数学物理方程第一章
第一章+数学物理方程概述

第一章 数学物理方程概述数学物理方程,其定义是研究反映物理规律的数学方程。
由于一般的物理量基本都具有多个变量()t z y x ,,,,因此,它所满足的微分方程属于偏微分方程。
本章的目的,归纳出几个常见物理问题对应的数学物理方程。
§1.1 常见数学物理方程的导出1.1.1 常见的几个偏微分方程波动方程:数学上称双曲型方程,表现为场的波动性。
热传导方程或扩散方程:数学上称抛物型方程,表现为不可逆的输运过程。
拉普拉斯(Laplace )方程和泊松方程:数学上称椭圆型方程,表现为场的稳定分布。
()⎪⎩⎪⎨⎧−=∇=∇zy x u u ,,022ρ其中,算符z y x e ze y e x ˆˆˆ∂∂+∂∂+∂∂=∇,∇⋅∇=∇=Δ2称为拉普拉斯算子。
直角坐标系下, ()xx u xux u =∂∂=∇222一维yy xx u u y uxu y x u +=∂∂+∂∂=∇22222),( 二维 ()zz yy xx u u u zuy u x u z y x u ++=∂∂+∂∂+∂∂=∇2222222,, 三维1.1.2 常见数学物理方程的导出一、波动方程的导出1、弦的横振动如图1所示,一根拉紧的弦在平衡位置(x 轴)附近做横向微小振动()1<<α。
已知弦的线密度为ρ,作用于弦单位长度的外力为()t x F ,,方向垂直x 轴,弦上的张力为T ,()t x u ,表示弦上x 点在时刻t 的距离平衡位置的垂直位移。
推导弦横向振动所满足的方程。
图1 弦的横振动将弦上任意一小段()x x x Δ+,作为研究对象,由牛顿第二定律,小弦纵向和横向的运动方程分别为⎪⎩⎪⎨⎧∂∂⋅Δ=Δ+−=2211222211sin sin cos cos t ul l F T T T T ραααα由于弦的振动幅度比较小(α较小),所以有如下近似条件: T T T ==⇒≈=21111cos cos αα,T 为常数; x x u ∂∂=⇒==1111sin sin tan αααα,xx xuΔ+∂∂=2sin α;弦长x dx x u l xx xΔ≈⎟⎠⎞⎜⎝⎛∂∂+=Δ∫Δ+21。
数学物理方程第一章、第二章习题全解

18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x
第一章 数学物理中的偏微分方程

M'
T'
u ( x, t ) sin tan x u ( x dx, t ) sin ' tan ' x
ds
'
T
M
gds
x x dx x
T T '
其中: m
ds
u ( x dx, t ) u( x, t ) T gds ma x x
举例(多元函数)
2u 2u 2u 2 2 0 2 x y z u u u u 2 2 2 x y z t
2 2 2
拉普拉斯(Laplace)方程
热传导方程
u u u u 2 2 2 2 x y z t
2 2 2 2
波动方程
14
物理模型与定解问题的导出
15
弦振动方程的导出
16
一长为L的柔软均匀细弦,拉紧后,当它 受到与平衡位置垂直的外力作用时,开始作微 小横振动。 假设这运动发生在同一平面内, 求弦上各点位移随时间变化规律。
弦上各点作往返运动的主要原因在于弦的张力 作用,弦在运动过程中各点的位移、加速度和张力 都在不断变化,但它们遵循物理的运动规律。由此 可以建立弦上各点的位移函数所满足的微分方程。
2 vxvxx vy vyy v2
拟线性PDE
8.
9.
拟线性PDE
a( x, y)(vxx vyy ) ev (vx vy )
半线性PDE
10. 11.
ut ux sin u
半线性PDE 完全非线性PDE
ut ux
2
2
u2
12
1.2 三个典型的方程
数学物理方程

方程 uxx uyy A5ux B5uy C5u D5, 称为椭圆型方程的 标准形。
三、方程的化简
步骤:第一步:写出判别式 a122 a11a22 ,根据判别式判 断方程的类型;
第二步:根据方程(1)写如下方程
a11
(
dy dx
)
2
2a12
dy dx
a22
0
(2)
称为方程(1)的特征方
(2)当 0 时,特征线 (x, y) c. 令 (x, y), (x, y).
