变桨距主动失速型风力发电机
变桨距风力发电机组的运行状态

变桨距风力发电机组的运行状态从空气动力学角度考虑。
当风速过高时,只有通过调整桨叶节距,改变气流对叶片的角度,从而改变风力发电机组获得的空气动力转矩,才能使功率输出保持稳定。
同时,风力机在启动过程中也需要通过变距来获得足够的启动转矩。
变桨距风力发电机组根据边距系统所起的作用可分为三种运行状态,即风力发电机组的启动状态(转速控制)、欠功率状态(不控制)和额定功率状态(功率控制)。
1)启动状态变距风轮的桨叶在静止时,节距角为90°,这时气流对桨叶不产生转矩,整个桨叶实际上是一块阻尼板。
当风速达到启动风速时,桨叶向0°方向转动,直接到气流对桨叶产生一定的攻角,风轮开始启动。
在发电机并入电网以前,变桨距系统的节距给定值由发电机转速信号控制。
转速控制器按照一定的速度上升斜率给出速度参考值,变桨距系统根据给定的速度参考值,调整节距角,进行所谓的速度控制。
为了确保并网平稳,对电网产生尽可能小的冲击,变桨距系统可以在一定时间内保持发电机的转速在同步转速附近,寻找最佳时机并网。
虽然在主电路中也采用了软并网技术,但由于并网过程的时间短,冲击小,可以选用容量较小的晶闸管。
为了使控制过程比较简单,早期的变桨距风力发电机在转速达到发电机同步转速前对桨叶节距并不加以控制。
在这种情况下,桨叶节距只是按所设定的变桨距速度,将节距角向0°方向打开,直到发电机转速上升到同步转速附近,变桨距系统才开始投入工作。
转速控制的给定值是恒定的,即同步转速。
转速反馈信号与给定值进行比较。
当转速超过同步转速时,桨叶节距就迎风面积小的方向转动一个角度,反之则向迎风面积增大的方向转动一个角度。
当转速在同步转速附近保持一定时间后发电机即并入电网。
2)欠功率状态欠功率状态是指发电机并入电网后,由于风速低于额定风速,发电机在额定功率以下的低功率状态下运行。
与转速控制道理相同,在早期的变桨距风力发电机组中,对欠功率状态不加控制。
直驱式永磁同步风力发电机变速变桨距控制

直驱式永磁同步风力发电机变速变桨距控制变桨距是最常见的控制风力发电机组吸收风能的方法。
变桨距控制会对所有由风轮产生的空气动力载荷产生影响。
直驱式永磁风力发电机组一旦达到额定转矩,载荷转矩就不能继续增加,但风速还在增加,所以转速也开始增加,应用变桨距控制调节转速,使转速不超过上限,并由变流器保证载荷转矩恒定不变。
通常PI或PID调节器调节桨距角就可以满足要求,在有些情况下要用滤波器对转速误差进行处理,以防止过度的桨距动作。
一、变速变桨距控制概述1.基本控制要求在额定风速以下时,风力发电机组应该尽可能捕捉较多风能,所以这时没有必要改变桨距角,此时的空气动力载荷通常比在额定风速以上时的动力载荷小,也没有必要通过变桨距来调节载荷。
在额定风速以上时,变桨距控制可以有效调节风力发电机组的吸收功率及风轮产生的载荷,使其不超出设计的限定值。
而且为了达到良好的调节效果,变桨距应该对变化的情况作出迅速的反应。
这种主动控制器需要仔细设计,因为它会与风力发电机组的动态特性相互影响。
随着叶片攻角的变化,气流对风轮的作用力也会随之发生改变,这就会导致风力发电机组塔架的振动。
随着风速的增加,为了保持功率恒定,转矩桨距角也随着增加,风轮所受到的力将会减小。
这就使塔架的弯曲减小,塔架的顶端就会向前移动引起以风轮为参照物的相对风速的增加。
空气动力产生的转矩进一步增加,引起更大的调桨动作。
显然,如果变桨距控制器的增益太高会导致正反馈不稳定。
2.主动失速变桨距在额定风速以下时,桨距角设定值应该设置在能够吸收最大功率的最优值。
按照这个原则,当风速超过额定风速时,增大或减小桨距角都会减小机组转矩。
减小桨距角,即将叶片前缘转向背风侧,通过增大失速角来调节转矩,使升力减小,阻力增加,称为主动失速变桨距。
尽管顺桨是更常见的控制策略,但是有些风力发电机组采用主动失速变桨距的方法,通常称为主动失速。
向顺桨方向变桨距比主动失速需要更多的动态主动性,一旦大部分叶片失速,就没有足够的变桨距调节来控制转矩。
变桨距机组的控制技术

变桨距机组的控制技术本文对变桨距风力发电机组控制系统的特点以及控制策略分别进行详细介绍。
一、变桨距机组控制系统的特点从空气动力学角度考虑,当风速过高时,只有通过调整桨叶节距,改变气流对叶片的攻角,从而改变风力发电机组获得的空气动力转矩,才能使功率输出保持稳定。
