中考复习专题32正多边形与圆

合集下载

中考总复习正多边形与圆的有关的证明和计算--知识讲解

中考总复习正多边形与圆的有关的证明和计算--知识讲解

中考总复习正多边形与圆的有关的证明和计算--知识讲解【正多边形与圆的有关的证明和计算】一、正多边形的定义与性质:正多边形是指所有边相等、所有角相等的多边形。

正多边形的性质如下:1.所有边相等,所有角相等;2.任意两条边之间的夹角相等;3.对角线相等;4.中心角等于外角。

二、正多边形的内角与外角的关系:1.由正多边形的定义可知,正多边形的内角和为180°(n-2),其中n 为正多边形的边数;2.正多边形的外角和为360°,由此可得正多边形的内角和与外角和之间的关系:内角和=外角和/2三、正多边形的周长和面积的计算:1.正多边形的周长为边长×边数;2.正多边形的面积为面积公式:面积=1/2×边长×边数×正弦(360°/边数)。

四、正多边形内接圆的半径和面积:2.正多边形内接圆的面积等于正多边形面积的一半。

五、正多边形外接圆的半径和面积:1.正多边形外接圆的半径等于正多边形的边长的一半乘以正弦(180°/边数);2.正多边形外接圆的面积等于正多边形边长的平方乘以正弦(360°/边数)乘以1/2六、正多边形的对称轴:正多边形有旋转对称轴和镜像对称轴两类:1.正多边形的旋转对称轴有n条,其中n为正多边形的边数;2.正多边形的镜像对称轴有2n条,其中n为正多边形的边数。

七、圆的性质及计算:1.圆是由一个动点到一个定点的距离保持不变的动点集;2.圆的半径是动点到圆心的距离;3.圆的直径是通过圆心的一条线段,且长度等于半径的两倍;4.圆的周长等于直径的乘以π,即周长=2×半径×π;5.圆的面积等于半径的平方乘以π,即面积=半径×半径×π。

八、正多边形与圆的关系:1.正多边形的内接圆同时是这个正多边形的外接圆,即正多边形的内接圆与外接圆重合;3.正多边形的外接圆的半径等于正多边形的边长的一半乘以正弦(180°/边数);4.正多边形的外接圆的面积等于正多边形边长的平方乘以正弦(360°/边数)乘以1/2;5.正多边形的内接圆和外接圆的关系可以用于计算正多边形的周长和面积。

正多边形和圆及正多边形的有关计算

正多边形和圆及正多边形的有关计算

中考数学辅导之—正多边形和圆及正多边形的有关计算正多边形和圆是初中几何课本中的最后一单元,它包括正多边形的定义、正多边形的判定、性质,正多边形的有关计算,圆周长及弧长公式,圆、扇形、弓形的面积。

