函数y=x2-3x+m的图象与x轴只有一个交点,则m=______.3.若二次函数y=mx2-(2m+2)x-1+m的图象与x轴有两个交点,则m的取值范围是______.4.若二次函数y=ax2+bx+c的图象经过P(1,0)点,则a+b+c=______.5.若抛物线y=ax2+bx+c的系数a,b,c满足a-b+c=0,则这条抛物线必经过点______.6.关于x的方程x2-x-n=0没有实数根,则抛物线y=x2-x-n的顶点在第______象限.二、选择题7.已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0( )A.没有实根B.只有一个实根C.有两个实根,且一根为正,一根为负D.有两个实根,且一根小于1,一根大于28.一次函数y=2x+1与二次函数y=x2-4x+3的图象交点( )A.只有一个B.恰好有两个C.可以有一个,也可以有两个D.无交点9.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是( )A.有两个不相等的实数根B.有两个异号实数根C.有两个相等的实数根D.无实数根10.二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是( ) A.a>0,∆>0 B.a>0,∆<0C.a<0,∆>0 D.a<0,∆<0三、解答题11.已知抛物线y=ax2+bx+c与x轴的两个交点的横坐标是方程x2+x-2=0的两个根,且抛物线过点(2,8),求二次函数的解析式.12.对称轴平行于y 轴的抛物线过A (2,8),B (0,-4),且在x 轴上截得的线段长为3,求此函数的解析式.综合、运用、诊断一、填空题13.已知直线y =5x +k 与抛物线y =x 2+3x +5交点的横坐标为1,则k =______,交点坐标为______.14.当m =______时,函数y =2x 2+3mx +2m 的最小值为⋅98二、选择题15.直线y =4x +1与抛物线y =x 2+2x +k 有唯一交点,则k 是( )A .0B .1C .2D .-1 16.二次函数y =ax 2+bx +c ,若ac <0,则其图象与x 轴( )A .有两个交点B .有一个交点C .没有交点D .可能有一个交点17.y =x 2+kx +1与y =x 2-x -k 的图象相交,若有一个交点在x 轴上,则k 值为( )A .0B .-1C .2D .41 18.已知二次函数y =ax 2+bx +c 的图象如图所示,那么关于x 的方程ax 2+bx +c +2=0的根的情况是( )A .无实根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根19.已知二次函数的图象与y 轴交点坐标为(0,a ),与x 轴交点坐标为(b ,0)和(-b ,0),若a >0,则函数解析式为( )A .a x b ay += B .a x ba y +-=22C .a x ba y --=22D .a x b a y -=22 20.若m ,n (m <n )是关于x 的方程1-(x -a )(x -b )=0的两个根,且a <b ,则a ,b ,m ,n 的大小关系是( )A .m <a <b <nB .a <m <n <bC .a <m <b <nD .m <a <n <b三、解答题21.二次函数y =ax 2+bx +c (a ≠0,a ,b ,c 是常数)中,自变量x 与函数y 的对应值如(1)(2)一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 是常数)的两个根x 1,x 2的取值范围是下列选项中的哪一个______.①223,02121<<<<-x x ②252,21121<<-<<-x x③252,02121<<<<-x x④223,21121<<-<<-x x 22.m 为何值时,抛物线y =(m -1)x 2+2mx +m -1与x 轴没有交点?23.当m 取何值时,抛物线y =x 2与直线y =x +m(1)有公共点;(2)没有公共点.拓展、探究、思考24.已知抛物线y =-x 2-(m -4)x +3(m -1)与x 轴交于A ,B 两点,与y 轴交于C 点.(1)求m 的取值范围.(2)若m <0,直线y =kx -1经过点A 并与y 轴交于点D ,且25=⋅BD AD ,求抛物线的解析式.测试6 实际问题与二次函数学习要求灵活地应用二次函数的概念解决实际问题.