同时,风力机在启动过程中也需要通过改变节距来获得足够的启动转矩。
采用变桨距机构的风力发电机组可使桨叶和整机的受力状况大为改善,这对大型风力发电机组的总体设计十分有利。
目前已有多种型号的变桨距600kW级风力发电机组进入市场。
其中较为成功的有丹麦VESTAS的V39/V42-600kW机组和美国Zand的Z 40-600kW机组。
从今后的发展趋势看,在大型风力发电机组中将会普遍采用变桨距技术。
变桨距风力发电机组又分为主动变桨距控制与被动变桨距控制。
主动变桨距控制可以在大于额定风速时限制功率,这种控制的实现是通过将每个叶片的部分或全部相对于叶片轴方向进行旋转以减小攻角,同时也减小了升力系数。
被动变桨距控制是一种令人关注的可替代主动变桨距限制功率的方式,其思路是将叶片或叶片的轮毂设计成在叶片载荷的作用下扭转,以便在高风速下获得所需的节距角。
但因为所必需的叶片随风速变换而扭转的变化量一般并不与叶片相应的载荷变化相匹配,所以很难实现。
对于独立运行的风力发电机组,发电量的最大化不是主要目标,被动变桨距控制方案有时候被采用,但是这一概念在并网运行的风力发电机组中尚未应用。
变桨距控制主要是通过改变翼型迎角变化,从而使翼型升力变化来进行调节的。
变桨距控制多用于大型风力发电机组。
变桨距控制是通过叶片和轮毂之间的轴承机构转动叶片减小迎角,由此来减小翼型的升力,以达到减小作用在风轮叶片上的扭矩和功率的目的。
变桨距调节时叶片迎角可相对气流连续地变化,以便得到风轮功率输出达到希望的范围。
在90°迎角时是叶片的顺桨位置。
在风力发电机组正常运行时,叶片向小迎角方向变化从而限制功率,一般变桨距范围为90°~100°。
风力发电机组变桨矩系统的

2023-11-09contents •风力发电机组概述•变桨矩系统概述•变桨矩系统的主要部件•变桨矩系统的控制策略•变桨矩系统的优化与改进建议•变桨矩系统的应用与发展趋势目录01风力发电机组概述风力发电机组是一种将风能转化为电能的系统,由风轮、发电机、塔筒等主要部件组成。
定义具有可再生、清洁、无污染等特点,是绿色能源领域的重要组成部分。
特点风力发电机组的定义与特点风轮叶片在风的驱动下旋转,将风能转化为机械能。
风的捕获机械能的转化电能的输出风轮通过主轴将机械能传递到齿轮箱,再由齿轮箱将机械能转化为电能。
发电机将机械能转化为电能,通过电缆输送到电网。
03风力发电机组的工作原理0201分类根据风力发电机组容量、功率等级、转速等因素,可以分为恒速型、变速型等不同类型。
组成风力发电机组主要由风轮、发电机、塔筒、齿轮箱、控制系统等组成。
风力发电机组的分类与组成02变桨矩系统概述变桨矩系统定义变桨矩系统是一种用于控制风力发电机组功率输出的装置,它可以根据风速和发电机组运行状态,改变桨叶的桨距角,从而控制风能捕获量。
变桨矩系统特点变桨矩系统具有高精度、高可靠性、高效能等特点,它能够实现快速响应、平稳控制,确保风力发电机组在复杂风况下的稳定运行。
变桨矩系统的定义与特点变桨矩系统的作用与重要性变桨矩系统的作用变桨矩系统的主要作用是调节发电机组的功率输出,以适应不同的风速和负荷条件。
它可以通过改变桨叶的桨距角,控制风能捕获量,从而降低载荷、提高发电效率。
变桨矩系统的重要性由于风力发电机组面临的风况复杂多变,因此变桨矩系统的应用对于确保发电机组的稳定运行至关重要。
它不仅可以提高风能利用率,降低载荷,还可以延长发电机组的使用寿命。
变桨矩系统的组成变桨矩系统通常由变桨电机、减速箱、轴承、传感器等组成。
其中,变桨电机是驱动桨叶变桨的核心部件,减速箱用于将电机的转速降低到适合桨叶旋转的速度,轴承用于支撑桨叶并确保其灵活旋转,传感器则用于监测变桨系统的运行状态。
风力发电机组的分类介绍

风力发电机组的分类介绍风力发电机一般按风轮轴安装形式、功率控制方式、风轮转速调节、主传动驱动方式等进行分类。
1、风轮轴安装形式按照风轮轴安装形式可分为水平轴风力机和垂直轴风力机。
(1)水平轴风力机风轮的旋转轴线与风向平行。
水平轴风力机必须具有对风装置,跟随风向的变化而转动,以便吸收来自各个方向的风能。
对于小型风力机,这种对风装置常采用尾舵,而对于大型风力机,则利用风向传感器测量风向,经微处理器调整后控制偏航系统进行对风。
水平轴风力机按照风轮相对于塔架的位置可分为上风向风力机和下风向风力机。