今天我们一起学习正多边形的定义、判定、性质及有关计算.一、基础知识及其说明:1.正多边形的定义:各边相等、各角也相等的多边形叫做正多边形.此定义中的条件各边相等,各角也相等 “缺一不可”.如:菱形各边相等,因四个角不等,所以菱形不一定是正多边形.矩形的四个角相等,但因四条边不一定相等,故矩形不一定是正四边形,只有正方形是正四边形.2.正多边形的判定,正多边形的定义当然是正多边形的判定方法之一,但如同全等三角形的判定一样,用定义来证明两个三角形全等显然不可取,因此需用判定定理来证.判定定理:把圆几等分()①依次连结各分点所得的多边形是这个圆的内接正边形②经过各分点做圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正边形.也就是说,若要证明一个多边形是圆内接正多边形,只要证明这个多边形的顶点是圆的等分点即可, 如:要证明一个圆内接边形ABCDEF ……是圆内接正边形,就要证A 、B 、C 、D 、E 、F ……各点是圆的n 等分点,就是要证AB=BC=CD=DE=EF=…….同样,要证明一个圆外切边形是圆外切正边形,只要证明各切点是圆的等分点即可例1:证明:各边相等的圆内接多边形是正多边形.已知:在⊙O 中,多边形ABCDE ……是⊙O 的内接n 边形 且AB=BC=CD=DE=…….求证:n 边形ABCDE ……是正n 边形证明: AB=BC=CD=DE=…… ∴ AB=BC=CD=DE ……∴OEB=AEC= BED=COE=……∴ =∠=∠=∠=∠D C B A又∵AB=BC=CD=DE=……∴n 边形ABCDE ……是正n 边形.例2:证明:各角相等的圆外切n 边形是正n 边形.已知:多边形……是圆外切n 边形,切点分别是A,B,C,D,E ……,=…….求证:n 边形……是正n 边形.证明:连结OB,OC,OD ……,在四边形COD 和四边形BOC 中∵切⊙O 于B,C,D∴∴ 0''180=∠+∠=∠+∠COD C BOC B而……∴∴BC=CD(在同圆中,相等的圆 B O心角所对的弧相等).同理BC=CD=DE=FE=……'B D∴A,B,C,D,E,F……是圆的n等分点 C∴多边形ABCDEF……是圆外切n正多边形3.正多边都是轴对称图形,若n是奇数,正n边形是轴对称图形,n是偶数,正n边形既是轴对称图形又是中心图形.4.正多边形的性质:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.5.正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆半径叫正多边形的半径.内切圆的半径叫正多边形的边心距.正多边形的每一边所对的圆心角叫中心角,中心角的度数是.如图:OA,OB是半径,O是中心,OH⊥AB于H,OH是边心距,是中心角6.正多边形的有关计算,一般是围绕正边形的半径R,边长,边心距,周长及面积来进行,但关健是之间的计算,因为正边形的边心距把正边形的一边与该边所对应的两条半径所围成的等腰三角形分成两个全等的直角三角形,所以在Rt△AOH中,斜边是R,直角边分别是和,锐角,利用直角三角形的有关知识(勾股定理,锐角三角函数等)来解直角三角形即可.例:已知正六边形ABCDEF的半径是R,求正六边形的边长S6.解:作半径OA、OB,过O做OH⊥AB,则∠AOH==30°∵∴∴∴∵∴S6=同学们在进行正多边形的计算时,应很好的理解、掌握如何用解直角三角形的方法进行计算,但也可以推出公式,然后利用公式变形进行计算.则这是已知半径R,求的公式,若记住公式则正多边形的计算就简单了很多,如已知半径R,求解:再如:已知正三角形的边长为,可以先由,求出半径,再将求得的R代入;若已知边心距求边长,则先用,求出R,再代入求边长公式即可求出,此法好处是不用画图,只需将上面两个公式反复变形即可.7.如何求同圆的圆内接正边形与圆外切正边形的边长比,半径比,边心距比.如:求同圆的圆内接正边形和圆外切正边形的边长比.设⊙O的半径的为R则圆内接正边形的边长是而在Rt△OBC中,OB=R,则,即外切正边形的边长是,∴=实际上,=,OB是的邻边,OC是Rt△BOC的斜边,,希望同学们记住此结论.如圆内接正四边形的边心距与圆外切正四边形的边心距之比是,圆内接正六边形与圆外切正六边形的边长之比是,而圆内接正三角形与圆外切正三角形的面积之比是.(注意:①此结论必须是同圆的边数相同的圆内接正边形与圆外切正边形的相似比是.②若求圆外切正边形与圆内接正边形的相似比则是).二、练习题:1.判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2.填空题:①一个外角等于它的一个内角的正多边形是正____边形.②正八边形的中心角的度数为____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm,面积是____cm.④面积等于cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3.选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D.:1④正六边形的两条平行边间距离是1,则边长是( )A. B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1::C.1::3D.1:2:三、练习答案:1.判断题①×②×③√④√⑤√2.填空题①四②45°,135°,45°③④12⑤1:2 1:4 ⑥8 ⑦⑧:1 ⑨1:3.选择题①D ②A ③C ④C ⑤B ⑥A。

