高三第一次联考(理数)
山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考理数试题

山西省忻州一中 康杰中学 临汾一中 长治二中2014届高三第一次四校联考理数试题(满分150分,考试时间120分)一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)1.已知全集U R =,集合{}3A x Z y x =∈=-{}5B x x =>,则 A =)(B C U A.[]3,5 B. [)3,5 C. {}4,5 D. {}3,4,5 2.复数iiz +-=13的虚部为 A. 2 B. 2- C.2i D.2i -3.若焦点在x 轴上的双曲线1222=-my x 的离心率为62,则该双曲线的渐近线方程为 A. x y 22±= B. x y 2±= C.x y 21±= D.x y 2±= 4.按照如图的程序运行,已知输入x 的值为2+log 23,则输出y 的值为 A.112 B.18 C.124 D.385.已知等比数列{}n a 的首项,11=a 公比2=q ,则=+++1122212log log log a a aA.50B.35C.55D.466.已知nx )21(-展开式中,奇数项的二项式系数之和为64,则)1()21(x x n+-展开式中含2x 项的系数为A. 71B. 70C.21D. 49 7.如图是一几何体的三视图,则该几何体的体积是 A.9 B.10 C.12 D. 188.设1>m ,当实数y x ,满足不等式组⎪⎩⎪⎨⎧≤+≤≥12y x x y x y 时,目标函数my x z +=的最大值等于2,则m 的值是3俯视图2223 3 4侧视图主视图x ≥4? 输出y否 是结束输入xx=x+1y=(12)x 开始A. 2B.3C.32 D. 529.已知函数⎪⎩⎪⎨⎧∈---∈-=)1,0[,1)1(1)0,1[,)(x x f x x x f ,若方程0)(=+-k kx x f 有两个实数根,则k 的取值范围是 A. 11,2⎛⎤-- ⎥⎝⎦ B.1,02⎡⎫-⎪⎢⎣⎭C. [)1,-+∞D. 1,2⎡⎫-+∞⎪⎢⎣⎭10.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB ∆为等边三角形,三棱锥S ABC -的体积为433,则球O 的半径为 A . 3 B. 1 C. 2 D. 411.抛物线x y 122=的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当FPM ∆为等边三角形时,则FPM ∆的外接圆的方程为Ks5uA.. 5)5()3(22=±+-y x B. 48)34()3(22=±+-y x C. 9)3()3(22=±+-y x D. 28)72()3(22=±+-y x12.已知函数)(x f y =定义域为),(ππ-,且函数)1(+=x f y 的图象关于直线1-=x 对称,当),0(π∈x 时,x x f x f ln sin )2()(ππ-'-=,(其中)(x f '是)(x f 的导函数),若)91(log ),3(log ),3(33.0f c f b f a ===π,则c b a ,,的大小关系是A. c b a >>B. c a b >>C. a b c >>D. b a c >> 二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上)13.已知向量a ,b 满足1||=a ,2||=b ,a b a ⊥-)(,则向量a与向量b 的夹角为 .14.已知数列{n a }满足)(11,2*11N n a a a a nnn ∈-+==+,则2014a 的值为 .15.设θ为第四象限角,21)4tan(=+πθ,则=-θθcos sin . 16.已知数列{n a }的前n 项和n s 满足*130(2,)n n n a s s n n N -+=≥∈ ,311=a ,则n na 的最小值为 .三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)17.(本小题满分12分)已知函数2()sin(2)2cos 1()6f x x x x R π=-+-∈.E D CBA P(1)求()f x 的单调递增区间;(2)在ABC ∆中,三内角,,A B C 的对边分别为,,a b c ,已知1()2f A =,2a b c =+,18bc =.求a 的值.18.(本小题满分12分)如图,四棱锥P-ABCD 中,PA ABCD ⊥底面,AB AD ⊥,AC CD ⊥,PA AB BC AC ===,E 是PC 的中点. (1)求证:PD ABE ⊥平面;(2)求二面角A PD C --的平面角的正弦值.19.(本小题满分12分)在一次数学考试中,第22,23,24题为选做题,规定每位考生必须且只须在其中选做一题,设5名考生选做这三题的任意一题的可能性均为31,每位学生对每题的选择是相互独立的,各学生的选择相互之间没有影响. (1)求其中甲、乙两人选做同一题的概率;(2)设选做第23题的人数为ξ,求ξ的分布列及数学期望.20.(本小题满分12分)设椭圆)0(12222>>=+b a by a x 的左焦点为F ,离心率为22,过点F 且与x 轴垂直的直线被椭圆截得的线段长为2.(1) 求椭圆方程.(2) 过点)2,0(P 的直线l 与椭圆交于不同的两点B A ,,当OAB ∆面积最大时,求AB . 21.(本小题满分12分)设函数32)1()(ax e x x f x+-= (1) 当31-=a 时,求)(x f 的单调区间;(2) 若当0≥x 时,)(x f 0≥恒成立,求a 的取值范围.请考生在(22).(23).(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线PA 为圆O 的切线,切点为A ,直径BC OP ⊥,连接AB 交PO 于点D .(Ⅰ)证明:PA PD =; (Ⅱ)求证:PA AC AD OC = .23.(本小题10分)选修4—4:坐标系与参数方程A PB COD在平面直角坐标系中,以坐标原点为极点,x 轴的 正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为2sin 2cos (0)a a ρθθ=>,过点P (-2,-4)的直线l 的参数方程为222242x t y t =-+=-+⎧⎪⎨⎪⎩(t 为参数),直线l 与曲线C 相交于,A B 两点.(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若2PA PB AB = ,求a 的值.24.(本小题满分10分)选修4—5:不等式选讲 已知函数()31f x x x =-++.(Ⅰ)求使不等式()6f x <成立的x 的取值范围; (Ⅱ)o x R ∃∈,()o f x a <,求实数a 的取值范围.2014届高三年级第一次四校联考数学试题答案(理)1-12题答案:1.D 2.B 3.A 4.C 5.C 6.B 7.A 8.D 9.B 10.C 11.B 12.B二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上) 13.60 14.3- 15. 5102-16. 31- 三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)17.解析.解:(1)f(x)= sin(2x - π6)+2cos 2x-1=32sin2x-12cos2x+cos2x=32sin2x+12cos2x= sin(2x + π6)………………………………………3分 由2k π-π2≤2x+π6≤2k π+π2,(k ∈Z)得k π-π3≤x ≤k π+π6,(k ∈Z)…………5分∴f(x)的单调递增区间为[k π-π3,k π+π6](k ∈Z).………………………6分(2) 由f(A)=12, 得sin(2A + π6)=12∵π6<2A+π6<2π+π6 , ∴2A+π6=5π6,∴A=π3……………………………8分 由余弦定理得a 2=b 2+c 2-2bccosA=(b+c)2-3bc ………………………10分 又2a=b+c,bc=18. ∴a 2=18,∴a=32………………………………………………………………12分x yz18.(1)证明:⊥PA底面ABCD,PACD⊥∴又ACCD⊥,AACPA=⋂,故⊥CD面PAC⊆AE面PAC,故AECD⊥…………………………………………4分又PA AC=,E是PC的中点,故PCAE⊥从而⊥AE面PCD,故PDAE⊥易知PDBA⊥,故⊥PD面ABE………………………………6分(2)如图建立空间直角坐标系,设aAC=,则(0,0,0)A、(0,0,)P a、(,0,0)B a 、20,,03aD⎛⎫⎪⎝⎭,3,,022a aC⎛⎫⎪⎪⎝⎭,从而2(0,,)3aPD a=-,3,,026a aDC⎛⎫=-⎪⎪⎝⎭,…9分设1(,,)n x y z=为平面PDC的法向量,则1123326an PD y aza an DC x y⎧⋅=-=⎪⎪⇒⎨⎪⋅=-=⎪⎩可以取1(1,3,2)n=……………………11分又2(1,0,0)n=为平面PAD的法向量,若二面角A PD C--的平面角为θ则1211cos8n nθ==⋅……………………11分因此14sin4θ=。
高三上学期第一次联考数学(理)试题Word版含答案

-第一学期高三联考 数学试卷(理)分值:150分考试时间:120分钟命题人:刘翔审题人:郭干军第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的.1.设复数z 满足z +2z -=6+i(i 是虚数单位),则复数z 在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知全集U =R ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪18<2x <1,M ={}x |y =ln (-x -1),则图中阴影部分表示的集合是() A.{}x |-3<x<-1 B.{}x |-3<x<0C.{}x |-1≤x<0D.{}x|x<-33.设等差数列{}n a 的前n 项和为n S ,点()10081010,a a 在直线20x y +-=上,则2017S =() A.4034B.2017C.1008D.10104.设123log 2,ln 2,5a b c -===,则( ) A.a b c <<B.b c a <<C.c a b <<D.c b a <<5.为了配合创建全国文明城市的活动,我校现从4名男教师和5名女教师中,选取3人,组成创文明志愿者小组,若男女至少各有一人,则不同的选法共有() A. 140种B. 70种C. 35种D. 84种6.已知平面向量的夹角为,且,则( )A. 1B.C. 2D.7.如图给出的是计算1111352017++++的值的一个程序框图,则判断框内可以填入的条件是() A. 1008?i > B. 1009?i ≤ C. 1010?i ≤ D. 1011?i <8.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的最长棱长为() A.23B.4C.6D. 429.若实数满足不等式组,则目标函数z=42-+-x y x 的最大值是() A. 1B.41-C.45-D. 4510. 已知f(x)=sin(2019x+6π)+cos(2019x —3π)的最大值为A ,若存在实数x 1、x 2,使得对任意实数x 总有f(x 1)≤f(x)≤f(x 2)成立,则A|x 1—x 2|的最小值为()A.2019πB.20194πC.20192πD. 4038π 11.已知双曲线,过其右焦点且平行于一条渐近线的直线与另一条渐近线交于点,与双曲线交于点,若,则双曲线的离心率为()A.B.C.D. 212.在正方体ABCD —A 1B 1C 1D 1中,边长为6,面A 1DB 与面A 1DC 1的重心分别为E 、F ,求正方体外接球被EF 所在直线截的弦长为() A.435B.235 C.470 D.270 第Ⅱ卷二、填空题:本大题共四小题,每小题5分,满分20分。