风轮位于塔架前面的为上风向风力机,风轮位于塔架后面的为下风向风力机。
目前风电场采用并网型风力发电机组多为上风向水平轴风力机。
(2)垂直轴风力机风轮的旋转轴线垂直于地面或气流方向。
垂直轴风力机能吸收来自各个方向的风能,无需对风装置,这是相对于水平轴风力机的一大优点,并且传动装置和发电设备均安装在地面,便于维护;但是受叶片制造工艺的限制及拉线式塔架占用大量土地面积等因素,垂直轴风力机一直未得到发展。
2、功率控制方式按照功率控制方式可分为定桨距风力机、变桨距风力机和主动失速风力机。
(1)定桨距风力机叶片与轮毂固定连接。
在风轮转速恒定的条件下,风速增加超过额定风速时,随着叶片攻角的增加,气流与叶片表面分离,叶片将处于失速状态,叶片吸收的风能不但不会增加,反而有所下降,以确保风轮输出功率在额定范围以内。
定桨距风力机的特点:结构简单不需要变桨机构,同时控制系统也较简单。
但风轮吸收风能的效率较低,特别在风速超过额定风速后,由于叶片的失速作用,输出功率还会有所下降;机组承受的载荷大;机组重量比同类型变桨距风力机重。
(2)变桨距风力机叶片与轮毂通过变桨轴承连接,可以通过变桨系统控制叶片的安装角。
当风速低于额定风速时,保证叶片在最佳攻角状态,以获得最大风能;当风速超过额定风速后,变桨系统减小叶片的攻角,保证输出功率在额定范围内。
变桨距风力机的特点:结构复杂,需要增加变桨轴承和一套变桨驱动装置,同时控制系统也变得很复杂。
探讨风力发电控制技术

探讨风力发电控制技术摘要:为适应我国风力发电市场的快速发展,亟待探索和研究各种风力发电的新技术。
本文简要探讨了几种风力发电控制技术。
关键词:风力发电变桨距风力发电技术主动失速/混合失速发电技术随着社会的不断发展,世界能源结构也在逐步变化,即由“矿物能源系统”转变为“以可再生能源为基础的可持续能源系统”。
可再生能源是在自然界可以循环再生的资源,如太阳能、风能、生物质能、地热能、海洋能等都是其中的典型代表,其是与人类共存的能源,可谓取之不尽、用之不竭。
风能是可再生资源中应用较为广泛的一种,目前其主要应用于发电。
实际上风能的使用历史比较悠久,一开始人们主要将其用于抽水,磨面等,随着社会的不断进步和发展,其主要被用于发电。
研究发现,风力发电发展前景广阔,其发电成本与常规电力基本接近,因此其逐渐受到世界各国的重视,对于其研究也逐渐深入。
根据相关调查显示,全世界的风能总量约1300亿千瓦,中国的风能总量约16亿千瓦,因此我们应不断加强风力发电技术的探索和实践,以为我国的经济发展提供能源保障。
风能是一种可再生、永不枯竭、无污染且储量巨大的能源,其属于自然能源的范畴,风能的利用相对而言比较简单,其不同于煤、油、然气等,需要先从地下采掘出来再进行二次加工;不同于水能,必须建造坝以推动水轮机运转;也不同于原子能的利用,需耗费大量的成本与技术研发力量。
风力发电具有较为稳定的发电成本,对环境污染小,因此其发展前景较为广阔。
尤其是对于缺水、缺燃料和交通不便的沿海岛屿、草原牧区、山区和高原地带,根据当地的实际情况合理利用风力发电,具有重要的现实意义。
本文就风力发电控制技术做简要探讨。
由于自然风速的大小和方向的随机变化,风力发电机组切入电网和切出电网、输入功率的限制、风轮的主动对风以及对运动过程中故障的检测和保护必须能够自动控制。
风力发电系统的控制技术从定桨距恒速运行至基于变桨距技术的变速运行,已经基本实现了风力发电机组理想地向电网提供电力的最终目标。
风力发电机的几种功率调节方式
风力发电机的几种功率调节方式作者:佚名发布时间:2009-5-5随着计算机技术与先进的控制技术应用到风电领域,并网运行的风力发电控制技术得到了较快发展,控制方式从基本单一的定桨距失速控制向变桨距和变速恒频控制方向发展,甚至向智能型控制发展。
作为风力资源较为丰富的国家之一,我国加快了风电技术领域的自主开发与研究,兆瓦级变速恒频的风力发电机组国产化已列入国家“863”科技攻关顶目。
本文针对当前并网型风力发电机组的几种功率凋节控制技术进行了介绍。
l 定桨距失速调节型风力发电机组定桨距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。
失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。