初中数学知识点:正多边形和圆知识点

初中数学知识点:正多边形和圆知识点

初中数学知识点:正多边形和圆知识点新一轮的中考复习又开始了,本站编辑为此特为大家整理了正多边形和圆知识点,希望可以帮助大家复习,预祝大家取得优异的成绩~正多边形和圆知识点1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。

2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

典型例题粉笔是校园中最常见的必备品.图1是一盒刚打开的六角形粉笔,总支数为50支.图2是它的横截面(矩形ABCD),已知每支粉笔的直径为12mm,由此估算矩形ABCD的周长约为_____mm.(,结果精确到1mm)答案:300解析:把图形中的边长的问题转化为正六边形的边长、边心距之间的计算即可.解:作B′M′∥C′D′,C′M′⊥B′M′于点M′.粉笔的半径是6mm.则边长是6mm.∵∠M′B′C′=60°∴B′M′=B′C′?cos60°=6×=3.边心距C′M′=6sin60°=3mm.则图(2)中,AB=CD=11×3=33mm.AD=BC=5×6+5×12+3=93mm.则周长是:2×33+2×93=66+186≈300mm.故答案是:300mm.同步练习题1判断题:①各边相等的圆外切多边形一定是正多边形.( )②各角相等的圆内接多边形一定是正多边形.( )③正多边形的中心角等于它的每一个外角.( )④若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( )⑤各角相等的圆外切多边形是正多边形.( )2填空题:①一个外角等于它的一个内角的正多边形是正____边形.[②正八边形的中心角的度数为 ____,每一个内角度数为____,每一个外角度数为____.③边长为6cm的正三角形的半径是____cm,边心距是____cm ,面积是____cm.④面积等于 cm2的正六边形的周长是____.⑤同圆的内接正三角形与外切正三角形的边长之比是____.⑥正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.⑦正六边形的两对边之间的距离是12cm,则边长是____cm.⑧同圆的外切正四边形与内接正四边形的边心距之比是____.⑨同圆的内接正三角形的边心距与正六边形的边心距之比是____.3选择题:①下列命题中,假命题的是( )A.各边相等的圆内接多边形是正多边形.B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心.C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心.D.一个外角小于一个内角的正多边形一定是正五边形.②若一个正多边形的一个外角大于它的一个内角,则它的边数是( )A.3B.4C.5D.不能确定③同圆的内接正四边形与外切正四边形的面积之比是( )A.1:B.1:C.1:2D. :1④正六边形的两条平行边间距离是1,则边长是( )A . B. C. D.⑤周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是:( )A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S3⑥正三角形的边心距、半径和高的比是( )A.1:2:3B.1: :C. 1: :3D.1:2:四、计算1.已知正方形面积为8cm2,求此正方形边心距 .3.已知圆内接正三角形边心距为 2cm,求它的边长.距长.长.8.已知圆外切正方形边长为2cm ,求该圆外切正三角形半径.10.已知圆内接正方形边长为m,求该圆外切正三角形边长.长.12.已知正方形边长为1cm,求它的外接圆的外切正六边形外接圆的半径.13.已知一个正三角形与一个正六边形面积相等,求两者边长之比.15.已知圆内接正六边形与正方形面积之差为11cm2,求该圆内接正三角形的面积.16.已知圆O内接正n边形边长为an,⊙O半径为R,试用an,R表示此圆外切正n边形边长bn.。

九年级数学正多边形和圆(优质课件)

九年级数学正多边形和圆(优质课件)

