化工原理课程设计最新版本
化工原理课程设计(修订版)

化工原理课程设计(修订版)第一章流程确定和说明第一章流程确定和说明1.1流程的确定和说明1.1.1加料方式-----高位槽进料加料方式有两种:高位槽加料和泵直接加料。
采用高位槽加料通过控制液位高度,可以得到稳定的流量和流速,通过重力加料,可以减少一笔动力费用,但是由于多了高位槽,建设费用相应增加。
采用泵直接加料,受泵的影响,流量不太稳定,流速也忽大忽小,从而影响了传质效率,但结构简单,安装方便。
如果采用自动控制泵的流量和流速,其控制原理复杂,且设备操作费用高,本设计采用高位槽进料。
1.1.2进料状况-----泡点进料进料状态与塔板数、塔径、回流量及塔的热负荷都有密切的联系。
在实际的生产中进料状态有多种,但一般都将料液预热到泡点或接近泡点才送入塔中,这主要是由于此时塔的操作比较容易控制,不致受季节气温的影响。
此外,在泡点进料时,精馏段与提馏段的塔径相同,为设计和制造上提供了方便。
对于沈阳地区来说,存在较大温差,综合分析,采用泡点进料。
1.1.3塔顶冷凝方式-----采用全凝器,使用水冷凝1.1.4回流方式------重力回流回流方式有重力回流和强制回流。
对于小型塔,一般安装在塔顶优点是无需支撑结构,缺点是控制较难。
如需较高的塔处理量或塔板数较多时,不适宜塔顶安装,且不易安装,检修和清理,此时可采用强制回流,塔顶上升蒸汽采用冷凝器以冷回流流入塔内。
本次设计采用重力回流。
沈阳化工大学化工原理课程设计1.1.5加热方式-----间接蒸汽加热蒸馏釜的加热方式通常采用间接蒸汽加热,设置再沸器。
有时也可采用直接蒸汽加热。
若塔底产物近于纯水,而且在浓度稀薄时溶液的相对挥发度较大(如酒精与水的混合液),便可采用直接蒸汽加热。
直接蒸汽加热的优点是:可以利用压力较低的蒸汽加热;在釜内只须安装鼓泡管,不须安置庞大的传热面。
这样,可节省一些操作费用和设备费用。
然而,直接蒸汽加热,由于蒸汽的不断通入,对塔底溶液起了稀释作用,在塔底易挥发物损失量相同的情况下,塔底残液中易挥发组分的浓度应较低,因而塔板数稍有增加。
化工原理操作课程设计

化工原理操作课程设计一、课程目标知识目标:1. 让学生掌握化工原理中基本操作原理,如流体流动、热量传递和质量传递等;2. 使学生了解化工设备的基本构造、性能及操作方法;3. 帮助学生理解化工过程中常见的单元操作及其在实际工程中的应用。
技能目标:1. 培养学生运用化工原理解决实际问题的能力,能进行简单的工艺计算;2. 提高学生动手操作能力,能正确使用化工设备进行实验操作;3. 培养学生团队协作能力,能在小组讨论中发表见解,共同完成实验任务。
情感态度价值观目标:1. 激发学生对化工原理学科的兴趣,培养其探索精神和创新意识;2. 培养学生严谨、细致的科学态度,使其注重实验安全,遵循实验规程;3. 引导学生关注化工行业的发展,认识到化工技术在实际生活中的应用,培养其社会责任感。
本课程针对高年级学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。
在后续的教学设计和评估中,注重理论知识与实践操作的紧密结合,以提高学生的综合素质和工程实践能力。
二、教学内容本课程教学内容主要包括以下几部分:1. 化工原理基本概念:流体流动、热量传递、质量传递等基本原理的学习,涉及教材第一章内容。
2. 化工设备与工艺:介绍常见化工设备构造、性能及操作方法,包括泵、压缩机、换热器等,涉及教材第二章内容。
3. 单元操作:学习精馏、吸收、萃取、干燥等典型化工单元操作,分析各操作在实际工程中的应用,涉及教材第三章至第六章内容。
4. 化工工艺计算:培养学生运用化工原理解决实际问题的能力,进行简单的工艺计算,涉及教材第七章内容。
5. 实验操作:组织学生进行化工原理实验,锻炼动手操作能力,涉及教材实验部分内容。
教学内容安排和进度如下:1. 第1-4周:学习化工原理基本概念;2. 第5-8周:了解化工设备与工艺;3. 第9-12周:研究单元操作;4. 第13-16周:进行化工工艺计算;5. 第17-20周:实验操作及总结。
教学内容注重科学性和系统性,结合教材章节,确保学生能够循序渐进地掌握化工原理及操作知识。
化工原理课程设计