湖北省重点中学2008届高三第一次联考(理数)

湖北省重点中学2008届高三第一次联考数学试卷(理科)一. 选择题(5′×10=50′)1.复数2iz =的虚部是( )..B d2.命题P :若()()22120x y -+-=,则x=1且y=2,则命题P 的否命题为( )A.若()()22120,x y -+-≠则x ≠1且y ≠2 B. 若()()22120x y -+-=,则x ≠1且y ≠2 C. 若()()22120,x y -+-≠则x ≠1或y ≠2 D. 若()()22120x y -+-=,则x ≠1或y ≠23.已知A (0,1),B (-2,1),C (1,2),则AB AC 在上的投影是()..A C D 4.已知[)02cos sin θπθθ∈,,〈,且sin tan θθ〈,则θ的取值范围是( ) ()33.02.022253353..42422442A B C D ππππππππππππππ⎛⎫⎛⎫⎛⎫⋃⋃ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⋃⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,,,,,,5.若不等式1x m -〈成立的充分非必要条件是1132x 〈〈,则实数m 的取值范围是( ) 411414....322323A B C D ⎡⎤⎡⎤⎛⎤⎡⎫---∞-+∞ ⎪⎢⎥⎢⎥⎥⎢⎣⎦⎣⎦⎝⎦⎣⎭,,,,6.函数()(2ln 1y x x =-≤的反函数是())).0.0A y x B y x =≤=≤)).0.0C y x D y x =≥=≥7.若等比数列的各项均为正数,前n 项之和为S ,前n 项之积为P ,前n 项倒数之和为M ,则( )22....nnS S S S A P B P C P D P MMM M ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭〉〉 8.函数ln 1xy ex =--的图像大致是( )9.在算式“9×△+1×□=48”中的△、□分别填入两个正整数,使它们的倒数和最小,则这两个数构成的数对应为( )()()().230.321.412.53A B C D ,,(,),10.已知函数()221y f x =+-是定义在R 上的奇函数,函数()y g x =的图象与函数()y f x =的图象关于直线0x y -=对称,若122x x +=,则()()12g x g x +=( ).2.2.4.4A B C D --二.填空题(5′×5=25′)11.为了了解某地区高三学生的身体发育情况。
2023年河南省五市高考数学第一次联考试卷(理科)+答案解析(附后)

2023年河南省五市高考数学第一次联考试卷(理科)1. 已知集合,则集合A的所有非空真子集的个数是( )A. 6B. 7C. 14D. 152. 欧拉公式把自然对数的底数e、虚数单位i、三角函数联系在一起,充分体现了数学的和谐美.若复数z满足,则z的虚部为( )A. B. C. 1 D.3. 在等比数列中,已知,,则( )A. 128B. 64C. 64或D. 128或4. 若抛物线上的一点M到坐标原点O的距离为,则点M到该抛物线焦点的距离为( )A. 3B.C. 2D. 15. 变量X与Y相对应的一组数据为,,,,,变量U与V相对应的一组数据为,,,,表示变量Y与X之间的线性相关系数,表示变量V与U之间的线性相关系数,则( )A. B. C. D.6. 如图,已知正三棱柱的各条棱长都相等,M是侧棱的中点,N是的中点,则( )A.B. 平面BAMC. 平面ABMD.7. 是单位圆的内接三角形,角A,B,C的对边分别为a,b,c,且,则a等于( )A. 2B.C.D. 18. 讲桌上放有两摞书,一摞3本,另一摞4本,现要把这7本不同的书发给7个学生,每位学生一本书,每次发书只能从其中一摞取最上面的一本书,则不同取法的种数为( ) A. 20 B. 30 C. 35 D. 2109. 某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,,,且记该棋手连胜两盘的概率为p,则( )A. p与该棋手和甲、乙、丙的比赛次序无关B. 该棋手在第二盘与甲比赛,p最大C. 该棋手在第二盘与乙比赛,p最大D. 该棋手在第二盘与丙比赛,p最大10. 传说古希腊数学家阿基米德的募碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.“圆柱容球”是阿基米德最为得意的发现;如图是一个圆柱容球,,为圆柱上下底面的圆心,O为球心,EF为底面圆的一条直径,若球的半径,则( )A. 球与圆柱的表面积之比为1:2B. 平面DEF截得球的截面面积取值范围为C. 四面体CDEF的体积的最大值为16D. 若P为球面和圆柱侧面的交线上一点,则的取值范围11. 某中学开展劳动实习,学生加工制作零件,零件的截面如图单位:所示,四边形AFED为矩形,AB,CD,FE均与圆O相切,B、C为切点,零件的截面BC段为圆O的一段弧,已知,则该零件的截面的周长为结果保留( )A. B. C. D.12. 的展开式的第2项为______.13. 已知向量,满足,且,则______.14.双曲线C:的左,右焦点分别为,,过且倾斜角为的直线与双曲线右支交于A,B两点,若为等腰三角形,则该双曲线的离心率为______ .15. 已知正实数x,y满足,则的最小值为______ .16. 已知是数列的前n项和,且求数列的通项公式;若,是的前n项和,证明:17. 如图,在三棱柱中,,,P为AD的中点,为等边三角形,直线AC与平面ABED所成角大小为求证:平面BCP;求平面ECP与平面CDP夹角的余弦值.18. 某超市采购了一批袋装的进口牛肉干进行销售,共1000袋,每袋成本为30元,销售价格为50元,经过科学测定,每袋牛肉干变质的概率为,且各袋牛肉干是否变质相互独立.依据消费者权益保护法的规定:超市出售变质食品的,消费者可以要求超市退一赔三.为了保护消费者权益,针对购买到变质牛肉干的消费者,超市除退货外,并对每袋牛肉干以销售价格的三倍现金赔付,且把变质牛肉干做废物处理,不再进行销售.若销售完这批牛肉干后得到的利润为X,且,求p的取值范围;已知,若超市聘请兼职员工来检查这批牛肉干是否变质,超市需要支付兼职员工工资5000元,这样检查到的变质牛肉干直接当废物处理,就不会流入到消费者手中.请以超市获取的利润为决策依据,判断超市是否需要聘请兼职员工来检验这批牛肉干是否变质?19. 已知椭圆,过直线l:上一点P作椭圆的切线,切点为A,当P点在x轴上时,切线PA的斜率为求椭圆的方程;设O为坐标原点,求面积的最小值.20. 已知函数若在上恒成立,求实数a的取值范围;若,判断关于x的方程在内解的个数,并说明理由.21. 极坐标系中曲线T的极坐标方程为,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,单位长度不变,直线,均过点,且,直线的倾斜角为写出曲线T的直角坐标方程;写出,的参数方程;设直线,分别与曲线T交于点A,B和C,D,线段AB和CD的中点分别为M,N,求的最小值.22. 已知函数求不等式的解集;若函数的最小值为m,正实数a,b满足,证明:答案和解析1.【答案】A【解析】解:,元素个数为3个,则集合A的所有非空真子集的个数是故选:根据已知条件,结合非空真子集的定义,即可求解.本题主要考查非空真子集的定义,属于基础题.2.【答案】B【解析】解:由已知可得,,则,的虚部为故选:由欧拉公式和复数除法运算可求得z,由复数虚部定义求得结果.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.【答案】D【解析】【分析】本题考查等比数列的通项公式,属于简单题.设等比数列的公比为q,利用等比数列通项公式列出方程组,求出首项和公比,由此能求出【解答】解:设等比数列的公比为q,在等比数列中,,,,解得,或,,或故选:4.【答案】B【解析】解:设点,,,或舍去,到抛物线的准线的距离点M到该抛物线焦点的距离等于点M到抛物线的准线的距离,点M到该抛物线焦点的距离为:故选:求得点M的坐标,将点M到该抛物线焦点的距离转化为点M到抛物线的准线的距离即可.本题考查抛物线的简单性质,考查转化思想与方程思想,求得点M的坐标是关键,属于中档题.5.【答案】C【解析】解:变量X与Y相对应的一组数据为,,,,,这组数据的相关系数是,变量U与V相对应的一组数据为,,,,,这组数据的相关系数是,第一组数据的相关系数大于零,第二组数据的相关系数小于零,故选:求两组数据的相关系数的大小和正负,可以详细的解出这两组数据的相关系数,现分别求出两组数据的两个变量的平均数,利用相关系数的个数代入求出结果,进行比较.本题考查用相关系数来衡量两个变量之间相关关系,当相关系数为正时,表示两个变量正相关,也利用散点图判断两个变量之间是否有相关关系.6.【答案】D【解析】解:因为与异面,故A错误;因为的延长线必过点B,则直线与平面BAM相交,故B错误;因为与AB不垂直,所以不垂直于平面ABM,故C错误;取BC的中点P,连接,在正方形中,由,,即,可得,所以连接AP,则,又平面底面ABC,平面底面,所以平面因为平面,所以,且,所以平面因为平面,所以故D正确.故选:由两条直线的位置关系可判断A;由线面的位置关系可判断B;由线面垂直的性质可判断C;由线面垂直的判定与性质可判断本题考查空间中线线、线面的位置关系,主要是平行与垂直的判定和性质,考查转化思想和推理能力,属于中档题.7.【答案】C【解析】解:因为,所以,即,由正弦定理得,所以,因为,所以,由A为三角形内角得,由正弦定理得,所以,故选:由已知结合余弦定理及正弦定理及和差角公式进行化解可求,进而可求A,然后结合正弦定理表示出a,b,c,然后求解即可.本题主要考查了正弦定理,余弦定理,和差角公式在三角化简求值中的应用,属于中档题.8.【答案】C【解析】解:根据题意,问题等价于从一行七个空里选三个空把1、2、3按从小到大自左向右顺序填进去,剩下三个空将4、5、6、7从小到大自左向右顺序填进去,共有填法种.故选:问题等价于从一行七个空里选三个空把1、2、3按从小到大自左向右顺序填进去,剩下三个空将4、5、6、7从小到大自左向右顺序填进去,即得解.本题主要考查了排列组合知识,属于基础题.9.【答案】D【解析】解:A选项,已知棋手与甲、乙、丙比赛获胜的概率不相等,所以P受比赛次序影响,故A错误;设棋手在第二盘与甲比赛连赢两盘的概率为,棋手在第二盘与乙比赛连赢两盘的概率为,棋手在第二盘与丙比赛连赢两盘的概率为,,,,,,所以最大,即棋手在第二盘与丙比赛连赢两盘的概率最大.故选:已知棋手与甲、乙、丙比赛获胜的概率不相等,所以P受比赛次序影响,A错误;再计算第二盘分别与甲、乙、丙比赛连赢两盘的概率,比较大小即可.本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率乘法公式的灵活运用.10.【答案】D【解析】解:选项A,球表面积为,圆柱全面积是,,A错;选项B,平面DEF过球心O时,截得球的截面最大,此时截面面积为,B错;选项C,EF绕旋转时,由于始终有是圆柱的轴,圆柱的底面垂直,因此与底面上的直线EF垂直,从而为定值,,当时,易得平面,而当EF与AB不垂直时,CD与平面不垂直,因此C到平面的距离小于,D到平面的距离小于,因此,即四面体CDEF的体积的最大值为,C错;选项D,如下图,不妨设E与A重合,F与B重合,设Q是圆柱过点P的母线与下底面的交点,则PQ与底面圆垂直,从而PQ与底面上的直线AQ,BQ,,,设,则,,令,则,,时,,单调递增,时,,单调递减,所以,而,所以,的取值范围是,所以,即的取值范围是,D正确.