其中 (x, y)是与 (x, y)线性无关的任意函数,这样以, 为新变量方程(1)化为标准形 u Au Bu Cu D,
其中A,B,C,D都是 , 的已知函数。
(3)当 0 时,令 1 ( ), 1 ( ). 以 , 为新
程。方程(2)可分解为两个一次方程
dy a12 (3)
dx
a11
称为特征方程,其解为特征线。
设这两个特征线方程的特征线为 (x, y) c1, (x, y) c2.
令 (x, y), (x, y).
第三步(1)当 0 时,令 (x, y), (x, y). 以 , 为 新变量方程(1)化为标准形 u Au Bu Cu D, 其中A,B,C,D都是, 的已知函数。
(3)若在(x0, y0 ) 处 0, 称方程(1)在点 (x0, y0 ) 处为椭圆型方程。
例:波动方程 utt a2uxx f (x,t) a2 0 双曲型
热传导方程 ut a2uxx f (x,t) 0 抛物型
位势方程 uxx uyy f (x, y) 1
椭圆型
二、方程的标准形式
定义:方程
uxy A1ux B1uy C1u D1,
第1章 复数与复变函数数学物理方程

z平面
ω 平面
复变函数w =f(z)可以写成w =u(x,y)+iv(x,y), 其中z=x+iy
All Rights Reserved by CDUT.
复变函数论
第1章 复数与复变函数
几类基本初等函数 幂函数
n为正整数
z n n (cos i sin ) n n (cosn i sin n ) n e in
z1
z2 p
区域D连同它的边界一起构成闭区域,记为 D
All Rights Reserved by CDUT.
复变函数论
第1章 复数与复变函数
定义5:单连通域与多连通域
若在区域D内作任意闭合曲线,曲线所包围的所有点都属于D, 那么D称为单连通区域,否则,D称为复连通区域。 规定:若观察者沿边界线走时,区域总保持在观察者的左边, 那么观察者的走向为边界线的正向;反之,则称为边界线的 负向。
两个复数相乘等于 它们的模相乘,幅 角相加
All Rights Reserved by CDUT.
复变函数论
第1章 复数与复变函数
z1 x1 x2 y1 y2 x1 y2 x2 y1 i 2 2 2 2 z2 x2 y 2 x2 y 2 r1 cos(1 2 ) i sin(1 2 ) r2 r1 exp[i(1 2 )] r2
指数函数 e z e x cos y i sin y
e z e x , Arg e z y
z x iy
性质
周期性
y 0时, e z e x ; x 0时, eiy cosy isiny
exp(z i2 ) exp(z)
第1章 数学物理方程及定解问题

2
T
ρ
, f (x, t) =
F(x, t)
ρ
, 得 力 用 ,弦 动 程 外 作 下 振 方 为
一维非齐次波动方程
∂ 2 u( x , t ) ∂ 2 u( x , t ) − a2 = f ( x , t ). 2 2 ∂t ∂x
二维波动方程或膜振动方程
一块均匀的紧张的薄膜,离开静止水平位置作垂直 于水平位置的微小振动,其运动规律满足
2 ∂ 2u ∂ 2u 2∂ u = a 2 + 2 + f ( x, y , t ) 2 ∂t ∂y ∂x
在时刻t , 弦段[ x , x + ∆x ]的动量为 x + ∆x ∂u( x , t ) ∫x ρ ∂t dx;
x + ∆x x
在时刻t + ∆t , 弦段[ x , x + ∆x ]的动量为 x + ∆x ∂u( x , t + ∆t ) dx . ∫x ρ ∂t
∫
=∫
∂u( x , t + ∆ t ) ∂u( x , t ) − ρ dx . ∂t ∂t
第一节 波动方程及定解条件
1.一维波动方程或弦振动方程 一维波动方程或弦振动方程
物理模型
一长为 l 的柔软、均匀的细弦,拉紧以后,让它离 的柔软、均匀的细弦,拉紧以后, 开平衡位置在垂直于弦线的外力作用下作微小横振 求弦上个点的运动规律。 动,求弦上个点的运动规律。
张紧的、静止的弦是一直线,该直线是弦的 平衡位置,以此为 x 轴。振动总是传播到整 根弦,横振动就是弦中的质点离开平衡位置 的位移垂直于 x 轴, 可用 t 时刻弦上各质点 x 离开平衡位置的横向位移 u ( x, t ) 来描述弦的 状态, 某一时刻 u ( x, t ) 的分布代表弦的形状, 称为位形。由于弦中质点的位移不同导致弦 的形变,形变产生应力,为了便于应力的描 述,不妨假定所研究的弦为“柔软的”弦。
数学物理方程 第一章典型方程和定解条件
sin ' tan ' u(x dx,t)
x
则
T T'
u
M'
ds
T'
'
M
gds
T
x
x dx x
T
u(
x dx, x
t)
u ( x, x
t
)
gds
ma
T
u(x dx,t) x
u ( x, x
t)
gds
ma
m ds
其中:
a 2u(x,t) t 2
ds dx
T
u(x dx,t) x
微小: 振幅极小, 张力与水平方向的夹角很小。
u
M'
ds
T'
'
M
gds
T
x
x dx x
牛顿运动定律:
横向:T cos T 'cos ' 0
纵向:T sin T 'sin ' gds ma 其中: cos 1 2 4 1
2! 4!