课堂学习检测1.矩形窗户的周长是6m ,写出窗户的面积y (m 2)与窗户的宽x (m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x 的取值范围,并画出函数的图象.2.如图,有一座抛物线型拱桥,已知桥下在正常水位AB 时,水面宽8m ,水位上升3m , 就达到警戒水位CD ,这时水面宽4m ,若洪水到来时,水位以每小时0.2m 的速度上升,求水过警戒水位后几小时淹到桥拱顶.3.如图,足球场上守门员在O 处开出一高球,球从离地面1m 的A 处飞出(A 在y 轴上),运动员乙在距O 点6m 的B 处发现球在自己头的正上方达到最高点M ,距地面约4m 高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取734=,562=)综合、运用、诊断4.如图,有长为24m 的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a =10m).(1)如果所围成的花圃的面积为45m2,试求宽AB的长;(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.5.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数m=162-3x.(1)写出商场卖这种商品每天的销售利润y(元)与每件的销售价x(元)间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?最大销售利润为多少?6.某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?7.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;3)求第8个月公司所获利润为多少万元?拓展、探究、思考8.已知:在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OC=OB=3OA.(1)求这个二次函数的解析式;(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N,使得以点P,M,N为顶点的三角形与△ACP全等?若存在请求出点M,N的坐标;若不存在,请说明理由.测试7 综合测试一、填空题1.若函数y=x2-mx+m-2的图象经过(3,6)点,则m=______.2.函数y=2x-x2的图象开口向______,对称轴方程是______.3.抛物线y=x2-4x-5的顶点坐标是______.4.函数y=2x2-8x+1,当x=______时,y的最______值等于______.5.抛物线y=-x2+3x-2在y轴上的截距是______,与x轴的交点坐标是____________.6.把y=2x2-6x+4配方成y=a(x-h)2+k的形式是_______________.7.已知二次函数y=ax2+bx+c的图象如图所示.(1)对称轴方程为____________;(2)函数解析式为____________;(3)当x______时,y随x的增大而减小;(4)当y>0时,x的取值范围是______.8.已知二次函数y=x2-(m-4)x+2m-3.(1)当m=______时,图象顶点在x轴上;(2)当m=______时,图象顶点在y轴上;(3)当m=______时,图象过原点.二、选择题9.将抛物线y=x2+1绕原点O旋转180°,则旋转后抛物线的解析式为( ) A.y=-x2B.y=-x2+1 C.y=x2-1 D.y=-x2-1 10.抛物线y=x2-mx+m-2与x轴交点的情况是( )A.无交点B.一个交点C.两个交点D.无法确定11.函数y=x2+2x-3(-2≤x≤2)的最大值和最小值分别为( )A.4和-3 B.5和-3 C.5和-4 D.-1和4 12.已知函数y=a(x+2)和y=a(x2+1),那么它们在同一坐标系内图象的示意图是( )13.y =ax 2+bx +c (a ≠0)的图象如下图所示,那么下面六个代数式:abc ,b 2-4ac ,a-b +c ,a +b +c ,2a -b ,9a -4b 中,值小于0的有( )A .1个B .2个C .3个D .4个14.若b >0时,二次函数y =ax 2+bx +a 2-1的图象如下列四图之一所示,根据图象分析,则a 的值等于( )A .251+- B .-1 C .251-- D .1三、解答题15.