故选:求出球与圆柱的表面积之比判断A,由截面积最大为球的大圆面积判断B,用割补法求四面体体积判断C,不妨设E与A重合,F与B重合,设Q是圆柱过点P的母线与下底面的交点,计算出,利用导数求出其取值范围从而判断本题考查圆柱与球的表面积、体积以及折线段的最值问题,考查逻辑推理能力,是一道难题.11.【答案】A【解析】解:以A为原点,AD为x轴正方向建立平面直角坐标系如图所示:则,,又,所以直线AB的方程为:,即,直线CD的方程为:,即,直线EF的方程为:,设圆心为,则圆心到直线AB、直线CD、直线的距离均相等且等于r,则,解得,,,所以,,,,由题可知,即,所以可得,,对应弧长为圆的周长,故该零件的截面的周长为故选:以A为原点,建立直角坐标系,根据圆心到直线AB、直线CD、直线EF距离均相等,利用点到直线的距离公式列式,计算出、、的长,即得.本题主要考查直线与圆的位置关系,考查转化能力,属于中档题.12.【答案】【解析】解:的展开式的第2项为,故答案为:利用二项展开式的通项公式,求得的展开式的第2项.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.13.【答案】【解析】解:根据题意,向量,满足,若,则,则,两边平方变形可得,则,则有,则,故答案为:根据题意,有,即可得,变形可得,由向量数量积的计算公式计算可得答案.本题考查向量数量积的计算,涉及向量模的计算,属于基础题.14.【答案】【解析】解:如图,为等腰三角形,,,,,直线AB的倾斜角为,,在三角形中,根据余弦定理得:整理得,同除以得,,即,解得,舍故答案为:先根据为等腰三角形,然后利用双曲线的定义分别将边长表示为a的关系,然后利用余弦定理建立a,c的方程,从而求出双曲线的离心率.本题考查双曲线的离心率的求法,是中档题,解题时要认真审题,注意双曲线的性质的合理运用.15.【答案】0【解析】解:,即,设,则,且,所以在上单调递增,正实数x,y,,即,所以,等价于,即,,设,;,设,,所以单调递增,且,所以在上,,,单调递减;在上,,,单调递增;所以即最小值为0,故答案为:根据,构造函数,得到,然后转化为单变量问题,求导判断单调性即可.本题主要考查了导数与单调性关系在最值求解中的应用,属于中档题.16.【答案】解:已知是数列的前n项和,且,时,,时,,经验证时,,;证明:若,是的前n项和,时,,时,,,【解析】根据题意得到时,,验证即可求解;利用裂项相消求和即可得证.本题考查了数列的递推式和裂项相消求和,属于中档题.17.【答案】解:证明:取BP中点M,连接AM,CM,,P为AD的中点,,,为等边三角形,,,AM,面ACM,平面ACM,平面平面,直线AC在平面ABP的射影在直线AM上,直线AC与平面ABED所成角为,则,,,是正三角形,则,,为等边三角形,,则,在中,由,,得,则,,,,AM,平面ABED,平面ABED,平面ABED,,,在中,,,,又,,,,平面由知MP,MC,MA两两垂直,以M为坐标原点,MA所在直线为x轴,MP所在直线为y轴,MC所在直线为z轴,建立空间直角坐标系,则,,,,是AD的中点,,,,,,,设平面ECP的法向量,则,令,得,设平面PCD的法向量,则,取,得,设平面ECP与平面CDP夹角为,则平面ECP与平面CDP夹角的余弦值为:【解析】先利用线面垂直判定定理证明平面ACM,从而得到AC在平面ABP的射影在直线AM上,即,进而证明,利用线面垂直的判定理得平面ABED,则,再利用勾股定理能证明,由此能证明平面BCP;建立空间直角坐标系,利用向量法能求出平面ECP与平面CDP夹角的余弦值.本题考查线面垂直的判定与性质、二面角的定义及其余弦值的求法、向量法等基础知识,考查运算求解能力,是中档题.18.【答案】解:令Y表示1000袋牛肉干中变质牛肉干的数量,由题意有,则,故,由,有,解得:,故当时,p的取值范围为对这批牛肉干来说,变质牛肉干不管数量有多少,未变质牛肉干的销售后产生的利润与变质牛肉干作废物处理后产生的费用是不变的,是否聘请兼职员工来检查这批牛肉干是否,产生的费用是工资和给消费者赔付的费用,当时,由知,,设需要赔付给消费者的费用为Z元,有,由,以超市获取的利润为决策依据,故超市需要聘请兼职员工来检验这批牛肉干是否变质.【解析】令Y表示1000袋牛肉干中变质牛肉干的数量,由题意有,则,,进而求解;当时,由知,,,由,进而求解.考查数学概率,期望在实际问题中的应用,属于中档题.19.【答案】解:当P点在x轴上时,,PA:,,,椭圆方程为;…设切线为,设,,则, (7)且,则,PA直线为,A到直线PO距离,…则, (13),,此时…【解析】由P在x轴设出P点坐标及直线PA方程,将PA方程与椭圆方程联立,整理关于x的一元二次方程,求得,即可求得椭圆方程;设出切线方程和点P及点A的坐标,将切线方程代入椭圆方程,求得关于x的一元二次方程,,求得A和P点的坐标,求得丨PA丨及A到直线OP的距离,根据三角形的面积公式求得丨丨,平方整理关于k的一元二次方程,,即可求得S的最小值.本题考查曲线方程的求法,考查三角形面积的最小值的求法,综合性强,难度大,解题时要注意推理论证能力的培养,属于中档题.20.【答案】解:由题意在上恒成立,得恒成立,令,则,当时,令,解得,令,解得,所以在为减函数,在上为增函数,故,故,即,所以实数a 的取值范围由,得,等价于,令,,因为在上,,单调递减,在上,故,,单调递增,注意到,,在和上各有一个零点,,共有两个零点,故方程有两个实数根.【解析】由题意转化为即恒成立,由此构造函数,转化为求函数的最值问题,即可求得答案;由题意得,等价于,构造,通过判断导数正负,判断函数单调性,结合零点存在定理,继而判断函数的零点个数.本题考查利用导数研究函数的单调性,极值及最值,考查不等式的恒成立问题,考查函数零点个数判断,考查逻辑推理能力及运算求解能力,属于较难题目.21.【答案】解:曲线T 的极坐标方程为,变形为,则曲线T 的直角坐标方程:,为参数,为参数;将为参数,代入,得,则,同理,当时取等号,且此时满足方程的判别式均大于零,故的最小值为【解析】将代入曲线T的极坐标方程得出直角坐标方程,由直线,均过点,直线的倾斜角为且,可得两直线的参数方程;将直线,的参数方程分别代入曲线T的直角坐标方程,利用韦达定理即可得出,再利用基本不等式即可得出结果.本题主要考查了曲线的极坐标方程与直角坐标方程的互化,考查了直线的参数方程的应用,属于中档题.22.【答案】解:即,或,或解得或,所以原不等式的解集为证明:由知当时,有最小值,所以,因为,所以,因为,,当且仅当时取等号,所以,当且仅当时取等号,所以,当且仅当,时取等号.【解析】将函数化为分段函数的形式,再分类讨论解不等式组,最后将各部分的解集取并集即可得到答案;由知,而,又,再利用基本不等式可得本题考查绝对值不等式的解法以及基本不等式的运用,考查不等式的证明,考查分类讨论思想以及推理计算能力,属于中档题.。
2025届吉林省高中学高三六校第一次联考数学试卷含解析

2025届吉林省高中学高三六校第一次联考数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在等差数列{}n a 中,若n S 为前n 项和,911212a a =+,则13S 的值是( ) A .156B .124C .136D .1802.已知椭圆2222:1x y C a b+=的短轴长为2,焦距为1223F F ,、分别是椭圆的左、右焦点,若点P 为C 上的任意一点,则1211PF PF +的取值范围为( ) A .[]1,2B .2,3⎡⎤⎣⎦C .2,4⎡⎤⎣⎦D .[]1,43.某人用随机模拟的方法估计无理数e 的值,做法如下:首先在平面直角坐标系中,过点1,0A 作x 轴的垂线与曲线x y e =相交于点B ,过B 作y 轴的垂线与y 轴相交于点C (如图),然后向矩形OABC 内投入M 粒豆子,并统计出这些豆子在曲线xy e =上方的有N 粒()N M <,则无理数e 的估计值是( )A .NM N-B .MM N-C .M NN- D .M N42的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )A .212 B .212C 61- D 31-5.设()f x 是定义在实数集R 上的函数,满足条件()1y f x =+是偶函数,且当1x ≥时,()112xf x ⎛⎫=- ⎪⎝⎭,则()3log 2a f =,312b f ⎛⎫=- ⎪⎝⎭,()3c f =的大小关系是( ) A .a b c >>B .b c a >>C .b a c >>D .c b a >>6.已知向量(2,4)a =-,(,3)b k =,且a 与b 的夹角为135︒,则k =( ) A .9-B .1C .9-或1D .1-或97.过抛物线()2:20E x py p =>的焦点F 作两条互相垂直的弦AB ,CD ,设P 为抛物线上的一动点,(1,2)Q ,若111||||4AB CD +=,则||||PF PQ +的最小值是( ) A .1B .2C .3D .48.已知,a b 为非零向量,“22a b b a =”为“a a b b =”的( ) A .充分不必要条件 B .充分必要条件C .必要不充分条件D .既不充分也不必要条件9.函数()cos2xf x π=与()g x kx k =-在[]6,8-上最多有n 个交点,交点分别为(),x y (1i =,……,n ),则()1nii i xy =+=∑( )A .7B .8C .9D .1010.已知等差数列{}n a 的公差不为零,且11a ,31a ,41a 构成新的等差数列,n S 为{}n a 的前n 项和,若存在n 使得0n S =,则n =( ) A .10B .11C .12D .1311.函数ln ||()xx x f x e=的大致图象为( ) A . B .C .D .12.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( ) A .72种B .144种C .288种D .360种二、填空题:本题共4小题,每小题5分,共20分。
贵州省2024-2025学年高三上学期第一次联考(9月月考)数学试题答案