化工原理课程设计一、教学目标本节课的教学目标是使学生掌握化工原理的基本概念、基本理论和基本方法,包括流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等,培养学生分析和解决化工问题的能力。
1.掌握流体的密度、粘度、热导率等物理性质。
2.理解流体力学的基本方程,包括连续方程、动量方程和能量方程。
3.掌握流体流动和压力降的基本理论,包括层流和湍流、管道流动和开放流动等。
4.理解气液平衡的基本原理,包括相图、相律和相变换等。
5.掌握传质过程的基本方法,包括扩散、对流传质和膜传质等。
6.能够运用流体力学基本方程分析流体流动问题。
7.能够计算流体流动和压力降的基本参数,如流速、压力降等。
8.能够分析气液平衡问题,确定相态和相组成。
9.能够运用传质过程的基本方法分析和解决化工问题。
情感态度价值观目标:1.培养学生对化工原理学科的兴趣和热情。
2.培养学生严谨的科学态度和良好的职业道德。
3.培养学生团队协作和自主学习的意识。
二、教学内容本节课的教学内容主要包括流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等。
1.流体的物理性质:包括密度、粘度、热导率等,通过实例讲解其测量方法和应用。
2.流体力学基本方程:讲解连续方程、动量方程和能量方程,并通过实例分析其应用。
3.流动和压力降:讲解层流和湍流的特性,分析管道流动和开放流动的压力降计算方法。
4.气液平衡:讲解相图、相律和相变换的基本原理,并通过实例分析气液平衡问题。
5.传质过程:讲解扩散、对流传质和膜传质的基本方法,并通过实例分析传质问题的解决方法。
三、教学方法本节课采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:用于讲解流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等基本概念和理论。
2.讨论法:通过小组讨论,引导学生主动思考和分析化工问题,提高学生的分析和解决问题的能力。
3.案例分析法:通过分析实际化工案例,使学生更好地理解和应用化工原理,培养学生的实际操作能力。
化工原理课程设计第三版课程设计

化工原理课程设计第三版课程设计1. 概述本次课程设计旨在通过实际操作和分析,让学生深入了解化工原理的核心概念和应用技能。
在设计中,学生们将探索化工分离过程的原理、工艺流程设计以及设备的选择和优化等方面的知识。
2. 实验目的本课程设计旨在培养学生以下方面的能力:1.理解化工分离过程的基本原理和特点;2.掌握工艺流程设计和设备选择与优化的方法;3.培养实际操作和分析的能力,并通过设计和分析来掌握化工原理的应用技能。
3. 实验设备•微型蒸馏装置•真空干燥器•震荡器•多层螺旋板塔•分离漏斗•等温滴定计•气相色谱分析仪4. 实验内容4.1 实验1:蒸馏分离乙醇和水4.1.1 实验目的通过蒸馏操作分离出乙醇和水,并对蒸馏过程进行分析和优化,掌握蒸馏分离的基本原理和操作技能。
4.1.2 实验步骤1.分别称取50mL乙醇和水混合溶液,加入微型蒸馏装置中;2.开启蒸馏设备,调整冷却水温度和采样速率;3.收集蒸馏出的乙醇和水,分别测定其含量和纯度,记录数据;4.对蒸馏过程进行分析和优化,根据实验数据推算出最优的蒸馏条件。
4.1.3 实验结果在此处列出实验数据及分析结果。
4.2 实验2:干燥和筛分分离颗粒4.2.1 实验目的通过干燥和筛分操作分离出颗粒,并对操作过程进行分析和优化,掌握干燥和筛分的基本原理和操作技能。
4.2.2 实验步骤1.将颗粒放入真空干燥器内,开启干燥器并设定温度和干燥时间;2.在震荡器内加入干燥后的颗粒,进行筛分操作;3.对干燥和筛分过程进行分析和优化,根据实验数据推算出最优的操作条件。
4.2.3 实验结果在此处列出实验数据及分析结果。
4.3 实验3:多层螺旋板塔分离气体混合物4.3.1 实验目的通过在多层螺旋板塔内对气体混合物进行分离操作,分析其分离机理和选择最优的工艺条件。
4.3.2 实验步骤1.将混合气体通过多层螺旋板塔,进行分离处理;2.对分离后的气体进行收集和测量,记录数据;3.对分离过程进行分析和优化,选择最优的工艺条件。
化工原理课程设计最新版本