已知函数y 1=ax 2+bx +c ,其中a <0,b >0,c >0,问:(1)抛物线的开口方向?(2)抛物线与y 轴的交点在x 轴上方还是下方? (3)抛物线的对称轴在y 轴的左侧还是右侧?(4)抛物线与x 轴是否有交点?如果有,写出交点坐标; (5)画出示意图.16.已知二次函数y =ax 2+bx +c 的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.(试用两种不同方法)17.已知二次函数y =ax 2+bx +c ,当x =-1时有最小值-4,且图象在x 轴上截得线段长为4,求函数解析式.18.二次函数y =x 2-mx +m -2的图象的顶点到x 轴的距离为,1625求二次函数解析式.19.如图,从O 点射出炮弹落地点为D ,弹道轨迹是抛物线,若击中目标C 点,在A测C 的仰角∠BAC =45°,在B 测C 的仰角∠ABC =30°,AB 相距,km )31( ,OA =2km ,AD =2km .(1)求抛物线解析式;(2)求抛物线对称轴和炮弹运行时最高点距地面的高度.20.二次函数y 1=ax 2-2bx +c 和y =(a +1)·x 2-2(b +2)x +c +3在同一坐标系中的图象如图所示,若OB =OA ,BC =DC ,且点B ,C 的横坐标分别为1,3,求这两个函数的解析式.答案与提示第二十六章 二次函数测试11.y =ax 2+bx +c (a ≠0),x ,常数,a . 2.抛物线,y 轴,(0,0). 3.(0,0),y 轴,上,下. 4.减小,增大,x =0,小. 5.增大,减小,x =0,大. 6.(1).0,3,1- (2)π,0,0, (3),10,5,21- (4).6,0,31--7.越小,越大.8.(1)D ,(2)C ,(3)A ,(4)B ,(5)F ,(6)E .9.(1)向下,(2)y 轴.(3)(0,0).(4)减小.(5)=0(6)=0,大,0. 10.略.11.(1)②、③;①、④.(2)③;②.(3)①、④;③.(4)①,0;④,0. 12.(1)a ≠0,(2)a =0且b ≠0,(3)a =c =0且b ≠0. 13.y =4x 2;(0,0);x =0;向上. 14.(1)2;y =2x 2;抛物线;一、二,(2)0;y =-2x ;直线;二、四. 15.-2或1;1;-2.16.C 、B 、A . 17.C . 18.D . 19.C . 20.(1)m =4,y =x 2;(2)m =-1,y =-4x 2.21.(1)a =-1,b =-1;(2));2,2().2,2(---C B(3)S △OBC =22. 22.(1)241x y =; (2)B (-2,1);(3)S △OAB =2; (4)设C 点的坐标为),41,(2m m 则.221|141|4212⨯=-⨯⨯m 则得6±=m 或.2±=m∴C 点的坐标为).21,2(),21,2(),23,6(),23,6(-- 测试21.(1)(0,0),y 轴;(2)(0,c ),y 轴; (3)(m ,0),直线x =m .2.m =-13.(0,0),y 轴,x ≤0,x >0,0,小,0. 4.向下,相同,(0,0),y 轴.5.(0,3),y 轴,x ≤0,0,小,3,上,3.6.向上,(2,0),直线x =2,x ≥2,2,小,0,右,2. 7.C . 8.D . 9.C .10.图略,y 1,y 2的图象是221x y =的图象分别向上和向下平移3个单位. 11.图略,y 2,y 3的图象是把y 1的图象分别向右和向左平移2个单位. 12.(h ,k ),直线x =h ;h ,k ,x ≤h . 1314.高.(-3,-1),-3,大,-1,≤-3. 15..52312)3(3122+-=+-=x x x y16.B . 17.D .18.(1)y =(x +3)2+1,顶点(-3,1),直线x =-3,最小值为1.(2),881)45(22++-=x y 顶点),881,45(-直线,45-=x 最大值为⋅881(3),31)31(32-+=x y 顶点),31,31(--直线,31-=x 最小值为⋅-31(4)y =-3(x -1)2+1,顶点(1,1),直线x =1,最大值为1. (5)y =-5x 2+100,顶点(0,100),直线x =0,最大值为100.(6),825)43(22--=x y 顶点),825,43(-直线,43=x 最小值为⋅-82519.(1);5,1,21-===k h a (2)开口向上,直线x =1,顶点坐标(1,-5).