数学参考答案·第1页(共9页)贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 答案 DCBCBCAA【解析】1.由题,{|13}A x x x =<->或,{1234}B =,,,,则{4}A B = ,故选D .2.对于A 选项,1y x=-的定义域为(0)(0)-∞+∞,,,该函数在(0)-∞,和(0)+∞,上单调递增,在定义域内不单调;对于B 选项,2ln y x =的定义域为(0)(0)-∞+∞ ,,,该函数在(0)-∞,上单调递减,在(0)+∞,上单调递增, 在定义域内不单调;对于C 选项,32y x ==[0)+∞,,该函数在定义域上单调递增;对于D 选项,e x y x =的定义域为R . (1)e x y x '=+∵,当(1)x ∈-∞-,时,0y '<;当(1)x ∈-+∞,时,0y '>,e x y x =∴在(1)-∞-,上单调递减,在(1)-+∞,上单调递增,因此该函数在定义域内不单调,故选C .3.537232a a a =+=∵,516a =,6426d a a =-=,3d =,1544a a d =-=,故选B .4.设点00()A x y ,,则20000252||4y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩,,,整理得582p p ⎛⎫-= ⎪⎝⎭,解得2p =或8p =,故选C .5.(23)f x -∵的定义域为[23],. 当23x ≤≤时,1233x -≤≤,()f x ∴的定义域为[13],,即[13]A =,. 令1213x -≤≤,解得12x ≤≤,(21)x f -∴的定义域为[12],, 即[12]B =,. B A ⊆∵,∴“x A ∈”是“x B ∈”的必要不充分条件,故选B .6.由题,()()()e ()e ()()()5e ()5e x xx xg x g x f x fx hx h x f x f x --⎧=-+=-+⎧⎪⇒⎨⎨=---=--+⎩⎪⎩,,,解得()3e 2e x xf x -=+,所以()3e 2e x x f x -=+≥,当且仅当3e 2e x x -=,即12ln 23x =时,等号成立,min ()f x =∴C .数学参考答案·第2页(共9页)7.设51x ⎫+⎪⎭的二项展开式的通项公式为53521551C C kkk k kk T xx --+⎛⎫== ⎪⎝⎭,0k =,1,2,3,4,5,所以二项展开式共6项. 当0k =,2,4时的项为无理项;当1k =,3,5时的项为有理项. 两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为223326C C 25C +=,故选A . 8.由题,1C :22(1)(1)2x y -+-=,即圆心为1(11)C ,(20)M ,,(02)N ,,MN 为1C 的直径. 1C ∵与2C 相外切,12||C C =+=∴. 由中线关系,有222222121||||2(||||)2(182)40C M C N C C C M +=+=⨯+=,22||||C M C N ∴≤2222||||202C M C N +=,当且仅当22||||C M C N =时,等号成立,所以22||||C M C N 的最大值为20,故选A .二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号 9 10 11 答案 ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,()202420252024(1)20252024E X m n n n n =+=-+=+. 01n <<∵,2024()2025E X <<∴,正确;对于D 选项,令2024Y X =-,则Y 服从两点分布,()(1)D Y n n mn =-=,()(2024)()D X D Y D Y mn =+==∴,正确,故选ACD.10.令2()21g x ax ax =-+,244a a ∆=-,对于A 选项,()f x 的定义域为0a ⇔=R 或0010a a >⎧⇔<⎨∆<⎩,≤,故A 错误;对于B 选项,()f x 的值域为()g x ⇔R 在定义域内的值域为0(0)0a a >⎧+∞⇔⇔⎨∆⎩,,≥1≥,故B 正确;对于C 选项,()f x 的最大值为2()g x ⇔在定义域内的最小值为011511616(1)16a a g >⎧⎪⇔⇔=⎨=⎪⎩,,故C 正确;对于D 选项,()f x 有极值()g x ⇔在定义域内有极值01(1)0a a g ≠⎧⇔⇔<⎨>⎩,且0a ≠,故D 选项错误,故选BC.数学参考答案·第3页(共9页)11.对于A 选项,因为(1)g x +为奇函数,所以(1)0g =,又由()(1)1g x f x --=,可得(1)(0)1g f -=,(0)1f =-,故A 错误;对于B 选项,由()(3)f x g x ''=+可得()(3)f x g x C =++,C 为常数,又由()(1)1g x f x --=,可得(1)()1g x f x --=,则(1)(3)1g x g x C --+-=,令1x =-,得(2)(2)1g g C --=,所以1C =-,所以(1)(3)g x g x -=+,()g x 的图象关于直线2x =对称,故B 正确;对于C 选项,因为(1)g x +为奇函数,所以(3)(1)(1)g x g x g x +=-=-+,所以(2)()g x g x +=-,(4)(2)g x g x +=-+ ()g x =,所以()g x 是一个周期为4的周期函数,()(3)1f x g x =+-,(4)(7)f x g x +=+ 1(3)1()g x f x -=+-=,所以()f x 也是一个周期为4的周期函数,故C 正确;对于D 选项,因为(1)g x +为奇函数,所以(1)0g =,(2)(0)(4)g g g =-=-,又(3)(1)0g g ==,又()g x 是周期为4的周期函数,所以20251()(1)0k g k g ===∑,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号 12 13 14 答案 e14433e 6-【解析】12.设切点坐标为()t t a ,,ln x y a a '=∵,∴切线方程为ln x y a a x = . 将()t t a ,代入得ln t t a a t a = ,可得1log e ln a t a==,∴切点纵坐标为e log e t a a a ==. 13.先对小七孔和千户苗寨两个相邻元素捆绑共有22A 种方法,再安排梵净山的位置共有13C 种方法,再排其余元素共有44A 种排法,故共有214234A C A 144= 种不同的方案.14.设123()()()f x f x f x t ===,由()f x 的函数图象知,23t <≤,又122x x +=-,3ln x t =∵,3e t x =,112233()()()2e t x f x x f x x f x t t ++=-+∴. 令()2e t t t t ϕ=-+,23t <≤,()t ϕ'= (1)e 20t t +->,()t ϕ∴在(23],上单调递增,则3max ()(3)3e 6t ϕϕ==-,112233()()()x f x x f x x f x ++∴的最大值为33e 6-.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列{n a }是首项为1,公比为3的等比数列,因此11133n n n a --=⨯=;…………………………………………………………………………………(3分)数学参考答案·第4页(共9页)数列{n b }是首项为1,公比为34的等比数列,因此,1133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭.…………………………………………………………………………………(6分)(2)证明:由(1)可得121121121333344n n n n n n n c a b a b a b a b ----⎛⎫⎛⎫=++++=++ ⎪⎪⎝⎭⎝⎭121333344n n --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 12101111141111331444414n n n n n ----⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=++++=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦- 214314n n -⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ , ………………………………………………………(10分)因为2114314411334n n n nn nc a --⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 所以413n n c a <≤,所以4.3n n n a c a <≤ …………………………………………………(13分) 16.(本小题满分15分)(1)证明:如图1,连接1A C ,设11A C C G O = ,连接1HO A G ,,三棱台111A B C ABC -,则11A C AC ∥,又122CG AC ==, ∴四边形11A C CG 为平行四边形,则1.CO OA = ………………………………………………………………(2分)∵点H 是BC 的中点,∴1BA OH ∥. …………………………………………………………………(4分)又OH ⊂平面1C HG ,1A B ⊄平面1C HG ,∴1A B ∥平面1C HG . …………………………………………………………………(6分)(2)解:因为平面1C GH 分三棱台111A B C ABC -所成两部分几何体的体积比为2∶5, 所以111127C GHC A B C ABC V V --=,即11111121()373GHC ABC A B C S CC S S CC =++ △△△, 化简得12GHC ABC S S =△△, 图1数学参考答案·第5页(共9页)此时点H 与点B 重合. ……………………………………………………………(8分)1190C CA BCC ∠=∠=︒,∵11C C BC CC AC BC AC C ⊥⊥= ∴,,且都在平面ABC ,则1CC ⊥平面ABC , 又ABC △为等腰直角三角形,则BG AC ⊥. 又由(1)知11A G CC ∥,则1A G ⊥平面ABC , 建立如图2所示的坐标系G xyz -,…………………………………………………(10分)则(200)(020)(000)(020)H A G C -,,,,,,,,,,,,11(02(122)1)C B --,,,,,.设平面1C HG 的法向量()n x y z =,,,1(022)(200)GC GH =-= ,,,,,, 则22020y z x -+=⎧⎨=⎩,,令1y =,解得(011)n =,,, 设平面1B GH 的法向量1()(112)m a b c GB ==-,,,,,,则2020a b c a -+=⎧⎨=⎩,,令2b =,解得(021)m = ,,. ……………………………………(12分) 设二面角11C GH B --的平面角为θ,|||cos |=|cos |||||m n m n m n θ〈〉==,=, ………………(14分)所以sin θ==所以二面角11C GH B --的正弦值为10. …………………………………………(15分)解得21m =,即双曲线N :2212y x -=. ………………………………………………(3分) 因为双曲线M 与双曲线N 的离心率相同, 不妨设双曲线M 的方程为222y x λ-=, 因为双曲线M 经过点(22),,所以42λ-=,解得2λ=,则双曲线M 的方程为221.24x y -= ………………………………………………(6分) 图2数学参考答案·第6页(共9页)(2)易知直线l 的斜率存在,不妨设直线l 的方程为11223344()()()()y kx t A x y B x y C x y D x y =+,,,,,,,,,联立222y kx t y x λ=+⎧⎪⎨-=⎪⎩,,消去y 并整理得222(2)220k x ktx t λ----=,此时222222Δ44(2)(2)0202k k t t t k λλ⎧=+-+>⎪⎨--<⎪-⎩,,可得22k <,…………………………………(8分)当2λ=时,由韦达定理得21222kt x x k +=-,221242t x x k --=-;当1λ=时,由韦达定理得23422kt x x k +=-,232422t x x k --=-,………………………(10分)则||||2AB CD ==== 化简可得222t k +=, …………………………………………………………………(13分) 由(1)可知圆O :222x y +=,则圆心O 到直线l的距离d ==== 所以直线l 与圆O 相切或相交. …………………………………………………(15分) 18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为: 在[020),内有0.00252020010⨯⨯=(只); 在[2040),内有0.006252020025⨯⨯=(只); 在[4060),内有0.008752020035⨯⨯=(只); 在[6080),内有0.025********⨯⨯=(只); 在[80100],内有0.00752020030⨯⨯=(只).