cos ' 1
sin tan u(x,t)
数学物理方程与特殊函数
☆ 数学与物理的关系
数理不分家
☆ 数学物理方程: 用数学方程来描述一定的物理现象
数学物理方程(简称数理方程)是指自然科学和工程技术的各门 分支学科中出现的一些偏微分方程(有时也包括积分方程、微分方程等), 它们反映了物理量关于时间的导数和关于空间变量的导数 之间的制约关系。例如声学、流体力学、电磁学、量子力学等等 方面的基本方程都属于数学物理方程的研究对象。
• 如图,取杆长方向为x轴方向,垂直于杆长 方向的各截面均用平行位置x标记;在任一 时刻t,此截面相对于平衡位置的位移为u( x, t )
数学物理方程答案谷超豪
数学物理方程答案谷超豪数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。
定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。
仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程u ?x.u?2u?ux2?[l?(x??x)]∣x??x?g?[l?x]∣?gxx?x?t利用微分中值定理,消去?x,再令?x?0得2u??ug[(l?x)]。
x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程2222u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?y x,y,t有二阶连续偏导数。
且232u(t2?x2?y2)?tt35u(t2?x2?y2)2?3(t2?x2?y2)2?t22t(t2x2?y2)32(2t2?x2?y2)u(t2?x2?y2)?x32x2u?x2t?x22352?2222?22?y?3t?x?yx52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2y所以即得所证。
2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2 2u2?u?2?a2t?x?ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5?t2?x2?y22t2?2x2?y22u?x22u?y2t?x?225?y222t2x?y22t2.2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。
第一章----波动方程
总之:
无外力作用的一维弦振动方程:
2u t 2
a2
2u x2
0
外力作用下的弦振动方程:
(1.4)
2u t 2
a2
2u x2
f (x,t)
(1.5)
其中 a2 T , f F , f 称为非齐次项(自由项)。
注:弦振动方程也叫波动方程,因为它描述的是一种 振动或波动现象,后面将给出解释。
1973年布莱克(Black)和休尔斯(Scholes)建立了倒向 微分方程决定欧式期权的无套利价格:
f t
rS
f S
1 2S2
2
2 f S 2
rf
这里,对买入期权有 f (S,t) |tT max{ST X ,0} ;对卖出期权有
f (S,t) |tT max{X ST ,0} 。其中 r 为无风险利率, S 为股票价格,
一般步骤(从宇宙探星谈起): 1、将物理问题归结为数学上的定解问题; 2、求解定解问题; 3、对求得的解给出物理解释。
四、偏微分方程的研究内容-适定性的概念
1、存在性 2、唯一性 3、稳定性
如果一个定解问题的解是存在的、 唯一的,而且是稳定的,则称该定 解问题是适定的。
五、微分方程的重要作用
可以说有了微积分,就有了微分方程 (微积分是17世纪为了解决物理、力学、 天体问题而产生的,而这些问题多为数学 物理方程)。
1 (tan )2 dx 1 2 dx dx
(2)弦上各点的张力是常数
由于弦做横振动,弦沿 x 轴无运动,所以合力为零
T1 cos1 T2 cos2 T1 T2 T
数学物理方程 陈才生主编 课后习题答案 章
1.1 基本内容提要
1.1.1 用数学物理方程研究物理问题的步骤 (1) 导出或者写出定解问题,它包括方程和定解条件两部分; (2) 求解已经导出或者写出的定解问题; (3) 对求得的解讨论其适定性并且作适当的物理解释.
1.1.2 求解数学物理方程的方法 常见方法有行波法(又称D’Alembert解法)、分离变量法、积分变换法、Green函
q = −k∇u,
其中k 为热传导系数,负号表示热量的流向和温度梯度方向相反.写成分量的形式
qx = −kux, qy = −kuy, qz = −kuz.