面积S 1 L • 边心距(r) 1 na • 边心距(r)
2
2
例题讲解
例. 有一个亭子,它的地基半径为4 m的正六边形, 求地基的周长和面积(精确到0.1 m2).
解: 如图由于ABCDEF是正六边形,所以它的中心 角等于 360 60,△OBC是等边三角形,从而正
6
六边形的边长等于它的半径.
2
26 6
O
O
O
半径R 60 边心距r
半径R 45 边心距r
半径R 30 边心距r
AC
M AC
M
AC
M
中心角
360
n
E
中心角
D
边心距OG把△AOB分成
2个全等的直角三角形
F
..O
C
AOG BOG 180 n
R
a
A GB
设正多边形的边长为a,半径为R,它的周长为L=na.
边心距r R2( a)2 , 2
正方形ABCD的 边心距
A
D
.O
B EC
同步练习
3、图中正六边形ABCDEF的中心角是 ∠AOB 它的度数是 60度
4、你发现正六边形ABCDEF的半径与边长具有
什么数量关系?为什么?
E
D
F
.O
C
A
B
探索新知
连接OC,由垂径定理(运用圆的有关知识)得
AM 1 AB 2
E
D
AOM 1 中心角 1 360 180
正方形ABCD的 中心 .
5. 正方形ABCD的内切圆的半径OE叫做
正方形ABCD的 边心距 .
A
D
.O
B EC
6. ⊙O是正五边形ABCDE的外接圆,弦AB的

