实验二-连续时间系统的模拟实验报告

合集下载

信号与信号实验

信号与信号实验

信号与信号实验MATLAB 部分实验一:基本信号在MATLAB 中的表示和运算 一、 实验目的;1、学会用MATLAB 表示常用连续信号的方法;2、学会用MATLAB 进行信号基本运算的方法;3、学会用MATLAB 实现连续时间信号的卷积的方法。

二、 实验内容:1、绘出下列信号的时域波形(1)f(t)=(2-e-2t)u(t) (2)f(t)=cos(πt)[u(t)-u(t-1)] (3)f(t)=u(-3t+2) (4)f(t)= -(1/2)tu(t+2) 解:t1=0:0.01:5; y1=(2-exp(-2*t1)).*(t1>0); subplot(221);plot(t1,y1);grid; title('f(t)=(2-e-2t)u(t)'); t2=0:0.01:5; y2=cos(pi*t2).*((t2>0)-(t2>1)); subplot(222);plot(t2,y2);grid; title('f(t)=cos(πt)[u(t)-u(t-1)]'); t3=-2:0.01:5; y3=(-3*t3+2>0); subplot(223);plot(t3,y3);grid; title('f(t)=u(-3t+2)'); t4=-3:0.01:5; y4=(-1/2)*t4.*(t4>-2); subplot(224);plot(t4,y4);grid; title('f(t)=-(1/2)tu(t+2)');00.511.52f(t)=(2-e-2t)u(t)图 1-1f(t)=cos(πt)[u(t)-u(t-1)]图1-200.51f(t)=u(-3t+2)图1-3f(t)=-(1/2)tu(t+2)图 1-42、用MATLAB 绘出下列信号的卷积积分f1(t)*f2(t)的时域波形(1) f1(t)=tu(t), f2(t)=u(t) (2) f1(t)=u(t)-u(t-4), f2(t)=sin(πt)u(t) (3) f1(t)= e-2t u(t), f2(t)= e-t u(t) (4) f1(t)= e-t u(t), f2(t)=u(t) 解:(1)fs=1000; t=-1:1/fs:4; x1=stepfun(t,0); x2=x1.*t; y=conv(x1,x2)/fs; n=length(y1); tt=(0:n-1)/fs-2; subplot(311),plot(t,x1),grid; title('f1(t)=tu(t)'); subplot(312),plot(t,x2),grid; title(' f2(t)=u(t)'); subplot(313),plot(tt,y),grid on; title('f1(t) * f2(t)');(2)fs=1000; t=-1:1/fs:4; x1=(t>0)-(t>4); x2=sin(pi*t).*(t>0); x=conv(x1,x2)/fs; n=length(x); tt=(0:n-1)/fs-2; subplot(311);plot(t,x1);grid; title('f1(t)=u(t)-u(t-4))'); subplot(312);plot(t,x2);grid; title('f2(t)=sin(πt)u(t)'); subplot(313);plot(tt,x);grid; title('f1(t) * f2');(3)t=0:1/fs:4; x1=exp(-2*t).*(t>0); x2=exp(-t).*(t>0); x=conv(x1,x2)/fs; n=length(x); tt=(0:n-1)/fs-0; subplot(311);plot(t,x1);grid; title('f1(t)= e-2t u(t)'); subplot(312);plot(t,x2);grid; title('f2(t)= e-t u(t)'); subplot(313);plot(tt,x);grid; title('f1(t) * f2(t)');(4)t=0:1/fs:2; x1=exp(-2*t).*(t>0); x2=(t>0); x=conv(x1,x2)/fs; n=length(x); tt=(0:n-1)/fs-0; subplot(311);plot(t,x1);grid; title(' f1(t)= e-t u(t))'); subplot(312);plot(t,x2);grid; title('f2(t)=u(t)'); subplot(313);plot(tt,x);grid; title('f1(t)*f2(t)');0.51 1.52 2.53 3.540.51 1.52 2.53 3.5412345678-1 -0.5 00.51 1.52 2.53 3.54? 2-1 -1 -0.5 00.51 1.52 2.53 3.54? 2-2 -2-112 3 4 5678? 2-3实验二:连续时间LTI 系统的时域分析一、实验目的:学会用MATLAB 求解连续系统的零状态响应、冲击响应和阶跃响应。