…………………………………………(1分) 由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有10253570++=(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:数学参考答案·第7页(共9页)单位:只指标值抗体小于60不小于60合计有抗体 50 110 160 没有抗体 20 20 40 合计70130200……………………………………………………………………………………………(3分) 零假设为0H :注射疫苗后小白鼠产生抗体与指标值不小于60无关联.…………………………………………………………………………………………(4分) 根据列联表中数据,得220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯. ………………………………………………………………………………………(6分) 根据0.01α=的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.…………………………………………………………………………………(7分) (2)(i )令事件A =“小白鼠第一次注射疫苗产生抗体”,事件B =“小白鼠第二次注射疫苗产生抗体”,事件C =“小白鼠注射2次疫苗后产生抗体”. 记事件A ,B ,C 发生的概率分别为()P A ,()P B ,()P C , 则160()0.8200P A ==,20()0.540P B ==, ……………………………………………(9分) 0.20.509()1()().1P C P A P B =-=-⨯=,所以一只小白鼠注射2次疫苗后产生抗体的概率0.9P =.……………………………(11分) (ii )由题意,知随机变量(1000.9)X B ,,所以()1000.990.E X np ==⨯= ………………………………………………(13分)又()C 0.90.1()012k k n kn P k n X k -=⨯⋅⋅==⨯⋅,,,,,设0k k =时,()P X k =最大, 所以000000000000100119910010010011101100100C 0.90.1C 0.90.1C 0.90.1C 0.90.1k k k k k k k k k k k k -++-----⎧⨯⨯⨯⨯⎪⎨⨯⨯⨯⨯⎪⎩≥,≥, ………………………………(15分) 解得089.990.9k ≤≤,因为0k 是整数,所以090k =.…………………………………(17分)数学参考答案·第8页(共9页)19.(本小题满分17分)(1)若选①,证明如下:22sin 3sin(2)sin 2cos cos 2sin 2sin cos (12sin )sin θθθθθθθθθθθ=+=+=+-2232sin (1sin )(12sin )sin 3sin 4sin θθθθθθ=-+-=-.………………………………(4分)若选②,证明如下:22cos3cos(2)cos 2cos sin 2sin (2cos 1)cos 2sin cos θθθθθθθθθθθ=+=-=--3232cos cos 2(1cos )cos 4cos 3cos θθθθθθ=---=-. ………………………………(4分)(2)(i)解:2()33f x x a =-', …………………………………………………………(5分) 当0a ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递增,至多有一个零点;令()0fx '>,得x <x >,所以()f x 在(上单调递减,在(-∞,,)+∞上单调递增.0f <⎪⎩,220a -<⎪⎩,且3222(4)(4)3(4)(4)(516)0f a a a a aa aa a +=+-++=++++>,所以()f x 在4)a +上有唯一一个零点,同理-<2(22)0g a-=-+=<, 所以()f x 在(-上有唯一一个零点.又()f x 在(上有唯一一个零点,所以()f x 有三个零点,综上可知a 的取值范围为(04)., …………………………………………………(10分) (ii)证明:设22133()()3())(x f x x x x x ax x a x ==----+, 则23211(0)f x x x a ==-=.又04a <<,所以1a =. ………………………………………………………………(11分) 此时(2)10(1)30(1)10(2)30f f f f -=-<-=>=-<=>,,,,方程3031x x -+=的三个根均在(22)-,内,…………………………………………(12分)数学参考答案·第9页(共9页)方程3031x x -+=变形为3143222x x =⎛⎫- ⎪⎝⎭ ,令ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭,则由三倍角公式31sin 33sin 4sin .2θθθ=-= 因为3π3π322θ⎛⎫∈- ⎪⎝⎭,,所以7ππ5π3666θ=-,,,7ππ5π.181818θ=-,,…………………………………………………………………………………………(14分) 因为123x x x <<,所以12327ππ52sin2si π181n n 81si 8x x x =-==, ……………………………………………………………………………(15分)所以222221π7ππ7π21cos 21cos 18184sin4sin 99x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝=⎭- 137ππ5π7π2cos2cos 2sin 2sin .991818x x =-=--=- …………………………………(17分)。
安徽省江淮十校2020届高三上学期第一次联考理数考试试题(无答案)

江淮十校2020届高三第一次联考数学(理科) 2019.8命题单位:阜阳一中 命题人:孙晓林 杨敏 王小云审题人:肖璐洋注意事项:1. 答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合1,0A y y x x x ⎧⎫==+≠⎨⎬⎩⎭,集合{}240B x x =-≤,若A B P =I ,则集合P 的子集个数为A.2B.4C.8D.162.复数z 满足342z i ++=,则z z ⋅的最大值是A.7B.49C.9D.813.设a ,b ,c 为正数,则“a b c +>”是“222a b c +>”的A.充分不必要条件B.必要不充分条件C.充要条件 D 既不充分也不必要条件.4.已知向量a r ,b r 均为非零向量,()2a b a -⊥r r r ,a b =r r,则a r ,b r 的夹角为A.6πB.3π C.23π D.56π 5.已知ln x π=,13y e-=,13log z π=,则A.x y z <<B.z x y <<C.z y x <<D.y z x <<6.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为A.()23323ππ-- B.()323π- C.()323π+ D.()23323ππ-+7.如图,在正方体1111ABCD A B C D -中,F 是棱11A D 上的动点,下列说法正确的是A.对任意动点F ,在平面11ADD A 内不存在...与平面CBF 平行的直线B.对任意动点F ,在平面ABCD 内存在..与平面CBF 垂直的直线C.当点F 从1A 运动到1D 的过程中,FC 与平面ABCD 所成角变大..D.当点F 从1A 运动到1D 的过程中,点D 到平面CBF 的距离逐渐变小..8.某创业公司共有36名职工,为了了解该公司职工年龄构成情况,随机采访了9位代表,将数据制成茎叶图如图.若用样本估计总体,年龄在(),x s x s -+内的人数占公司总人数的百分比是(其中x 为平均数,s 为标准差,结果精确到1%)A.56%B.14%C.25%D.67%9.将余弦函数的图像向右平移2π个单位后,再保持图像上点的纵坐标不变,横坐标变为原来的一半,得到函数()f x 的图像,下列关于()f x 的叙述正确的是A.最大值为1,且关于3,04π⎛⎫⎪⎝⎭对称B.周期为π,关于直线2x π=对称C.在,68ππ⎛⎫-⎪⎝⎭上单调递增,且为奇函数 D.在0,4π⎛⎫⎪⎝⎭上单调递减,且为偶函数 10.对任意实数x ,恒有10xe ax --≥成立,关于x 的方程()ln 10x a x x ---=有两根为1x ,2x (12x x <),则下列结论正确的为A.122x x +=B.121x x ⋅=C.122x x =D.12xx e =11.已知双曲线2222:1x y C a b-=的两条渐近线分别为1l 与2l ,A 与B 为1l 上关于坐标原点对称的两点,M 为2l 上一点且AM BM k k e ⋅=,则双曲线离心率e 的值为A.B.12C.212.在四面体ABCD 中,若1AD DB AC CB ====,则当四面体ABCD 的体积最大时其外接球表面积为A.53πB.43πC.πD.2π二、填空题:本题共4小题,每小题5分,共20分13.已知实数x ,y 满足210020x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则目标函数2z x y =+的最小值为14.已知()()512x x a ++的展开式中各项系数和为2,则其展开式中含2x 项的系数是15.关于x 的方程sin 2cos 0x x a ++=在0,2π⎛⎫⎪⎝⎭内有解,则实数a 的取值范围是16.已知抛物线2:4C x y =的焦点为F ,过F 作直线l 交抛物线于A ,B 两点,且2AF FB λ=u u u r u u u r (λ为非零常数).以A 为切点作抛物线C 的切线交直线1y =-于M 点,则MF 的长度为 (结果用含λ式子表示).三、解答题:共70分。
贵州省贵阳市第一中学2024-2025学年高三上学期第一次联考(9月月考) 数学试卷[含答案]
![贵州省贵阳市第一中学2024-2025学年高三上学期第一次联考(9月月考) 数学试卷[含答案]](https://img.taocdn.com/s3/m/ee95b1a3900ef12d2af90242a8956bec0975a524.png)