中考数学复习指导《正多边形与圆》知识点归纳

中考数学复习指导《正多边形与圆》知识点归纳

中考数学复习指导《正多边形与圆》知识点归纳一、正多边形的定义正多边形是指所有边相等,所有角相等的多边形。

我们以正n边形来进行讨论,其中n表示边的个数。

二、正多边形的性质1.角的个数:正n边形有n个内角和n个外角。

2.外角和:正n边形的外角和为360°。

3.内角和:正n边形的内角和为(2n-4)×90°。

4.中心角和:正n边形的中心角和为360°。

5. 半径和边长之间的关系:正n边形的边长为a,半径为R,则有R=a/(2×sin(π/n))。

三、正多边形的对称性正n边形有n条对称轴,每条对称轴都把正多边形分成两个对称的部分。

四、圆的性质1.圆心角:圆心角是圆的半径所对应的圆弧所夹的角。

圆心角的大小等于其对应的圆弧的度数。

2.弧长:圆心角对应的圆弧的长度称为弧长。

如果圆的半径为R,圆心角的大小为θ,那么圆弧的长度S=R×θ。

3.弦长:弦是圆上的两点之间的线段,弦长可以通过两角的正弦来计算。

4.弦割定理:圆上的一弦分割出的弧长等于该圆的半径与该弦分割出的小弧的两圆心角的和。

即S=S1+S2=R×θ1+R×θ25.弧度制:弧度制是一种角度的度量方式,将角度定义为弧长与半径的比值:角度=弧长/半径。

单位为弧度。

6.周长和面积:圆的周长等于2πR,面积等于πR²。

五、圆与正多边形的关系1.正多边形逼近圆:正多边形的边数越多,逼近的程度越高,其内接圆越接近于外接圆。

2.正多边形的周长与圆的周长:正n边形的周长与内接圆的周长之比约为n/2π。

3. 正多边形的面积与圆的面积:正n边形的面积与内接圆的面积之比约为(1/2•n•sin(2π/n))/π)。

以上就是《正多边形与圆》的一些重要知识点的归纳。

在复习时,可以通过理论学习、练习习题以及解决实际问题的应用题来巩固和提升自己的理解能力。

加油!。

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。

2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。

②正多边形的半径:外接圆的半径叫做正多边形的半径。

③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。

④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。

练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。

(名师整理)最新中考数学专题复习《正多边形与圆的位置关系》精品教案

(名师整理)最新中考数学专题复习《正多边形与圆的位置关系》精品教案

中考数学人教版专题复习:正多边形与圆的位置关系一、教学内容正多边形和圆1.正多边形的有关概念.2.正多边形和圆的关系.3.正多边形的有关计算.二、知识要点1.正多边形的定义各边相等、各角也相等的多边形叫做正多边形.如正三角形(即等边三角形)、正四边形(即正方形)、正五边形、正六边形、正n边形等.2.正多边形与圆的关系(1)从圆的角度看:等分圆周可获得正多边形,把圆分成n(n≥3)等份.①依次连结各分点所得的多边形是这个圆的内接正n边形.②经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.(2)从正多边形的角度看:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.13.正多边形的有关概念(1)正多边形的中心:正多边形的外接圆(或内切圆)的圆心.(2)正多边形的半径:正多边形外接圆的半径.(3)正多边形的边心距:中心到正多边形的一边的距离(即正多边形的内切圆的半径).(4)正多边形的中心角:正多边形每一边所对的圆心角.正多边形的每一个中心角的度数是360°n.ORB1A1B2A2B3A3Cr4.正n边形的对称性当n为奇数时,正n边形只是轴对称图形;当n为偶数时,正n边形既是轴对称图形,也是中心对称图形.5.一些特殊正多边形的计算公式边数n内角A n中心角αn半径R 边长a n边心距r n周长P n面积S n360°120°R3R12R 33R343R2490°90°R2R22R42R 2R26120°60°R R32R6R323R22三、重点难点重点是正多边形的概念和计算,难点是正确理解正多边形和圆的关系.【典型例题】例1.如图所示,既是轴对称图形,又是中心对称图形的有__________.线段正三角形正方形正五边形正六边形(1)(2)(3)(4)(5)解:(1)(3)(5)评析:因正方形、正六边形的边数为偶数,所以线段、正方形、正六边形既是轴对称图形,又是中心对称图形.例2.(1)如果一个正多边形的中心角为24°,那么它的边数是__________.(2)正多边形的一个外角等于45°,那么这个正多边形的内角和等于__________,中心角是__________.