南昌大学信号与系统实验课程7连续时间系统的模拟

南昌大学信号与系统实验课程7连续时间系统的模拟

南昌大学实验报告学生姓名:学号:班级:实验类型:□验证□综合■设计□创新实验日期:2011-04-23 实验成绩:硬件实验三:连续时间系统的模拟(一)实验目的1,掌握学习根据给定的连续系统的传输函数,用基本运算单元组成模拟装置。

(二)实验原理1,线性系统的模拟系统的模拟就是用基本运算单元组成的模拟装置来模拟实际的系统。

这些实际的系统可以是电的或者非电的物理量系统,也可以是社会、经济和军事等非物理量系统。

模拟装置可以与实际系统的内容完全不同,但是两者之间的微分方程完全相同,输入输出关系即传输函数也完全相同。

模拟装置的激励和响应是电物理量,而实际系统的激励和响应不一定是电物理量,但它们之间的关系是一一对应的。

所以,可以通过对模拟装置的研究来分析实际系统,最终达到在一定条件下确定最佳参数的目的。

对于那些用数学手段较难处理的高阶系统来说,系统模拟就更为有效。

2,传输函数的模拟若已知实际系统的传输函数为:H(s)=Y(s)/F(s)=(a0*s^n+a1*s^(n-1)+...+an)/(s^n+b1*s^(n-1) +...+bn)分子、分母同乘以s^(-n)得到:H(s)=Y(s)/F(s)=(a0+a1*s^(-1)+...+an*s^(-n))/(1+b1*s^(-1)+ ...+bn*s^(-n))式中P(s^(-1))和Q(s^(-1))分别代表分子、分母的s负幂次方多项式。

因此:Y(s)=P(s^(-1))*F(s)/Q(s^(-1))若X=F(s)/Q(s^(-1)),则F(s)=XQ(s^(-1))=X+b1*s^(-1)X+...+bn*s^(-n)XX=F(s)-[b1*s^(-1)X+...+bn*s^(-n)X]Y(s)=P(s^(-1))X=a0X+a1*s^(-1)X+...+an*s^(-n)X根据X的表达式可以画出模拟框图。

在该图的基础上画出系统的模拟框图。

在南昌大学实验报告学生姓名:学号:班级:实验类型:□验证□综合■设计□创新实验日期:2011-04-23 实验成绩:连接模拟电路时,s^(-1)用积分器,-b1、-b2、-b3以及a0、a1、a2均用标量乘法器,负号可用倒相器,求和用加法器。

PID控制实验报告

PID控制实验报告

实验二数字pid控制计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。

因此连续pid控制算法不能直接使用,需要采用离散化方法。

在计算机pid控制中,使用的是数字pid控制器。

一、位置式pid控制算法按模拟pid控制算法,以一系列的采样时刻点kt代表连续时间t,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散pid位置式表达式:?tu(k)?kp?e(k)??ti?k?e(j)?j?0k?td(e(k)?e(k?1))??t?e(k)?e(k?1) t ?kpe(k)?ki?e(j)t?kdj?0式中,ki?kpti,u为控制,kd?kptd,e为误差信号(即pid控制器的输入)信号(即控制器的输出)。