测试31.).44,2(,44)2(222a b ac ab a b ac a b x a y ---++= ⋅-<-≥--=-=abx a b x a b ac a b x a b x 2,2,44,2,222.,43),849,43(-小,⋅>≤---43,43),5,0(),0,1()0,25(,849x x 、3.(-1,4),(-3,0)、(1,0),(0,3).4.y =(x -2)2+1,低,(2,1).5.-2,-7,x ≥-2,.72±-=x6.±2. 7.右,3,上,4.8.D . 9.B. 10.B . 11.C . 12.(1)y =2(x +1)2-8;(2)开口向上,直线x =-1,顶点(-1,-8);(3)与x 轴交点(-3,0)(1,0),与y 轴交点(0,-6); (4)图略;(5)将抛物线y =x 2向左平移1个单位,向下平移8个单位;得到y =2x 2+4x -6的图象; (6)x ≤-1;(7)当x <-3或x >1时,y >0;当x =-3或x =1时,y =0; 当-3<x <1时,y <0; (8)x =-1时,y 最小值=-8; (9)-8≤y <10; (10)S △=12.13.(1)b =c =0;(2)c =0;(3)b =0;(4)b 2-4ac =0. 14.原. 15.2,y =2x 2-3x . 16.4. 17.-1. 18.1. 19.一、二、三.20.C. 21.B . 22.D . 23.B . 24.C . 25.B . 26.C . 27.(1)k =0;(2)k =-2. 28.,2)1(212+--=x y ①顶点(1,2),直线x =1; ②x ≥1,x <1; ③x =1,y 最大=2;④-1<x <3时,y >0;x <-1或x >3时y <0;x =-1或x =3时,y =0;.225≤≤-y ⑤ 29.(1)y 1=-x 2+2x +3,y 2=3x +1.(2)①当-2<x <1时,y 1>y 2.②当x =-2或x =1时,y 1=y 2. ③当x <-2或x >1时y 1<y 2. 30.①,④.测试41.①y =ax 2+bx +c (a ≠0); ②y =a (x -h )2+k (a ≠0); ③y =a (x -x 1)(x -x 2)(a ≠0). 2..2± 3.).0,211(4.(1)x =-1; (2)y =x 2+2x -3;(3)x ≤-1; (4)x <-3或x >1,x =-3或x =1,-3<x <1.5..421212+--=x x y 6..438342+--=x x y7.y =-2(x -2)2+4即y =-2x 2+8x -4.8.y =x 2-2x -3,点B (0,3)不在图象上.9..1212x x y +-= 10.y =x 2+4x +2. 11.y =-x 2+4x . 12.y =x 2-2x -3. 13.y =-2x 2+4x +4.14..42,25321221+=++=x y x x y 15.A . 16.B .17.解:(1)由旋转的性质可知:OC =OA =2,OD =OB =4.∴C 、D 两点的坐标分别是C (-2,0),D (0,4). (2)设所求抛物线的解析式为y =ax 2+bx +c .根据题意,得⎪⎩⎪⎨⎧==+-=++.4,024,0416c c b a c b a 解得⎪⎪⎩⎪⎪⎨⎧==-=.4,1,21c b a∴所求抛物线的解析式为.4212++-=x x y (3)如图,△PMB 是钝角三角形,图中,PH 是抛物线=++-=4212x x y 29)1(212+--x 的对称轴.M 、P 点的坐标分别为).29,1(),1,2(P M ∴点M 在PH 的右侧,∵∠PHB =90°,∠1>90°,∠PMB >∠1, ∴∠PMB >90°,则△PMB 为钝角三角形.测试5 1.≥0,y =a (x -x 1)(x -x 2). 2.⋅493.31->m 且m ≠0. 4.0. 5.(-1,0). 6.一.7.D . 8.B . 9.C . 10.D . 11.y =2x 2+2x -4.12.45665182-+-=x x y 或y =2x 2+2x -4.13.4,(1,9). 14.⋅9815.C . 16.A . 17.C . 18.D . 19.B . 20.A . 21.(1)开口向下,顶点(1,2),(2)③. 22.⋅<21m 23.由x 2-x -m =0(1)当∆=1+4m ≥0,即41-≥m 时两线有公共点.