2. 确定操作回流比R 由Fenske方程计算最小理论板数Nmin
lg
xD
1xw
Nmin
1xD xw
lgm
4.9
利用吉利兰关联图(化原P200) ,计算NT ~ R如下表3:
R 0.863 0.988 1.140 1.292 1.444 1.520
化工原理课程设计
-板式精馏塔设计-
塔顶气相
进料
回流液
塔底液相
-常州大学石油化工学院-基础化工部-
常压分离环己醇–苯酚连续操作
筛板精馏塔工艺设计任务书
基础设计数据: 1. 处理能力:50000 t/a(年工作按8000小时计) 2. 进料组成:环己醇30%,苯酚70%(mol%,下同) 3. 进料状态:泡点进料 4. 产品要求:塔顶馏出液组成:环己醇98%,苯酚2%
ET0.49m 'L0.2450.495.320.30.2450.44
L xfi Li
ET
NT (不包括再沸器) N实
NF,实
N精 ET
1
.
表4 塔板数求取小结
回流比R 理论板数 板效率 实际板数 理论加料位置 实际加料位置
4. 塔板结构设计
包括板间距的初估,塔径的计算,塔板溢流 形式的确定,板上清液高度、堰长、堰高的初 估与计算,降液管的选型及系列参数的计算, 塔板布置和筛板的筛孔和开孔率,最后是水力 学校核和负荷性能图。
➢注意事项: 写出详细计算步骤,并注明选用数据的来源 每项设计结束后,列出计算结果明细表 设计说明书要求字迹工整,装订成册上交
计算说明书目录
1. 设计任务书 2. 带控制点工艺流程图与工艺说明 3. 精馏塔工艺计算 4. 塔板结构设计 5. 精馏塔工艺条件图 6. 换热器的选型 7. 符号说明 8. 结束语 9. 参考文献 10.附录
化工原理知识课程设计