在仿真过程中,可根据实际情况,对控制器的输出进行限幅。

二、连续系统的数字pid控制仿真连续系统的数字pid控制可实现d/a及a/d的功能,符合数字实时控制的真实情况,计算机及dsp的实时pid控制都属于这种情况。

1.ex3 设被控对象为一个电机模型传递函数g(s)?1,式中2js?bs j=0.0067,b=0.1。

输入信号为0.5sin(2?t),采用pd控制,其中kp?20,kd?0.5。

采用ode45方法求解连续被控对象方程。

d2ydyy(s)1?,则?u,另y1?y,y2?y?2因为g(s)?,所以j2?bdtu(s)js?bsdt??yy??12,因此连续对象微分方程函数ex3f.m如下 ?y?2??(b/j)y?(1/j)*u?2? function dy = ex3f(t,y,flag,para) u=para; j=0.0067;b=0.1;dy=zeros(2,1);dy(1) = y(2);dy(2) = -(b/j)*y(2) + (1/j)*u;控制主程序ex3.mclear all;close all;ts=0.001; %采样周期xk=zeros(2,1);%被控对象经a/d转换器的输出信号y的初值e_1=0;%误差e(k-1)初值u_1=0;%控制信号u(k-1)初值for k=1:1:2000 %k为采样步数time(k) = k*ts; %time中存放着各采样时刻rin(k)=0.50*sin(1*2*pi*k*ts); %计算输入信号的采样值para=u_1; % d/a tspan=[0 ts];[tt,xx]=ode45(ex3f,tspan,xk,[],para); %ode45解系统微分方程%xx有两列,第一列为tt时刻对应的y,第二列为tt时刻对应的y导数xk = xx(end,:); % a/d,提取xx中最后一行的值,即当前y和y导数yout(k)=xk(1); %xk(1)即为当前系统输出采样值y(k) e(k)=rin(k)-yout(k);%计算当前误差de(k)=(e(k)-e_1)/ts; %计算u(k)中微分项输出u(k)=20.0*e(k)+0.50*de(k);%计算当前u(k)的输出%控制信号限幅if u(k)>10.0u(k)=10.0;endif u(k)<-10.0u(k)=-10.0;end %更新u(k-1)和e(k-1)u_1=u(k);e_1=e(k);endfigure(1);plot(time,rin,r,time,yout,b);%输入输出信号图xlabel(time(s)),ylabel(rin,yout); figure(2);plot(time,rin-yout,r);xlabel(time(s)),ylabel(error);%误差图程序运行结果显示表1所示。

实验二 连续信号与系统的频域分析

实验二   连续信号与系统的频域分析
ya1=f1*cos(n*w0*t); ya2=f2*cos(n*w0*t); an=(int(ya1,-T/2,0)+int(ya2,0,T/2))/T*2; %求傅氏系数an;bn=0 an=vpa(an,3); an=simple(an); %化简结果
(2)绘出f(t)的时域波形及频谱图。
f(t) 1
(2)电路的系统函数为 H(jω)
1 j 1 j
(b)用MATLAB求系统的单位冲激响应。
(c) 当输入为 f (t) sint sin3t t
求系统的稳态响应。
程序清单: syms w t; Hw=(1-j*w)/(1+j*w); ht=ifourier(Hw,t); ft=sin(t)+sin(3*t); Fw=fourier(ft); Yw=Fw*Hw; yt=ifourier(Yw,t);
函数fourier()——傅立叶正变换 函数ifourier()——傅立叶逆变换
3、连续时间系统的响应
已知某电路的系统传递函数为 H(jω)=1/(0.08(jω)2+0.4jω+1)
用MATLAB绘制系统的幅频特性曲线和相频特性曲线,并分
析该系统的频率特性。 系统频率特性
H(j)=|H(j)|ej() |H(j)|——系统的幅频特性
for i=1:9
a(i)=subs(an,n,i); % 计算系数a1~a9,存于数组a中 end
a0=double(a0);a=double(a); %转换成数值型
stem(0,a0,i,a); %绘f(t)的频谱图
2、非周期信号的分析 (1)已知某一连续时间信号为
f t e2 t
试绘出它的时域波形及相应的频谱图。

阶跃响应与冲激响应

阶跃响应与冲激响应

实验一阶跃响应与冲激响应一、实验目的1、 观察和测量 RLC 串联电路的阶跃响应与冲激响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响;2、 掌握有关信号时域的测量分析方法。