(2)当∆=1+4m <0,即41-<m 时两线无公共点. 24.(1) ∆=(m +2)2>0,∴m ≠-2;(2)m =-1,∴y =-x 2+5x -6.测试61.y =-x 2+3x (0<x <3)图略. 2.5小时. 3.(1).11212++-=x x y (2)17米. 4.(1)设花圃的宽AB =x 米,知BC 应为(24-3x )米,故面积y 与x 的关系式为y =x (24-3x )=-3x 2+24x .当y =45时,-3x 2+24x =45,解出x 1=3,x 2=5. 当x 2=3时,BC =24-3×3>10,不合题意,舍去; 当x 2=5时,BC =24-3×5=9,符合题意. 故AB 长为5米.(2)能围成面积比45m 2更大的矩形花圃. 由(1)知,y =-3x 2+24x =-3(x -4)2+48.103240≤-<x ,.8314<≤∴x 由抛物线y =-3(x -4)2+48知,在对称轴x <4的左侧,y 随x 的增大而增大,当x >4时,y 随x 的增大而减小.∴当314=x 时,y =-3(x -4)2+48有最大值,且最大值为),m (3246)4314(34822=--此时,,m 314=AB BC =10m ,即围成长为10米,宽为314米的矩形ABCD 花圃时,其最大面积为.m 324625.(1)y =-3x 2+252x -4860;(2)当x =42时,最大利润为432元. 6.解:(1)由题意得y =(80+x )(384-4x )=-4x 2+64x +30720. (2)∵y =-4x 2+64x +30720=-4(x -8)2+30976, ∴当x =8时,y 有最大值,为30976.即增加8台机器,可以使每天的生产总量最大,最大生产总量为30976件.7.解:(1)设s 与t 的函数关系式为x =at 2+bt +c ,图象上三点坐标分别为(1,-1.5),(2,-2),(5,2.5).分别代入,得⎪⎩⎪⎨⎧=++-=++-=++∴.5.2525,224,5.1c b a c b a c b a解得⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a .2212t t s -=∴(2)把s =30代入,2212t t s -=解得t 1=10,t 2=-6(舍去).即截止到10月末,公司累积利润可达到30万元. (3)把t =7代入,2212t t s -=得7月末的累积利润为s 7=10.5(万元). 把t =8代入,2212t t s -=得8月末的累积利润为s 8=16(万元). ∴s 8-s 7=16-10.5=5.5(万元). 即第8个月公司获利润5.5万元.8.(1)y =x 2-2x -3; (2)AD ⊥BC ;(3)存在,M 1(1,-2),N 1(4,-3).或M 2(0,-3),N 2(3,-4).测试7 1.⋅=21m 2.向下,x =1. 3.(2,-9). 4.2,小,-7. 5.-2,(1,0)、(2,0). 6.⋅--=21)23(22x y 7.(1);23=x (2)y =x 2-3x -4;(3);23≤x (4)x <-1或x >4. 8.(1)m =14或2; (2)m =4; (3)⋅=23m 9.D . 10.C . 11.C . 12.C . 13.C . 14.D . 15.(1)开口向下; (2)上方; (3)右侧;(4)有,).0,24(),0,24(22aacb b a ac b b ----+- (5)略. 16.⋅+--=3534312x x y 17.y =x 2+2x -3. 18.23212--=x x y 或⋅+-=23272x x y19.作CE ⊥x 轴于E ,设CE =x 千米.∵∠CAB =45°,∴CE =AE =x ,在Rt △BCE 中,,33,30x CE EB CBA ==∴=∠ AB =AE +EB ,即,331x x +=+解得x =1,∴OE =OA +AE =2+1=3. 由C (3,1),D (4,0),O (0,0),设y =a (x -4)(x -0),把(3,1)代入上式:1=a (3-4)(3-0),解得),40)(0)(4(31,31≤≤---=∴-=x x x y a 即2)2(31--=x y34+,抛物线对称轴:x =2,炮弹运行最高点时距地面高度是34千米.20.⋅+-=+-=310432,31312221x x y x y第二十六章 二次函数全章测试一、填空题1.