数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号、在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,则(){}{}2230,1,2,3,4A x x x B =-->=∣A B ⋂=A.B.C.D.{}1,2{}1,2,3{}3,4{}42.下列函数在其定义域内单调递增的是()A.B.1y x =-2ln y x=C. D.32y x =e xy x =3.已知等差数列满足,则(){}n a 376432,6a a a a +=-=1a =A.2B.4C.6D.84.已知点是抛物线上一点,若到抛物线焦点的距离为5,且到轴的距离为A ()2:20C y px p =>A A x 4,则( )p =A.1或2 B.2或4 C.2或8 D.4或85.已知函数的定义域为.记的定义域为集合的定义域为集合.则“()23f x -[]2,3()f x (),21x A f -B ”是“”的( )x A ∈x B ∈A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知函数的定义域为.设函数,函数.若是偶函数,()f x R ()()e xg x f x -=+()()5e xh x f x =-()g x 是奇函数,则的最小值为()()h x ()f x A. B.C.D.e2e7.从的二项展开式中随机取出不同的两项,则这两项的乘积为有理项的概率为()51x ⎫+⎪⎭A. B. C. D.253513238.已知圆,设其与轴、轴正半轴分别交于,两点.已知另一圆的半径221:220C x y x y +--=x y M N 2C为,且与圆相外切,则的最大值为()1C22C M C N ⋅A.20B.C.10D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.离散型随机变量的分布列如下表所示,是非零实数,则下列说法正确的是( )X ,m n X 20242025Pm nA. B.服从两点分布1m n +=X C.D.()20242025E X <<()D X mn=10.已知函数,下列说法正确的是( )()()214log 21f x ax ax =-+A.的定义域为,当且仅当()f x R 01a <<B.的值域为,当且仅当()f x R 1a C.的最大值为2,当且仅当()f x 1516a =D.有极值,当且仅当()f x 1a <11.设定义在上的可导函数和的导函数分别为和,满足R ()f x ()g x ()f x '()g x ',且为奇函数,则下列说法正确的是()()()()()11,3g x f x f x g x --=''=+()1g x +A.B.的图象关于直线对称()00f =()g x 2x =C.的一个周期是4 D.()f x 20251()0k g k ==∑三、填空题(本大题共3小题,每小题5分,共15分)12.过点作曲线且的切线,则切点的纵坐标为__________.()0,0(0x y a a =>1)a ≠13.今年暑期旅游旺季,贵州以凉爽的气候条件和丰富的旅游资源为依托,吸引了各地游客前来游玩.由安顺黄果树瀑布、荔波小七孔、西江千户苗寨、赤水丹霞、兴义万峰林、铜仁梵净山6个景点谐音组成了贵州文旅的拳头产品“黄小西吃晚饭”.小明和家人计划游览以上6个景点,若铜仁梵净山不安排在首末位置,且荔波小七孔和西江千户苗寨安排在相邻位置,则一共有__________种不同的游览顺序方案.(用数字作答)14.已知函数若存在实数且,使得,()223,0,ln ,0,x x x f x x x ⎧++=⎨>⎩ 123,,x x x 123x x x <<()()()123f x f x f x ==则的最大值为__________.()()()112233x f x x f x x f x ++四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)下图中的一系列三角形图案称为谢尔宾斯基三角形.图(1)是一个面积为1的实心正三角形,分别连接这个正三角形三边的中点,将原三角形分成4个小正三角形,并去掉中间的小正三角形得到图(2),再对图(2)中的每个实心小正三角形重复以上操作得到图(3),再对图(3)中的每个实心小正三角形重复以上操作得到图(4),…,依此类推得到个图形.记第个图形中实心三角形的个数为,第n 个图形n n n a 中实心区域的面积为.nb (1)写出数列和的通项公式;{}n a {}n b (2)设,证明.121121n n n n n c a b a b a b a b --=++++ 43n n n a c a <16.(本小题满分15分)如图,在三棱台中,和都为等腰直角三角形,111A B C ABC -111A B C ABC 为线段的中点,为线段上的点.111112,4,90,CC C A CA ACC BCC CBA G ∠∠∠====== AC HBC (1)若点为线段的中点,求证:平面;H BC 1A B ∥1C GH (2)若平面分三棱台所成两部分几何体的体积比为,求二面角1C GH 111A B C ABC -2:5的正弦值.11C GH B --17.(本小题满分15分)已知双曲线与双曲线的离心率相同,且经过点()2222:10,0x y M a b a b -=>>2222:12x y N m m -=M 的焦距为.()2,2,N (1)分别求和的方程;M N (2)已知直线与的左、右两支相交于点,与的左、右两支相交于点,D ,,判断l M ,A B N C ABCD=直线与圆的位置关系.l 222:O x y a +=18.(本小题满分17分)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分[)[)[)[)[]0,20,20,40,40,60,60,80,80,100布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小白鼠22⨯0.01α=产生抗体与指标值不小于60有关;单位:只指标值抗体小于60不小于60合计有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率;P (ii )以(i )中确定的概率作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记100个人P 注射2次疫苗后产生抗体的数量为随机变量.求及取最大值时的值.X ()E X ()P X k =k参考公式:(其中为样本容量)()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++参考数据:α0.1000.0500.0100.005x α2.7063.8416.6357.87919.(本小题满分17分)三角函数是解决数学问题的重要工具.三倍角公式是三角学中的重要公式之一,某数学学习小组研究得到了以下的三倍角公式:①;②.3sin33sin 4sinθθθ=-3cos34cos 3cos θθθ=-根据以上研究结论,回答:(1)在①和②中任选一个进行证明;(2)已知函数有三个零点且.()323f x x ax a =-+123,,x x x 123x x x <<(i )求的取值范围;a (ii )若,证明:.1231x x x =-222113x x x x -=-贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号12345678答案DCBCBCAA【解析】1.由题,或,则,故选D.{1A xx =<-∣{}3},1,2,3,4x B >={}4A B ⋂=2.对于A 选项,的定义域为,该函数在和上单调递增,在定义1y x =-()(),00,∞∞-⋃+(),0∞-()0,∞+域内不单调;对于B 选项,的定义域为,该函数在上单调递减,在2ln y x =()(),00,∞∞-⋃+(),0∞-上单调递增,在定义域内不单调;对于C 选项,的定义域为,该函数在定()0,∞+32y x==[)0,∞+义域上单调递增;对于D 选项,的定义域为,当时,;当e x y x =().1e xy x =+'R (),1x ∞∈--0y '<时,,在上单调递减,在上单调递增,因此该函数在定()1,x ∞∈-+0y '>xe y x ∴=(),1∞--()1,∞-+义域内不单调,故选C.3.,故选B.53756415232,16,26,3,44a a a a d a a d a a d =+===-===-= 4.设点,则整理得,解得或,故选C.()00,A x y 200002,5,24,y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩582p p ⎛⎫-= ⎪⎝⎭2p =8p =5.的定义域为.当时,的定义域为,()23f x - []2,323x ()1233,x f x -∴ []1,3即.令,解得的定义域为,即.[]1,3A =1213x- ()12,21x x f ∴- []1,2[]1,2B =“”是“”的必要不充分条件,故选B.,B A ⊆∴ x A ∈x B ∈6.由题,解得,所以()()()()()()()(),e e ,5e 5e ,x xx xg x g x f x f x h x h x f x f x --⎧⎧=-+=-+⎪⎪⇒⎨⎨=---=--+⎪⎪⎩⎩()3e 2e x x f x -=+,当且仅当,即时,等号成立,()3e2e xxf x -=+3e 2e x x -=12ln 23x =C.min ()f x ∴=7.设的二项展开式的通项公式为,51x ⎫+⎪⎭53521551C C ,0,1,2kkk k kk T x k x --+⎛⎫=== ⎪⎝⎭,所以二项展开式共6项.当时的项为无理项;当时的项为有理项.两项乘积为有3,4,50,2,4k =1,3,5k =理数当且仅当此两项同时为无理项或同时为有理项,故其概率为,故选A.223326C C 2C 5+=8.由题,,即圆心为,且,为的221:(1)(1)2C x y -+-=()11,1C()()2,0,0,2M N MN 1C 直径.与相外切,由中线关系,有1C 2C 12C C ∴==,当且()()2222222222121222218240,202C M C NC M C N C C C MC M C N ++=+=⨯+=∴⋅=仅当时,等号成立,所以的最大值为20,故选A.22C M C N=22C M C N⋅二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号91011答案ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,,正确;()()()202420252024120252024.01,20242025E X m n n n n n E X =+=-+=+<<∴<< 对于D 选项,令,则服从两点分布,,2024Y X =-Y ()()1D Y n n mn=-=,正确,故选ACD.()()()2024D X D Y D Y mn∴=+==10.令,对于A 选项,的定义域为或()2221,Δ44g x ax ax a a =-+=-()f x 0a ⇔=R ,故A 错误;对于B 选项,的值域为在定义域内的值域为0,01Δ0a a >⎧⇔<⎨<⎩ ()f x ()g x ⇔R ,故B 正确;对于C 选项,的最大值为在定义域内的最小值()0,0,1Δ0a a ∞>⎧+⇔⇔⎨⎩ ()f x ()2g x ⇔为,故C 正确;对于D 选项,有极值在定义域内有极值()0,11511616116a a g >⎧⎪⇔⇔=⎨=⎪⎩()f x ()g x ⇔且,故D 选项错误,故选BC.()0,110a a g ≠⎧⇔⇔<⎨>⎩0a ≠11.