(3) Newton冷却定律. 物体冷却时放出的热量−k∇u 与物体和外界的温度差 u 边 − u0 成正比, 其 中u0为周围介质的温度.
·2·
1 n
en2
t
sin nx
(n
1), 满足
ut = −uxx,
(x, t) ∈ R1 × (0, ∞),
u(x, 0) = 1 +
1 n
sin
nx,
x ∈ R1.
显然, 当n → +∞时supx∈R
un(x, 0) − 1
=
1 n
→
0.
但是, 当n → ∞时
sup
x∈R1 ,t>0
un(x, t) − 1
∂2u ∂t2
=
E ρx2
∂ ∂x
x2
∂u ∂x
.
(1.3.9)
解 均匀细圆锥杆做微小横振动,可应用Hooke定律,并且假设密度ρ是常数. 以u¯ 表 示 图1.1所 示[x, x + ∆x]小 段 的 质 心 位 移, 小 段 质 量 为ρS∆x, S是 细
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k为常数,记
k
c
a2
则得齐次热传导方程:
u t
a2
2u x 2
2u y2
2u z 2
信息工程学院
三维热传导方程
第一章 典型问题和定解条件的推导
1.1 基本方程的建立
若物体内部有热源 F(x,y,z,t), 则热传导方程为
u t
a
2
2u x2
2u y2
2u
z 2
f
x,
y, z,t
其中 f x, y, z,t F .
c
信息工程学院
第一章 典型问题和定解条件的推导
1.1 基本方程的建立
u
a2
(
2u
2u
2u )
0
t
x2 y2 z2
三维热传导方程
u t
a
2
(
2u x 2
长海峡中潮汐波的运动, 土壤力学中的渗透方程; ➢ Laplace方程 — 稳定的浓度分布, 静电场的
电位, 流体的势.
信息工程学院
第一章 典型问题和定解条件的推导
1.1 基本方程的建立
➢一维齐次波方程:
2u t 2
a2
2u x 2
0
➢一维齐次热方程:
u t
a2
2u x 2
➢非线性偏微分方程:不是线性的偏微分方程
例
yuxx 2xyuyy u 1 是二阶线性偏微分方程
ux
2
uy
2
1,
uux xu 0
是非线性偏微分方程
信息工程学院
第一章 典型问题和定解条件的推导
1.0 预备知识-基本概念
本课程的主要研究对象: n个自变量的二阶线性偏微分方程,一般形式为
➢从不同的物理模型出发,建立三类典型方程; ➢根据系统边界所处的物理条件和初始状态列 出定解条件; ➢提出相应的定解问题
信息工程学院
第一章 典型问题和定解条件的推导
1.1 基本方程的建立
1.1 基本方程的建立
导出数学物理方程的一般方法:
➢ 确定所研究的物理量; ➢ 建立适当的坐标系; ➢ 划出研究单元,根据物理定律和实验资料写出
➢姜礼尚等. 数学物理方程讲义. 高等教育出 版社,2007。
➢杨华军. 数学物理方法与计算机仿真,电子 工业出版社,2005。
信息工程学院
第一章 典型问题和定解条件的推导
第一章 典型方程和 定解条件的推导
1.0 预备知识-基本概念
1.0 预备知识-基本概念
课程内容:研究数学物理方程的建立、求 解方法和解的物理意义的分析。
2u y2
)
0
二维热传导方程
u t
a
2
(
x2u2 )
0
―维热传导方程
信息工程学院
第一章 典型问题和定解条件的推导
1.1 基本方程的建立
在上述热传导方程中, 描述空间坐标的独立变量
为 x, y, z , 所以它们又称为三维热传导方程. 当考
察的物体是均匀细杆时, 如果它的侧面绝热且在同
牛由令顿于d运x动 很定小0 律,取:极F限= m得·a
u
'
M’
T '( x dx)
M
gds
垂由作倾于略直微s角用是去i其n方积很在等重中向分小弧式力a的知t,段(g,2 力识T即1可M,)'为可TcTt得Mgot变sg知isT方n'上成t2u,2T程0'的Tu',在T(tx2ag水xxTu时2ct,'2gto=)平''刻,sx20u方2'2t,ttug2,g有d向+xdg近'0s的(似力d3udx)(得x为xT.2(xux)d(txx2,,xtt)) .