为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机)。
在低风速段运行的,采用小电机使桨叶具有较高的气动效率,提高发电机的运行效率。
失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。
2 变桨距调节型风力发电机组变桨距是指安装在轮载上的叶片通过控制改变其桨距角的大小。
其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“,直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。
随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大风力发电机的几种功率调节方式作者:佚名发布时间:2009-5-5调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。
风力发电控制技术
风力发电及其控制技术摘要: 风力发电是将风能转换成电能,风能推动叶轮旋转,叶轮带动转动轴和增速机,增速机带动发电机,发电机通过输电电缆将电能输送地面控制系统和负荷。
风力发电技术是一项多学科的,可持续发展的,绿色环保的综合技术。
风力发电系统中的控制技术和伺服传动技术是其中的关键技术,这是因为自然风速的大小和方向是随机变化的,风力发电机组的切入(电网)和切出(电网)、输入功率的限制、风轮的主动对风以及对运行过程中故障的检测和保护必须能够自动控制。
同时,风力资源丰富的地区通常都是海岛或边远地区甚至海上,分散布置的风力发电机组通常要求能够无人值班运行和远程监控,这就对风力发电机组的控制系统的可靠性提出了很高的要求一、风电控制系统简述风电控制系统包括现场风力发电机组控制单元、高速环型冗余光纤以太网、远程上位机操作员站等部分。
现场风力发电机组控制单元是每台风机控制的核心,实现机组的参数监视、自动发电控制和设备保护等功能;每台风力发电机组配有就地HMI人机接口以实现就地操作、调试和维护机组;高速环型冗余光纤以太网是系统的数据高速公路,将机组的实时数据送至上位机界面;上位机操作员站是风电厂的运行监视核心,并具备完善的机组状态监视、参数报警,实时/历史数据的记录显示等功能,操作员在控制室内实现对风场所有机组的运行监视及操作。
风力发电机组控制单元(WPCU)是每台风机的控制核心,分散布置在机组的塔筒和机舱内。
由于风电机组现场运行环境恶劣,对控制系统的可靠性要求非常高,而风电控制系统是专门针对大型风电场的运行需求而设计,应具有极高的环境适应性和抗电磁干扰等能力。
风电控制系统的现场控制站包括:塔座主控制器机柜、机舱控制站机柜、变桨距系统、变流器系统、现场触摸屏站、以太网交换机、现场总线通讯网络、UPS电源、紧急停机后备系统等。
风力发电的基本原理风能具有一定的动能,通过风轮机将风能转化为机械能,拖动发电机发电。
风力发电的原理是利用风带动风车叶片旋转,再通过增速器将旋转的速度提高来促使发电机发电的。
风力发电机组控制及运行维护技术
风力发电机组控制及运行维护技术摘要:针对风力发电机组,在对其风力发电机组控制进行分析介绍的基础上,对风力发电机组的运行维护进行深入分析,为风力发电的发展奠定坚实基础。
关键词:风力发电机组;机组控制;机组运行维护1.风力发电机组控制因自然风速方向及大小都具有随机变化的特点,且机组切入、切出电网及输入功率方面的限制,所以必须对其进行自动控制。
1.1定桨距失速风力发电这项技术起源于80年代中期,之后在市场中占据很大比例,用于解决并网、运行控制等方面的问题,主要包括以下技术:软并网、自动解缆和空气动力刹车。
安装过程中,桨叶节距角已确定,机组转速主要由电网频率来控制,而输出功率则由桨叶自身基本性能控制。
如果风速超过额定转速,则桨叶可以采用失速调节将功率控制在一定范围内,依靠叶片特殊结构,在遇大风后,从叶片背面经过的气流将出现紊乱,影响叶片的气动效率,对能量的捕获造成限制,最终产生失速。
考虑到失速为典型的气动过程,十分复杂,当风况较不稳定时,难以准确得出实际的失速效果,因此在超过MW级的机组中往往很少使用。
1.2变桨距风力发电在空气动力学方面,如果风速相对较高,则可通过对气流的改变和桨叶节距的调整来改变机组动力转矩,确保输出功率可以保持平稳。