对于A 选项,因为为奇函数,所以,又由,可得()1g x +()10g =()()11g x f x --=,故A 错误;对于B 选项,由可得()()()101,01g f f -==-()()3f x g x '=+'为常数,又由,可得,则()()3,f x g x C C=++()()11g x f x --=()()11g x f x --=,令,得,所以,所以()()131g x g x C --+-=1x =-()()221g g C --=1C =-的图象关于直线对称,故B 正确;对于C 选项,因为为奇函数,()()()13,g x g x g x -=+2x =()1g x +所以,所以,所以()()()311g x g x g x +=-=-+()()()()()2,42g x g x g x g x g x +=-+=-+=是一个周期为4的周期函数,,()g x ()()()()()()31,47131f x g x f x g x g x f x =+-+=+-=+-=所以也是一个周期为4的周期函数,故C 正确;对于D 选项,因为为奇函数,所以()f x ()1g x +,又,又是周期为4的周期函数,所以()()()()10,204g g g g ==-=-()()310g g ==()g x ,故D 正确,故选BCD.20251()(1)0k g k g ===∑三、填空题(本大题共3小题,每小题5分,共15分)题号121314答案e14433e 6-【解析】12.设切点坐标为切线方程为.将代入得,可得(),,ln ,txt a y a a ='∴ ln xy a a x =⋅(),tt a ln t ta a t a ⋅=切点纵坐标为.1log e,ln a t a ==∴elog e t a a a==13.先对小七孔和千户苗寨两个相邻元素捆绑共有种方法,再安排梵净山的位置共有种方法,再排其22A 13C 余元素共有种排法,故共有种不同的方案.44A 214234A C A 144⋅⋅=14.设,由的函数图象知,,又,()()()123f x f x f x t===()f x 23t < 1232,ln x x x t +=-=.令()()()3112233e ,2e t tx x f x x f x x f x t t =∴++=-+在上单调递增,则()()()()2e ,23,1e 20,t t t t t t t t t ϕϕϕ'=-+<=+->∴ (]2,3,的最大值为.()3max ()33e 6t ϕϕ==-()()()112233x f x x f x x f x ∴++33e 6-四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列是首项为1,公比为3的等比数列,因此;{}n a 11133n n n a --=⨯=数列是首项为1,公比为的等比数列,因此,.{}n b 341133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭(2)证明:由(1)可得1210121121121333333334444n n n n n n n n n c a b a b a b a b ------⎛⎫⎛⎫⎛⎫⎛⎫=++++=⋅+⋅++⋅+⋅ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12101111134444n n n ---⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦121114134311414n nn n --⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=⋅=⋅⋅-⎢⎥⎪⎝⎭⎢⎥⎣⎦-因为,2114314411334n n n nn nc a --⎡⎤⎛⎫⋅⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥⎪⎝⎭⎢⎥⎣⎦所以,所以.413n n c a <43n n na c a < 16.(本小题满分15分)(1)证明:如图1,连接,设,连接,1A C 11A C C G O⋂=1,HO A G三棱台,则,又,111A B C ABC -11A C ∥AC 122CG AC ==四边形为平行四边形,∴11A C CG 则.1CO OA =点是的中点,H BC .1BA ∴∥OH 又平面平面,OH ⊂11,C HG A B ⊄1C HG 平面.1A B ∴∥1C HG (2)解:因为平面分三棱台所成两部分几何体的体积比为,1C GH 111A B C ABC -2:5所以,11127C GHC AB V V B C ABC-=-即,()1111121373GHC ABC AB C S CC S S CC ⋅⋅=⋅⋅++⋅ 化简得,12GHC ABC S S =此时点与点重合.H B ,1190C CA BCC ∠∠== 且都在平面,则平面,11,,C C BC CC AC BC AC C ∴⊥⊥⋂=ABC 1CC ⊥ABC 又为等腰直角三角形,则.ABC BG AC ⊥又由(1)知,则平面,1A G ∥1CC 1A G ⊥ABC 建立如图2所示的坐标系,G xyz -则,()()()()2,0,0,0,2,0,0,0,0,0,2,0H A G C -()()110,2,2,1,1,2C B --设平面的法向量,1C HG ()()()1,,,0,2,2,2,0,0n x y z GC GH ==-= 则令,解得,220,20,y z x -+=⎧⎨=⎩1y =()0,1,1n = 设平面的法向量,1B GH ()()1,,,1,1,2m a b c GB ==- 则令,解得.20,20,a b c a -+=⎧⎨=⎩2b =()0,2,1m = 设二面角的平面角为,11C GH B --θ,cos cos ,m n m n m n θ⋅=<>=== 所以,sin θ==所以二面角.11C GH B --17.(本小题满分15分)解:(1)由题意可知双曲线的焦距为N =解得,即双曲线.21m =22:12y N x -=因为双曲线与双曲线的离心率相同,M N 不妨设双曲线的方程为,M 222y x λ-=因为双曲线经过点,所以,解得,M ()2,242λ-=2λ=则双曲线的方程为.M 22124x y -=(2)易知直线的斜率存在,不妨设直线的方程为l l ,()()()()11223344,,,,,,,,y kx t A x y B x y C x y D x y =+联立消去并整理得22,,2y kx t y x λ=+⎧⎪⎨-=⎪⎩y ()2222220,k x ktx t λ----=此时可得,()()222222Δ44220,20,2k t k t t k λλ⎧=+-+>⎪⎨--<⎪-⎩22k <当时,由韦达定理得;2λ=212122224,22kt t x x x x k k --+==--当时,由韦达定理得,1λ=234342222,22kt t x x x x k k --+==--则,ABCD====化简可得,222t k +=由(1)可知圆,22:2O x y +=则圆心到直线的距离,Ol d ====所以直线与圆相切或相交.l O 18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为:在内有(只);[)0,200.00252020010⨯⨯=在)内有(只);[20,400.006252020025⨯⨯=在)内有(只);[40,600.008752020035⨯⨯=在)内有(只);[60,800.025********⨯⨯=在内有(只)[]80,1000.00752020030⨯⨯=由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有(只),10253570++=所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只指标值抗体小于60不小于60合计有抗体50110160没有抗体202040合计70130200零假设为:注射疫苗后小白鼠产生抗体与指标值不小于60无关联.0H 根据列联表中数据,得.220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯根据的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.0.01α=(2)(i )令事件“小白鼠第一次注射疫苗产生抗体”,事件“小白鼠第二次注射疫苗产生抗体”A =B =,事件“小白鼠注射2次疫苗后产生抗体”.C =记事件发生的概率分别为,则,,,A B C ()()(),,P A P B P C ()()160200.8,0.520040P A P B ====.()1P C =-()()10.20.50.9P A P B =-⨯=所以一只小白鼠注射2次疫苗后产生抗体的概率.0.9P =(ii )由题意,知随机变量,()100,0.9X B ~所以.()1000.990E X np ==⨯=又,设时,最大,()()C 0.90.10,1,2,,k k n k n P X k k n -==⨯⨯= 0k k =()P X k =所以00000000000010011910010010011101100100C 0.90.1C 0.90.1,C 0.90.1C 0.90.1,k k k k k k k k k k k k -++-----⎧⨯⨯≥⨯⨯⎪⎨⨯⨯≥⨯⨯⎪⎩解得,因为是整数,所以.089.990.9k 0k 090k =19.(本小题满分17分)(1)若选①,证明如下:()()22sin3sin 2sin2cos cos2sin 2sin cos 12sin sin θθθθθθθθθθθ=+=+=+-()()2232sin 1sin 12sin sin 3sin 4sin θθθθθθ=-+-=-若选②,证明如下:()()22cos3cos 2cos2cos sin2sin 2cos 1cos 2sin cos θθθθθθθθθθθ=+=-=--.()3232cos cos 21cos cos 4cos 3cos θθθθθθ=---=-(2)(i )解:,()233f x x a =-'当时,恒成立,所以在上单调递增,至多有一个零点;0a ()0f x ' ()f x (),∞∞-+当时,令,得;令,得0a >()0f x '=x =()0f x '<x <<令,得()0f x '>x <x>所以在上单调递减,在上单调递增.()f x ((),,∞∞-+有三个零点,则即解得,()fx (0,0,f f ⎧>⎪⎨<⎪⎩2220,20,a a ⎧+>⎪⎨-<⎪⎩04a <<当时,,04a <<4a +>且,()()()()32224(4)3445160f a a a a a a a a a+=+-++=++++>所以在上有唯一一个零点,()fx )4a +同理()2220,g a -<-=-=-<所以在上有唯一一个零点.()f x (-又在上有唯一一个零点,所以有三个零点,()f x (()f x 综上可知的取值范围为.a ()0,4(ii )证明:设,()()()()321233f x x ax a x x x x x x =-+=---则.()212301f a x x x ==-=又,所以.04a <<1a =此时,()()()()210,130,110,230f f f f -=-<-=>=-<=>方程的三个根均在内,3310x x -+=()2,2-方程变形为,3310x x -+=3134222x x ⎛⎫=⋅-⋅ ⎪⎝⎭令,则由三倍角公式.ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭31sin33sin 4sin 2θθθ=-=因为,所以.3π3π3,22θ⎛⎫∈- ⎪⎝⎭7ππ5π7ππ5π3,,,,,666181818θθ=-=-因为,所以,123x x x <<1237ππ5π2sin ,2sin ,2sin 181818x x x =-==所以222221π7ππ7π4sin 4sin 21cos 21cos 181899x x ⎛⎫⎛⎫-=-=--- ⎪ ⎪⎝⎭⎝⎭137ππ5π7π2cos 2cos 2sin 2sin 991818x x =-=--=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省重点中学届高三第一次联考
数学试卷(理科)
一. 选择题(5′×10=50′)
1.