Q1
t2
t1
S
k
u n
dS
dt
高斯公式 t2
信息工程学院t1 V
x
kux
y
kuy
z
第一章
kuz dV dt 典型问题和定解条件的推导
第一章 典型方程和定解条件的推导
称为热传导方程的初值条件.
uuxy ux y
ux
2
uy
2
1
uxx uyy 0
都是偏微分方程,
偏微分方程: 未知函数为多元函数的微分方程
f x, y,L , u, ux , uy ,L , uxx , uxy ,L 0 (1)
信息工程学院
第一章 典型问题和定解条件的推导
1.0 预备知识-基本概念
流入热量使物体内温度变化,在时间间隔 [t1, t2]中物体 温度从u( x, y, z,t1) 变化到 u( x, y, z, t2 ) 所需吸收热量为
比热 密度
Q2 c u x, y, z,t2 u x, y, z,t1 dV
V
V
c
信息工程学院
第一章 典型问题和定解条件的推导
2.2 初始条件与边界条件
弦振动问题
初始位移、初始速度分别为 ( x), ( x) ,称 u t0 ( x), ut t0 ( x)
波动方程的初值条件.
(x) 0且 (x) 0 齐次初始条件.
热传导方程
u t0 ( x)
数学物理方程与特殊函数
中国地质大学(北京)
信息工程学院
赵俊芳
第一章 典型问题和定解条件的推导
主讲教师: 赵俊芳 Tel:82321774(教3-305)
信息工程学院
第一章 典型问题和定解条件的推导
参考书目
➢梁昆淼. 数学物理方法(第三版). 高等教 育出版社,1998。
➢王元明. 数学物理方程与特色函数. 东南大学 数学系,2004。
偏微分方程的阶: 方程中未知函数的偏导的最 高阶数
例: uxx uyy 0
是二阶偏微分方程
uxxy xuyy 3u 7 y 是三阶偏微分方程.
信息工程学院
第一章 典型问题和定解条件的推导
1.0 预备知识-基本概念
➢线性偏微分方程: 对于未知函数及其所有偏导 数来说都是线性的,且方程中的系数都仅依赖于 自变量(或者为常数)
t2 t1
u t
dt
dV
t2
t1
V
c
u t
dV
dt
由于所考察的物体内部没有热源, 根据能量守恒定律
可得 Q2 Q1 , 即
t2
t1
c
信息V工程学院
ut
x
kux
y
kuy
z
x+dx x
(2)
弦表波等振示动式动时现(方 间 象T2)程 ,,sinx可( 因表以而3示)T写又d1位'中xsi成称n置只u为。x'含由一|有xg于维ddx两s它波个们动u自xd描方s|变x述程2u量(的t。x2T,x是t和)utt弦t,(的T其1g振)中动t或
0
➢二维Laplace方程:
2u x 2
2u y2
0
信息工程学院
第一章 典型问题和定解条件的推导
2.2 初始条件与边界条件
2.2 初始条件与边界条件
一 . 初始条件及Cauchy问题
描述某系统或某过程初始状况的条件称为初始条件, 初值条件与对应方程加在一起构成初值问题 (或称 Cauchy问题)。
横振动,求在不同时刻弦线的形状(平衡位置与x 轴的正半轴重合,且一端与原点重合)
假设与结论:
u
(1)横振动 坐标系oxu,位移u(x,t)
T(x1) T(x2)
(2)微小振动
x1 x2
x
u x
2
1
信息工程学院
ds
1
u
2
dx
dx
x
第一章 典型问题和定解条件的推导
du d nu
F
x, u, L dx
, dxn
0
偏微分方程: 未知函数为多元函数的微分方程
f x, y,L , u, ux , uy ,L , uxx , uxy ,L 0 (1)
07:57
信息工程学院
第一章 典型问题和定解条件的推导
1.0 预备知识-基本概念
例如
该单元与邻近单元的相互作用,分析这种相互 作用在一个短时间内对所研究物理量的影响, 表达为数学式; ➢ 简化整理,得到方程。
信息工程学院
第一章 典型问题和定解条件的推导
1.1 基本方程的建立
例 1. 弦的微小横振动 设有一条长为l的均匀细弦,拉紧之后让它离
开平衡位置,在垂直于弦线的外力作用下作微小
kuz
dV dt 0
第一章 典型问题和定解条件的推导
1.1 基本方程的建立
由于时间 t1 ,t2 和区域 V 都是任意选取的,并且 被积函数连续, 于是得
c
u t
x
kux
y
kuy
z
kuz