分析:利用正多边形的内角和及中心角的计算公式求解.(1)依题意得360°n=24°,∴n=15.(2)n×45°=360°,∴n=8.由内角和公式得(8-2)·180°=1080°,∴中心角为360°8=45°.解:(1)15,(2)1080°,45°.例3.如图所示,小明同学在手工制作中,把一个边长为12cm的等边三角形纸片贴在一个圆形纸片上.若三角形的三个顶点恰好都在这个圆上,求该圆的半径.34A BCOD分析:由题意知这个三角形是圆的内接正三角形.解:如图所示,连结OB ,过O 作OD ⊥BC 于D ,则正△ABC 的中心角=360°3=120°,∠BOD =12×120°=60°,∠OBD =90°-∠BOD =30°,∴OD =12BO .又BD =12BC =12×12=6(cm ),∴OB 2-OD 2=62,即OB 2-(12OB )2=62, ∴OB =43cm .评析:把实际问题转化为正三角形的外接圆的问题是解题的关键.例4. 已知圆内接正方形的面积为8,求同圆内接正六边形的面积.分析:解决问题的关键是“同圆”,通过圆的半径可以把正方形的条件转化为正六边形的条件,从而解决问题.解:由正方形的面积为8,可知正方形的边长为22,设该圆半径为R ,正六边形的边长和边心距分别为a 6和r 6. 则2R =4,a 6=R ,r 6=32·a 6.∴S 6=6×12a 6·r 6=6×12×2×32×2=63.例5. 用折纸的方法,可直接剪出一个正五边形(如图所示)方法是:拿一张长方形纸对折,折痕为AB ,以AB 的中点O 为顶点将平角五等分,并沿五等份的线折叠,再沿CD 剪5开,使展开后的图形为正五边形,则∠OCD 等于( )A . 108°B . 90°C . 72°D . 60°AB ABOOCD分析:本题考查学生的动手能力和灵活运用所学知识的能力,这里的O 点是所剪正五边形的中心,由题可知∠COD =36°,所以剪得的三角形正好是五边形一边和两条半径所构成的三角形的一半,所以∠OCD =90°. 解:B例6. 如图(1)、(2)、(3)、…、(n ),M 、N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE …的边AB 、BC 上的点,且BM =CN ,连接OM 、ON .(1)求图(1)中∠MON 的度数;(2)图(2)中∠MON 的度数是__________,图(3)中∠MON 的度数是__________; (3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).分析:(1)连接OB 、OC ,注意△OBM ≌△OCN ,可得∠MON =∠BOC =120°. (2)同理,由△OBM ≌△OCN ,可得∠MON =∠BOC =90°. (3)由(1)(2)知,∠MON =∠BOC ,即∠MON =∠BOC =90°.A BCO M N A B C DOM N BC D E O MN ABOM…(1)(2)(3)(n )A解:(1)方法一:连接OB 、OC ,∵正△ABC 内接于⊙O ,∴∠OBM =∠OCN =30°,∠BOC =120° 又∵BM =CN ,OB =OC ,∴△OBM ≌△OCN ,6∴∠BOM =∠CON ,∴∠MON =∠BOC =120°. 方法二:连接OA 、OB ,∵正△ABC 内接于⊙O . AB =BC ,∠OAM =∠OBN =30°,∠AOB =120°. 又∵BM =CN ,∴AM =BN , 又∵OA =OB ,∴△AOM ≌△BON ,∴∠AOM =∠BON ,∴∠MON =∠AOB =120°. (2)图(2)中,∠MON =360°4=90°,图(3)中,∠MON =360°5=72°. (3)图(n )中,∠MON =360°n .评析:(1)△OBM 与△O CN 是旋转全等三角形. 图(1)中△OCN 绕点O 顺时针旋转120°,与△OBM 重合;图(2)旋转90°,图(3)旋转72°……. (2)注意由特殊到一般的思想,归纳出∠MON =360°n .【方法总结】1. 正n 边形的中心角为360°n ,与正n 边形的一个外角相等,与正n 边形的一个内角互补. 求中心角常用以上方法.2. 正多边形的外接圆半径R 与边长a 、边心距r 之间的关系式为R 2=r 2+(12a )2,这是把正n 边形分成了2n 个全等的直角三角形,把正n 边形的有关计算转化为直角三角形中的问题.【模拟试题】(答题时间:50分钟) 一、选择题1. 若一个正多边形的一个外角是40°,则这个正多边形的边数是( )A. 10B. 9C. 8D. 62.下列命题中正确的是()A.正多边形都是中心对称图形B.正多边形一个内角的大小与边数成正比C.正多边形一个外角的大小随边数的增加而减小D.边数大于3的正多边形对角线都相等3.一个正多边形的中心角是36°,则其一定是()A.正五边形B.正八边形C.正九边形D.正十边形4.正多边形的一边所对的中心角与该正多边形一个内角的关系是()A.两角互余B.两角互补C.两角互余或互补D.不能确定5.