抛物线y =-x 2+15有最______点,其坐标是______.2.若抛物线y =x 2-2x -2的顶点为A ,与y 轴的交点为B ,则过A ,B 两点的直线的解析式为____________.3.若抛物线y =ax 2+bx +c (a ≠0)的图象与抛物线y =x 2-4x +3的图象关于y 轴对称,则函数y =ax 2+bx +c 的解析式为______.4.若抛物线y =x 2+bx +c 与y 轴交于点A ,与x 轴正半轴交于B ,C 两点,且BC =2,S △ABC =3,则b =______.5.二次函数y =x 2-6x +c 的图象的顶点与原点的距离为5,则c =______.6.二次函数22212--=x x y 的图象在坐标平面内绕顶点旋转180°,再向左平移3个单位,向上平移5个单位后图象对应的二次函数解析式为____________. 二、选择题7.把二次函数253212++=x x y 的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象顶点是( ) A .(-5,1) B .(1,-5) C .(-1,1) D .(-1,3)8.若点(2,5),(4,5)在抛物线y =ax 2+bx +c 上,则它的对称轴是( )A .ab x -= B .x =1 C .x =2 D .x =39.已知函数4212--=x x y ,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <1 B .x >1 C .x >-2 D .-2<x <410.二次函数y =a (x +k )2+k ,当k 取不同的实数值时,图象顶点所在的直线是( )A .y =xB .x 轴C .y =-xD .y 轴 11.图中有相同对称轴的两条抛物线,下列关系不正确的是( )A .h =mB .k >nC .k =nD .h >0,k >012.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a+b +c =2;21>a ③;④b <1.其中正确的结论是( )A .①②B .②③C .②④D .③④ 13.下列命题中,正确的是( )①若a +b +c =0,则b 2-4ac <0;②若b =2a +3c ,则一元二次方程ax 2+bx +c =0有两个不相等的实数根;③若b 2-4ac >0,则二次函数y =ax 2+bx +c 的图象与坐标轴的公共点的个数是2或3;④若b >a +c ,则一元二次方程ax 2+bx +c =0,有两个不相等的实数根. A .②④ B .①③ C .②③ D .③④三、解答题14.把二次函数43212+-=x x y 配方成y =a (x -k )2+h 的形式,并求出它的图象的顶点坐标、对称轴方程,y <0时x 的取值范围,并画出图象.15.已知二次函数y =ax 2+bx +c (a ≠0)的图象经过一次函数323+-=x y 的图象与x 轴、y 轴的交点,并也经过(1,1)点.求这个二次函数解析式,并求x 为何值时,有最大(最小)值,这个值是什么? 16.已知抛物线y =-x 2+bx +c 与x 轴的两个交点分别为A (m ,0),B (n ,0),且4=+n m ,⋅=31n m (1)求此抛物线的解析式;(2)设此抛物线与y 轴的交点为C ,过C 作一条平行x 轴的直线交抛物线于另一点P ,求△ACP 的面积.17.已知抛物线y =ax 2+bx +c 经过点A (-1,0),且经过直线y =x -3与x 轴的交点B及与y 轴的交点C . (1)求抛物线的解析式; (2)求抛物线的顶点坐标;(3)若点M 在第四象限内的抛物线上,且OM ⊥BC ,垂足为D ,求点M 的坐标. 18.某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M (元)与时间t (月)的关系可用一条线段上的点来表示(如图甲),一件商品的成本Q (元)与时间t (月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图乙). 根据图象提供的信息解答下面问题:(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)(2)求出图(乙)中表示的一件商品的成本Q (元)与时间t (月)之间的函数关系式; (3)你能求出3月份至7月份一件商品的利润W (元)与时间t (月)之间的函数关系式。