复数
2
i
z =
的虚部是( )
..B C d
2.命题P :若()()2
2
120x y -+-=,则x=1且y=2,则命题P 的否命题为( )
A.若()()2
2
120,x y -+-≠则x ≠1且y ≠2 B. 若()()2
2
120x y -+-=,则x ≠1且y ≠2 C. 若()()2
2
120,x y -+-≠则x ≠1或y ≠2 D. 若()()2
2
120x y -+-=,则x ≠1或y ≠2
3.已知A (0,1),B (-2,1),C (1,2),则AB AC 在上的投影是(
)
..A B C D 4.已知[)02cos sin θπθθ∈,,〈,
且sin tan θθ〈,则θ的取值范围是( ) ()33.02.022253353..42422442A B C D ππππππππππππππ⎛⎫
⎛⎫⎛⎫⋃⋃ ⎪
⎪ ⎪⎝⎭
⎝⎭⎝⎭
⎛⎫⎛⎫⎛⎫⎛⎫⋃⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
,,,,,,,,
5.若不等式1x m -〈成立的充分非必要条件是113
2
x 〈〈,
则实数m 的取值范围是( ) 411414....322323A B C D ⎡⎤
⎡⎤⎛
⎤⎡⎫
---∞-+∞ ⎪⎢⎥⎢⎥⎥
⎢⎣⎦⎣⎦⎝⎦⎣⎭
,,,,
6.函数(
)(2
ln 1y x x =-≤的反函数是(
)
)).0.0A y x B y x =≤=≤
)).0.0C y x D y x =≥=≥
7.若等比数列的各项均为正数,前n 项之和为S ,前n 项之积为P ,前n 项倒数之和为M ,则( )
22....n
n
S S S S A P B P C P D P M
M
M M ⎛⎫⎛⎫=
= ⎪
⎪
⎝⎭
⎝⎭
〉
〉 8.函数ln 1x
y e
x =--的图像大致是( )
9.在算式“9×△+1×□=48”中的△、□分别填入两个正整数,使它们的倒数和最小,则这两个数构成的数对应为( )
()()
().230.321.412.53A B C D ,,(,)
,
10.已知函数()221y f x =
+-是定义在R 上的奇函数,函数()y g x =的图象与函数
()y f x =的图象关于直线0x y -=对称,若122x x +=,则()()12g x g x +=( )
.2
.2.4.4A B C D --
二.填空题(5′×5=25′)
11.为了了解某地区高三学生的身体发育情况。
抽查了该地区100名高三男生的体重(kg )得到的频率分布直方图如图所示,根据下图可得这100名学生中体重在[]56.564.5,的学生人数是
x y O x y O x y O x y O 1111111
1A
B C
D (
kg )
12.过△ABC 的重心作一直线分别交AB 、AC 于D 、E ,若
1
0AD xAB AE y AC xy y
==≠+1,,,则x 的值为
13.已知方程21211x x a --+=+有实数根,则a 的取值范围是
14.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数
15.定义在()-∞+∞,上的偶函数()f x 满足:()()1f x f x +=-,且在[]10-,上为增函数,下面是关于()f x 的判断:○1()f x 是周期函数;○2()f x 的图象关于直线x=1对称;○3()f x 在[0,1]上是增函数;○
4()f x 在[1,2]上是减函数;○5()()20f f =. 其中判断正确的是 (把你认为正确的判断都填上) 三.解答题(共75分)
16.(12分)已知函数()2
2cos sin sin cos 3f x x x x x x π⎛⎫
=⋅++⋅ ⎪⎝
⎭
(1)求函数()f x 的单调递减区间;
(2)将函数()f x 的图象按向量()0a m =,平移,使得平移后的图象关于直线2
x π
=对称,
求m 的最小正值.
17.(12分)在△ABC 中,2AB AC AB AC ⋅=-=
(1)求2
2
AB AC +的值; (2)当△ABC 的面积最大时,求∠A 的大小.
18. (12分)甲有一只放有x 个红球,y 个黄球,z 个白球的箱子,且x+y+z=6(x ,y ,z ∈N ),乙有一只放有3个红球,2个黄球,1个白球的箱子.两人各自从自己的箱子中任取一球,规定:当两球同色时甲胜,异色时乙胜.
(1)用x 、y 、z 表示甲胜的概率;
(2)若又规定当甲取红、黄、白球而胜的得分分别为1、2、3分,否则得0分.求甲得分的期望的最大值及此时x 、y 、z 的值.
19. (12分)已知()()()2
,2ln .f x ax
a R g x =∈=
(1)讨论函数()()()F x f x g x =-的单调性;
(2)是否存在这样的a 值,使得()()()
2f x g x x R +≥+∈恒成立,若不存在,请说明理由;若存在,求出所有这样的值
20.(13分)已知函数()f x 在(-1,1)上有意义,112f ⎛⎫
=-
⎪⎝⎭
,
且对任意的x ,y ∈(-1,1),都有()()1x y f x f y f xy ⎛⎫
++=
⎪+⎝⎭
.
(1)若数列{}n x 满足()11221,21n n n
x x x n N x *
+=
=∈+,求()n f x ; (2)求211111511312f f f f n n n ⎛⎫⎛⎫
⎛⎫
⎛⎫+++++
⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭
⎝⎭
⎝⎭
的值.
21.(14分)已知点P 在曲线C :()1
1y x x
=
>,
曲线C 在点P 的切线与函数()0y kx k =>的图象交于点A ,与x 轴交于点B ,设点P 的横坐标为t ,设A 、B 的横坐标分别为,A B x x ,记
()A B f t x x =⋅.
(1)求()f t 的解析式;
(2)设数列{}()1,n a n n N ≥∈满足()11,2a a f n ==≥,求数列{}n
a 的通项
公式;
(3)在(2)的条件下,当13k <<时,证明不等式:12338n n k
a a a a k
-+++
+>
.
参考答案
一. 选择题ACDCB DCDCD
二.填空题11.40; 12.3; 13.-3≤a <-1; 14.27
2
; 15.○1○2○5. 三.16.(1)7,,12
12k k k Z π
πππ⎡⎤
+
+
∈⎢⎥⎣
⎦
. (2)当k=0时,m 的最小正值为5
12
π. 17.(1)8;(2)∠A=
3
π.
18.(1)
3236x y z ++;(2)当y=6时,E ξ取最大值为2
3
.此时x=z=0.
19.(1)当a >0时,()F x
的递增区间为⎫+∞⎪⎭
,递减区间为⎛ ⎝
;当a ≤0
时,()F x 在()0,+∞上单调递减.(2)存在[),a e ∈+∞
20.(1)()1
2
n n f x -=-;(2)0.
21.()()22411t f t t kt =>+;
(2)1
134;43n n n a k k
--⋅=⋅+- ()()11
11
12
112312212
3343
3,13,4339110,0,4343391391.44
383334339111181444n n n n n n n n n n n a k k k k k k k k k k k k a k k k k n k a a a a a a a k k k k k k k k -------⋅-=-<<⋅+--∴<<<⋅+-⋅--∴->⋅=⋅⋅-⎛⎫⎛⎫⎛
⎫++++-=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝
⎭--⎛⎫
⎛⎫>++++>- ⎪ ⎝⎭⎝⎭()()()
()()
22
2
8434231423113,0
n
k k k k k k k k k ⎡⎤+⎢⎥⎪⎢⎥⎣⎦-+->
=+-<<∴>
故不等式12338n n k
a a a a k -++++>成立.。