圆内接正三角形的边心距与半径的比是()A. 2∶1B. 1∶2C.3∶4D.3∶26.下列命题中:①三边都相等的三角形是正三角形;②四边都相等的四边形是正四边形;③四角都相等的四边形是正四边形;④各边都相等的圆的内接多边形是正多边形.其中正确的有()A. 1个B. 2个C. 3个D. 4个*7.已知四边形ABCD内接于⊙O,给出下列三个条件:①︵AB=︵BC=︵CD=︵DA;②AB=BC=CD=DA;③∠A=∠B=∠C=∠D.则在这些条件中,能够判定四边形ABCD是正四边形的条件共有()A. 0个B. 1个C. 2个D. 3个**8. A点是半圆上一个三等分点,B点是︵AN的中点,P是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为()7M NA. 1B.22C. 2 D.3-1二、填空题1.用一张圆形的纸片剪一个边长为4cm的正六边形,则这个圆形纸片的半径最小为__________cm.2.如果一个正多边形的内角和是900°,则这个多边形是正__________边形.3.正十边形至少绕中心旋转__________度,它与原正十边形重合.4.若正三角形、正方形、正六边形的周长都相等,它们的面积分别为S3、S4、S6,则S3、S4、S6由大到小的排列顺序是__________.5.正六边形DEFGHI的顶点都在边长为6cm的正三角形ABC的边上,则这个正六边形的边长是__________cm.*6.如图是某广场地面的一部分,地面的中央是一块正六边形地砖,周围用正三角形和正方形的大理石密铺,从里向外共铺了12层(不包括正六边形地砖),每一层的外边界都围成一个多边形.若正中央正六边形地砖的边长为0.5米,则第12层的外边界所围成的多边形的周长是__________.三、解答题1.解答下列各题:89(1)分别求出正十边形、正十二边形的中心角.(2)已知一个正多边形的一个中心角为18°,求它的内角的度数. (3)正六边形的两条平行边间的距离为12cm ,求它的外接圆的半径.2. 如图所示,求中心为原点O ,顶点A 、D 在x 轴上,半径为4cm 的正六边形ABCDEF 的各个顶点坐标.3. 用一块半径R =60cm 的圆形木料,做“八仙桌”(正方形)桌面或“八角桌”(正八边形)桌面,哪个面积大?大多少?(结果保留三个有效数字)**4. 请阅读,完成证明和填空. 九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:A A A BBB CCCD DO OOM M M NNN E图1图2图3…(1)如图1,正三角形ABC 中,在AB 、AC 边上分别取点M 、N ,使BM =AN ,连接BN 、CM ,发现BN =CM ,且∠NOC =60°. 请证明:∠NOC =60°.(2)如图2,正方形ABCD 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、DM ,那么AN =__________,且∠DON =__________度.(3)如图3,正五边形ABCDE 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、EM ,那么AN =__________,且∠EON =__________度.(4)在正n边形中,对相邻的三边实施同样的操作过程,也会有类似的结论.请大胆猜测,用一句话概括你的发现:______________________________.1011【试题答案】一、选择题1. B2. C3. D4. B5. B6. B7. C8. C (解析:如图所示,作点B 关于直线MN 的对称点B ’,连结OB ’,PB ’,BB ’.M N二、填空题1. 42. 七3. 364. S 6>S 4>S 35. 26. 39米三、解答题1. (1)正十边形的中心角为360°10=36°,正十二边形的中心角是360°12=30°. (2)中心角为18°的正多边形的边数为36018=20,正二十边形的内角为(20-2)·180°20=162°. (3)由题意得r 6=6(cm ),由于正六边形的边长与半径相等,∴R 2=(12R )2+r 62,∴34R 2=36,R =43(cm ).2. A (-4,0)、B (-2,-23)、C (2,-23)、D (4,0)、E (2,23)、F (-2,23)3. “八仙桌”的面积为7200平方厘米,“八角桌”的面积为72002平方厘米,所以“八角桌”比“八仙桌”的面积大2980平方厘米.4. (1)证明:∵△ABC 是正三角形,∴∠A =∠ABC =60°,AB =BC ,在△ABN 和△BCM 中,⎩⎨⎧AB =BC∠A =∠ABCAN =BM,∴△ABN ≌△BCM . ∴∠ABN =∠BCM . 又∵∠ABN +∠OBC =60°,∴∠BCM+∠OBC=60°,∴∠NOC=60°.(2)在正方形中,AN=DM,∠DON=90°.(3)在正五边形中,AN=EM,∠EON=108°.(4)以上所求的角恰好等于正n边形的内角(n-2)·180°n.12。