、实验仪器1、信号源及频率计模块 S22、模块一 S53、数字万用表4、双踪示波器三、实验原理、:(t)作为激励,LTI 连续系统产生的零状态响应称为单位冲激响图2-1冲激响应示意图以单位阶跃信号u(t)作为激励,LTI 连续系统产生的零状态响应称为单位阶跃响应,简称阶跃响应,记为 g(t)。

阶跃响应示意图如图2-2 :图2-2阶跃响应示意图阶跃激励与阶跃响应的关系简单地表示为:以单位冲激信号应,简称冲激响应,记为h(t)。

冲激响应示意图如图2-1:和(t)u(t)图2-3(b)冲激响应电路连接示意图tg (t ) =〕o_hk )dj 所以对线性时不变电路冲激响应也是阶跃响应的导数。

为了便于用示波器观察响应波形,实验中用周期方波代 替阶跃信号。

而用周期方波通过微分电路后得到的尖顶脉冲代替冲激信号。

四、实验内容1、阶跃响应实验波形观察与参数测量设激励信号为方波,频率为 500Hz 。

实验电路连接图如图 2-3 ( a )所示。

①调整激励信号源为方波(即从S2模块中的P2端口引出方波信号);调节频率调节旋钮 ROL1,使频率计示数 f=500Hz 。

g (t )= H U (t )1或者u (t )- g (t )如图2-3所示为RLC 串联电路的阶跃响应与冲激响应实验电路图,其响应有以下三种状态: 1、当电阻 时,称过阻尼状态;2、当电阻3、当电阻 时,称临界状态;时,称欠阻尼状态。

5阶跃响应电路连接示意图图 2-3(a)ri4C3Tl ]l I a.: (4)Tn©PL2:L 讥I-L2lOmH冲激信号是阶跃信号的导数,即②连接S2模块的方波信号输出端P2至S5模块中的P12。

③示波器CH1接于TP14,调整W1使电路分别工作于欠阻尼、临界和过阻尼三种状态,观察各种状态下的输出波形,用万用表测量与波形对应的P12和P13两点间的电阻值(测量时应断开电源),并将实验数据填入表格2-1中。