通过对变桨距这一调节方式的应用,能使输出功率的变化曲线保持平滑,阵风情况下,基础、塔筒和叶片冲击比之前提到的失速调节小,能减少材料实际利用率,并减轻机组的整体重量。
这一控制方法的缺点在于必须要有一套完善且复杂的机构来实现变桨距,能对阵风有极快的响应速度,以此从根本上减小或避免因风力波动产生的功率脉动。
1.3主动失速/混合失速发电该技术是上述两项技术的合理组合,在低风速情况下,通过对变桨距技术的应用来提高气动效率,在风机功率达到额定值后,按照与变桨距调节相反的方向对桨距进行改变。
该调节方式会使叶片攻角产生变化,使失速现象更加深入,确保功率输出保持平滑。
因此,它综合了以上两种控制方法的特点及优势。
失速调节和变桨距调节
【转】定桨距与变桨距--风力发电机组技术学习 2009-09-07 16:52 阅读27 评论0字号:大中小l 定桨距失速调节型风力发电机组定奖距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。
失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。
为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机)。
在低风速段运行的,采用小电机使桨叶县有较高的气动效率,提高发电机的运行效率。
失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。
其缺点是叶片重晏大(与变桨距风机叶片比较),桨叶、轮载、塔架等部件受力较大,机组的整体效率较低。
2 变桨距调节型风力发电机组变奖距是指安装在轮载上的叶片通过控制改变其桨距角的大小。
其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“,直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。
随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。
变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。
桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。
缺点是结构比较复杂,故障率相对较高。
3 主动失速调节型风力发电机组将定桨距失速调节型与变桨距调节型两种风力发电机组相结合,充分吸取了被动失速和桨距调节的优点,桨叶采用失速特性,调节系统采用变桨距调节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变桨距主动失速型风力发电机
摘要目前世界市场上风电机主要的调节技术有:定桨距调节风电机技术,变桨距调节风电机技术,主动定桨距调节技术,变速恒频四种。
目前,我国风电机采用较多的为定桨距失速调节型技术,这类风电机的容量可以扩大到750kW,GL750变桨距主动失速型风力发电机的国产化应用使我国风机技术向世界领先领域迈进了一大步。
关键词变桨距;主动失速
风能是世界上能源利用中最具价值潜力的可再生能源,是作为未来可持续发展和零污染能源的一线希望。
目前,风力发电正处于商业化发展的上升阶段,其相配套的功率凋节控制技术的发展也十分迅猛。
风力发电机的风轮是接受风能转换电能的最主要部件,其良好的空气动力学设计、可靠的零部件质量和优越的运转性能是保证风力发电机组正常稳定运行及稳定发电的决定性因素。
1国内目前风力发电机现状
目前,我国风力发电机技术应用现状为:在国家科技部的支持下已开发成功的,并具有自主知识产权的风力发电机组仅为200kW/250kW。
该类型机组成功的开发,也是我国定桨距失速调节型风力发电机在技术上获得成功的重要突破。
采用该技术的风力发电机的容量已经发展到750kW。
因为我国当时的机械基础水平和调节控制都处于相对较低的水平,很难开发出来可靠性高的机组,其中变距系统故障率非常高,导致机组经常发生故障而影响持续发电,因此80年末国内风机基本上都处于停运状态,无法有效形成产业化,严重阻碍了我国清洁能源商业化的推广。
2对比国内同类容量风电机的技术优势