初中数学中考复习正多边形与圆的有关的证明和计算

初中数学中考复习正多边形与圆的有关的证明和计算

初中数学中考复习正多边形与圆的有关的证明和计算正多边形与圆的关系是初中数学中重要的内容。

在中考复习中,我们需要掌握正多边形与圆的有关知识,并能够进行证明和计算。

一、正多边形的性质与计算:1.正多边形的定义:正多边形是指所有边相等,所有角也相等的多边形。

2.正多边形的计算:正n边形的内角和为180°(n-2),每个内角为(180°(n-2))/n。

正n边形的外角和为360°,每个外角为360°/n。

正n边形的中心角为360°/n。

例题1:求正六边形的内角和。

解:内角和为180°(6-2)=720°。

例题2:求正五边形的每个内角大小。

解:每个内角为(180°(5-2))/5=108°。

二、正多边形与圆的关系:1.圆的定义:圆是平面上一组到一个固定点(圆心)距离相等的点的集合。

2.正多边形与圆的关系:正多边形的顶点均在圆上,且正多边形的外接圆和内切圆都满足以下性质:①外接圆:正多边形的外接圆的圆心与正多边形的中心重合。

②内切圆:正多边形的内切圆的圆心与正多边形的中心重合,且内接圆的半径等于正多边形的边长的一半。

3.正多边形与圆的证明:①外接圆的证明:由正多边形的定义可知,正多边形的每个顶点到圆心的距离都相等,即正多边形的顶点在圆上。

而圆心与正多边形的中心重合,所以正多边形的外接圆的圆心与正多边形的中心重合。

②内切圆的证明:首先,通过正多边形的定义,可以证明正多边形的每个顶点到圆心的距离都相等,即正多边形的顶点在圆上。

其次,由于正多边形的边长相等,所以正多边形的中心到各个顶点的距离也相等。

而内切圆的半径等于正多边形中心到任意一个顶点的距离,所以正多边形的内切圆的圆心与正多边形的中心重合,且内切圆的半径等于正多边形的边长的一半。

例题3:如图,正六边形ABCD中,O为外接圆的圆心,求AB的长。

解:由于正六边形的外接圆的圆心与正多边形的中心重合,所以O即为正六边形的中心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正多边形与圆
一.选择题
1.(2015•广东广州,第9题3分)已知圆的半径是2,则该圆的内接正六边形的面积是()
A. 3B. 9C. 18D.36
考点:正多边形和圆.
分析:解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.
解答:解:连接正六边形的中心与各个顶点,得到六个等边三角形,
等边三角形的边长是2,高为3,
因而等边三角形的面积是3,
∴正六边形的面积=18,
故选C.
点评:本题考查了正多边形和圆,正六边形被它的半径分成六个全等的等边三角形,这是需要熟记的内容.
2. (2015•浙江金华,第10题3分)如图,正方形ABCD和正三角形AEF都内接于⊙O,EF与BC,CD分别相交于点G,H,则的值是【】
A. B. C. D. 2
【答案】C.
【考点】正方形和等边三角形的性质;圆周角定理;锐角三角函数定义;特殊角的三角函数值;等腰直角三角形的判定和性质,特殊元素法的应用.
【分析】如答图,连接,与交于点.
则根据对称性质,经过圆心,
∴垂直平分,.
不妨设正方形ABCD的边长为2,则.
∵是⊙O 的直径,∴.
在中,,
.
在中,∵,∴.
易知是等腰直角三角形,∴.
又∵是等边三角形,∴.
∴.
故选C.
3. (2015山东济宁,7,3分)只用下列哪一种正多边形,可以进行平面镶嵌( )
A.正五边形B.正六边形C.正八边形D.正十边形
【答案】B
考点:正多边形
的内角,平面镶嵌
4. (2015•四川成都,第10题3分)如图,正六边形内接于圆,半径为,则这个正六边形的边心
距和弧的长分别为
(A)、(B)、
D
(C)、(D)、。

相关文档
最新文档