MATLAB与信号实验——连续LTI系统的时域分析

MATLAB与信号实验——连续LTI系统的时域分析

MATLAB与信号实验-——-连续LTI系统的时域分析在信号处理中,MATLAB是一个强大的工具,它提供了许多功能,使我们能够模拟和分析各种信号系统。

对于连续LTI系统,时域分析是一个重要的方法,它允许我们直接观察系统的输入和输出信号之间的关系。

下面是一个关于连续LTI系统的时域分析的实验。

一、实验目的本实验的目的是验证连续LTI系统的时域响应,通过使用MATLAB模拟系统,我们可以观察到不同的输入信号产生的输出信号,从而了解系统的特性。

二、实验步骤1.定义系统:首先,我们需要定义我们的连续LTI系统。

这可以通过使用MATLAB中的lti函数来完成。

我们需要提供系统的传递函数,它描述了系统的输入和输出之间的关系。

2.设置输入信号:为了观察系统的行为,我们需要设置一个合适的输入信号。

在MATLAB中,我们可以使用square函数来生成一个方波信号,该信号具有固定的频率和幅度。

3.模拟系统:使用MATLAB的lsim函数,我们可以模拟我们的连续LTI系统。

这个函数将输入信号和系统的传递函数作为参数,然后计算出系统的输出信号。

4.分析结果:我们可以使用MATLAB的图形功能来观察输入和输出信号。

这可以帮助我们理解系统的行为,并验证我们的模型是否正确。

三、实验结果与分析在实验中,我们使用了不同的输入信号(如方波、正弦波等)来测试我们的连续LTI系统。

对于每种输入信号,我们都观察了系统的输出信号,并记录了结果。

通过对比不同的输入和输出信号,我们可以得出以下结论:1.对于方波输入,系统的输出信号是带有延迟的方波,这表明系统对突变信号的响应是瞬时的。

2.对于正弦波输入,系统的输出信号是与输入信号同频同相位的正弦波,这表明系统对正弦波的响应是具有稳定性的。

这些结果验证了连续LTI系统的基本特性:即对于单位阶跃函数(突变信号)的输入,系统的响应是瞬时的;而对于周期性输入(如正弦波),系统的响应具有稳定性。

这些结果与我们在理论上学到的知识相符,从而验证了我们的模型是正确的。

信号与系统连续时间系统的频率响应

信号与系统连续时间系统的频率响应

实验报告实验名称:连续时间系统的频率响应一、实验目的:1 加深对连续时间系统频率响应理解;2 掌握借助计算机计算任意连续时间系统频率响应的方法。

二、实验原理:连续时间系统的频率响应可以直接通过所得表达式计算,也可以通过零极点图通过用几何的方法来计算,而且通过零极点图可以迅速地判断系统的滤波特性。

根据系统函数H(s)在s平面的零、极点分布可以绘制频响特性曲线,包括幅频特性 H(jw) 曲线和相频特性?(w)曲线。

这种方法的原理如下:假定,系统函数H(s)的表达式为当收敛域含虚轴时,取s = jw,也即在s平面中,s沿虚轴从- j∞移动到+ j∞时,得到容易看出,频率特性取决于零、极点的分布,即取决于Zj 、Pi 的位置,而式中K是系数,对于频率特性的研究无关紧要。

分母中任一因子(jw- Pi )相当于由极点 p 引向虚轴上某点 jw的一个矢量;分子中任一因子(jw-Zj)相当于由零点Zj引至虚轴上某点 jw的一个矢量。

在右图示意画出由零点Zj和极点 Pi 与 jw点连接构成的两个矢量,图中Nj、Mi 分别表示矢量的模,ψj、θi 表示矢量的辐角(矢量与正实轴的夹角,逆时针为正)。

对于任意零点Zj 、极点Pi ,相应的复数因子(矢量)都可表示为:于是,系统函数可以改写为当ω延虚轴移动时,各复数因子(矢量)的模和辐角都随之改变,于是得出幅频特性曲线和相频特性曲线。

这种方法称为s 平面几何分析。

通过零极点图进行计算的方法是: 1 在S 平面上标出系统的零、极点位置;2 选择S 平面的坐标原点为起始点,沿虚轴向上移动,计算此时各极点和零点与该点的膜模和夹角;3 将所有零点的模相乘,再除以各极点的模,得到对应频率处的幅频特性的值;4 将所有零点的幅角相加,减去各极点的幅角,得到对应频率处的相角。

三、实验内容用 C 语言编制相应的计算程序进行计算,要求程序具有零极点输入模块, 可以手工输入不同数目的零极点。

计算频率从0~5频段的频谱,计算步长为0.1,分别计算上面两个系统的幅频特性和相频特性,将所得结果用表格列出,并画出相应的幅频特性曲线和相频特性曲线。

数电概述和连续时间系统的模拟(gu)