目前,国内同等容量风力发电机组多为定桨距失速调节型,定桨距是指轮毂与叶片是固定连接的,桨距角是固定不变的,即叶片的迎风角度不能随着风速变化而变化。
失速型是指叶片翼型本身所具有的失速特性,当风速大于额定风速59米/秒时,气流的攻角增大满足失速条件,在叶片的表面产生涡流,效率随之降低,使发电机的功率输出受到限制。
为了在低风速时使风电机组的效率有所提高,一般都要采用双速发电机(即大/小发电机)。
在低风速运行时,所用的小电机使叶片具有较高的气动效率,提高了发电机的运行效率。
失速调节简单可靠是失速调节型风机的主要特点,输出功率的变化是由风速变化引起的,如果控制系统不作任何控制,而只是采用叶片的被动失速调节,会使控制系统大为减化。
但由于其叶片质量较大(与变桨距风机叶片相比较),导致其空气动力学性能不足,因此,诸如叶片、轮毂、塔筒等部件承受应力较大,整个机组的发电效率降低。
随着清洁能源的大范围推广,大大提高了风力发电机组的可靠性,变桨距技术的推广,成为风力发电机组大规模商业化的技术保证。
采用全变桨距的风力发电
机组,可以控制起动时的转速,及并网后可的发电功率,显著改善风力发电机组的启动和功率输出性能。
风力发电机组的闭环控制系统是由变桨距系统组成,它使风力发电机组控制系统的水平提高到了一个新的高度。
变桨距主动失速型风力发电机将定桨距失速调节与变桨距调节两种技术进行了有机的结合,同时采用了被动失速和桨距调节的特点,即采用了变桨距调节方式,以及叶片的失速优点。
近些年国内外都开展了这方面的研究。
风电机组控制系统已经开始采用一些新的控制理论。
在低风速时,通过变桨使叶片处于可获取最大风功率位置;如果风力发电机发电超过额定功率时,叶片节距主动调节产生失速,使功率处于额定值以下,避免机组在最大功率时长期运行,即使风速不断变化,叶片也只需要进行微调即可保持持其失速状态。
在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,闭环控制系统开始发挥作用,变桨系统将调整桨距角的大小,使发电机的输出功率保持在额定值。
由于其叶片节距角是根据发电机输出功率的反馈信号来控制的,不受气流密度变化的影响。
无论空气密度如何变化,变桨距系统都能通过调整叶片角度,达到额定功率输出。
风电机组叶片如果结冰会使转子运行不平稳,风速仪、风向仪和风速平衡装置如果结冰将影响机组的运行和控制。
可通过在发电机内部安装电加热器,改善由于大温差易引起的发电机绕组表面冷凝。
制动刹车时,调节叶片相当于空气动力刹车,最大程度地减少了机械刹车对传动系统的影响。
主动失速调节型的优点是其延续了定桨距失速型的特点,并在此基础上进行变桨距调节,提高了频率后并入电网。
机组在转子设计上采用了变桨距结构,使发电机转速在变桨距系统调节下保持稳定,即发电机转速保持在同步发电转速附近,在最佳的并网时间平稳地并入电网;在额定风速以下时,主要调节发电机反力转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上时,采用变速与叶片节距双重调节,通过变桨距系统调节限制风力机获取能量,保证发电机功率输出的稳定性,获取良好的动态特性;而快速变化的风速通过变桨距的方式调节来应对,降低频繁动作桨距调节,使传动系统的柔性得到有效提高。
3结束语
容量超过750kW风力发电机组作为陆地风力发电机组的主流型号,我国仅掌握定桨距失速调技术,因此相对于同类型产品,在获得最大风能的同时,又保证发电机功率输出的稳定性方面,变桨距主动失速型风力发电机更具有先进的技术优势,该型号的开发量产提高了国产风力发电机组同行业内的竞争实力,为我国风力发电机组进军国际市场赢得了主动,在该领域内填补了国内空白。
参考文献
[1]施鹏飞.我国风电场将进入大规模发展时期[C].20世纪太阳能新技术(2003年中国太阳能学会学术年会论文集).上海:上海交通大学出版社,2003.
[2]叶枝全,黄继雄,陈严,等.风力机新系列翼型的气动性能研究[J].太阳能学报,2002(2).
[3]董永祺,熊学斌.国产风力发电机FRP叶片一瞥[J].风力发电,2001(4):50-52.
[4]SperaDA.TheBrush Wind Turbine Generator as De2 scribed in Scientific American[R].
研究方向:风力发电机组。