数电概述和连续时间系统的模拟(gu)
20
组合电路的静态测试
静态测试时输入信号是逐个改变的,输入 变化很慢,显示的输出信号是输入电平稳 定后的情况。与实际工作时的输入变化速 度不同。所以,静态测试的条件与实际工 作的条件不同,测试结果与实际情况也可 能不同。尤其是当输入信号变化很快时, 如果电路因器件延迟而产生了“竞争”或 “冒险”现象,由于“竞争”或“冒险” 产生的“毛刺”是非常窄的脉冲,用发光 二极管是无法显示出来的。静态测试不能 测出电路的“竞争”或“冒险” 。 21
– 教材《电工电子实验技术(上册)》P88~P90有 详细介绍
13
(二)TTL数字集成电路使用规则
1、管脚 常用TTL数字集成电路的管脚排列可查《电 工电子实验手册》P84~P94,并附有功能表。 使用时请注意:
A.管脚图中半圆形符号在左侧,必须将集成电路 背部(印有字符)的缺口也朝左时管脚图中的管 脚编号才与集成电路实际管脚编号一致,否则, 将造成两种管脚号标注不一致。
16
输出脚 输出端决不允许直接接+5V电源或接地。除集 电极开路输出和三态输出电路外,输出端不 允许并联使用,否则引起逻辑混乱,甚至损 坏器件。 输出高电平VOH>2.5V,输出低电平VOL<0.4V 输入脚 所有输入端的输入电压的允许范围为+5V~- 0.7V。若大于上限值,多发射极晶体管的发 射结可能击穿;低于下限值时,衬底结可能 导通。这些都将影响电路正常工作,甚至损 坏器件。
示波器一般只有双踪,测仪。 如果输出端F的波形不正常,可以逐个写出信 号传输路径中各个门电路输出端的真值表,用 示波器测量各点波形并与真值表对照。如果与 真值表不符,即可判断出故障所在。 由于示波器的屏幕较小,分辨率也有限,可显 示的信号长度有限,如果输入信号数量较多, 信号序列较长(如8个输入信号的测试序列长达 28=256个),而示波器上最多能显示出几十个 信号周期的长度,这种情况正是数字电路的测 试难点所在。因此,在测试长序列信号时,一 般要采用数字式存储示波器或逻辑分析仪。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二-连续时间系统的模拟实验报告
信号与系统
实验报告
(信号与系统实验箱)
HD-XH-II型
实验二连续时间系统的模拟
学院
专业班级
姓名学号
指导教师
实验报告评分:_______
连续时间系统的模拟
一、实验目的
1.了解用集成运算放大器构成基本运算单元—标量乘法器,加法和计分器,以及它们的组合全加积分器的方法。

2.掌握用以上基本运算单元以及它们的组合构成模拟系统,模拟一阶和二阶连续时间系统的原理和方法,并用实验测定模拟系统的特性。

二、实验内容及步骤
1.一阶模拟系统阶跃响应的观测
(1)对图9-5(c)的实际的电路,在输入端TP901处输入幅度Uim=0.2V,频率=200HZ的方波,观测输入波形及输出(TP903处)响应波形,比较输入波形与输出波形的周期和幅度,测量时间常数τ和放大倍数A。

(2)输入幅度Uim=0.2V的正弦波信号,由低频(20HZ左右)开始,缓慢改变正弦波信号频率,测出低通滤波器的截止频率f0.
2.二阶模拟系统频率特性测试
对图9-6(c)的实际电路,在输入端TP905处输入幅度
Uim=0.2V正弦波,改变正弦波的信号频率,此时,应注意保持输入电压不变,记录相应的输出(TP907处)电压值,画出扶贫特性曲线,测定系统的放大倍数A,中心频率f0及其频带宽度Bw,计算品质因素Q。

三、实验过程
一阶模拟系统
一阶模拟系统输入波形:
输出波形:
(1)放大倍数A=Rf/R1=10K/1K=10
H(s)=(a^2)/(s^2+3*a*s+a^2)
其中a=1/RC,值为4170。

以log f为横坐标,Vo/Vi为纵坐标,绘制滤波器的幅频特性曲线。

再以log f为横坐标,Φ(ω)为纵坐标,绘制滤波器的相频特性曲线。

RC低通滤波器幅频响应曲线图如下:
二阶模拟系统输入正弦波图形:
幅频特性曲线:
四、实验的学习与感想
通过这次实验,将学到的理论知识通过动手再现出来,感到了信号与系统这门课的趣味,通过图形再现,使书本上枯燥乏味的图像,变得有意思多了。

繁杂的公式在这次试验中简化成简单的电路,更形象的记着了各种运算电路。

虽然实验过程中遇到不少困难,但是通过自己动手解决这些困难,掌握知识,让我能对课本的知识有了很好的吸收。

五、与上次实验的对比
上次实验通过软件再现信号图形,通过分析编程,让我对信号的公式和特性有了深刻的认识,这次实验通过动手连接,将信号图形通过电路,产生出来,然我对这信号的意义有了不同的理解。

相关文档
最新文档