化工原理知识课程设计一、课程目标知识目标:1. 让学生掌握化工原理的基本概念,如流体力学、热力学、传质和反应工程等;2. 引导学生了解化工过程中常见单元操作及其原理,如蒸馏、吸收、萃取等;3. 帮助学生理解化学工程在国民经济发展中的作用,培养他们对化工行业的兴趣。
技能目标:1. 培养学生运用化工原理分析和解决实际问题的能力;2. 提高学生运用数学和物理知识解决化工过程中相关问题的能力;3. 培养学生查阅化工文献、资料,了解化工行业发展趋势的能力。
情感态度价值观目标:1. 培养学生热爱化工专业,树立为化工事业贡献力量的信念;2. 增强学生的环保意识,让他们认识到化学工程在环境保护中的责任和使命;3. 培养学生的团队协作精神,提高他们在实际工作中的沟通与协作能力。
课程性质:本课程为专业基础课,旨在为学生奠定扎实的化工原理知识基础,为后续专业课程学习打下坚实基础。
学生特点:学生处于高中阶段,具有一定的数学、物理和化学基础,思维活跃,求知欲强。
教学要求:结合学生特点,注重理论与实践相结合,提高学生运用知识解决实际问题的能力。
在教学过程中,关注学生的情感态度价值观培养,激发他们的学习兴趣和责任感。
通过具体的学习成果分解,使教学设计和评估更具针对性。
二、教学内容1. 流体力学基础:流体静力学、流体动力学、流体阻力、流体输送设备原理及计算;2. 热力学基础:热力学第一定律、热力学第二定律、热力学循环、热量传递方式及设备;3. 传质过程:质量传递原理、分子扩散、对流传质、传质设备及应用;4. 反应工程基础:化学反应动力学、反应器设计、反应条件优化;5. 单元操作:蒸馏、吸收、萃取、吸附、离子交换等操作原理及设备;6. 化工工艺:典型化工工艺流程分析、工艺参数优化、设备选型及操作;7. 化工设备:常见化工设备结构、原理、材料及强度计算;8. 化工安全与环保:化工生产过程中的安全措施、环境保护及三废处理。
教学内容安排和进度:第一周:流体力学基础;第二周:热力学基础;第三周:传质过程;第四周:反应工程基础;第五周:单元操作(蒸馏、吸收);第六周:单元操作(萃取、吸附);第七周:化工工艺;第八周:化工设备;第九周:化工安全与环保。
化工原理课程设计完整版

化工原理课程设计完整版一、教学目标本课程旨在让学生掌握化工原理的基本概念、理论和方法,了解化工生产的基本过程和设备,培养学生运用化工原理解决实际问题的能力。
具体目标如下:1.知识目标:(1)理解化工原理的基本概念和原理;(2)熟悉化工生产的基本过程和设备;(3)掌握化工计算方法和技能。
2.技能目标:(1)能够运用化工原理解决实际问题;(2)具备化工过程设计和优化能力;(3)学会使用化工设备和仪器进行实验和调试。
3.情感态度价值观目标:(1)培养学生的团队合作意识和沟通能力;(2)增强学生对化工行业的认识和兴趣;(3)培养学生对科学研究的热爱和责任感。
二、教学内容本课程的教学内容主要包括以下几个方面:1.化工原理基本概念和原理:包括溶液、蒸馏、吸收、萃取、离子交换等基本操作原理和方法。
2.化工生产过程和设备:包括反应器、换热器、蒸发器、膜分离设备等的基本结构和原理。
3.化工计算方法:包括物料平衡、热量平衡、质量平衡等计算方法。
具体教学大纲安排如下:第1-2周:化工原理基本概念和原理;第3-4周:化工生产过程和设备;第5-6周:化工计算方法。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性:1.讲授法:讲解基本概念、原理和方法,引导学生理解和掌握;2.案例分析法:分析实际案例,让学生学会运用化工原理解决实际问题;3.实验法:进行实验操作,培养学生的实践能力和实验技能;4.小组讨论法:分组讨论,培养学生的团队合作意识和沟通能力。
四、教学资源本课程的教学资源包括:1.教材:《化工原理》;2.参考书:相关化工原理的教材和学术著作;3.多媒体资料:教学PPT、视频、动画等;4.实验设备:反应器、换热器、蒸发器、膜分离设备等。
以上教学资源将用于支持教学内容和教学方法的实施,丰富学生的学习体验。
五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面客观地评价学生的学习成果。
1.平时表现:通过课堂参与、提问、小组讨论等形式的评估,考察学生的学习态度和理解能力。
化工原理课程设计柴诚敬

化工原理课程设计 柴诚敬一、课程目标知识目标:1. 理解并掌握化工原理的基本概念,如流体力学、热力学、传质与传热等;2. 学会运用化学工程的基本原理分析典型化工过程中的现象与问题;3. 掌握化工流程设计的基本方法和步骤,能结合实际案例进行流程分析与优化。
技能目标:1. 能够运用数学工具解决化工过程中的计算问题,如物料平衡、能量平衡等;2. 培养学生运用实验、图表、模拟等方法对化工过程进行研究和评价的能力;3. 培养学生团队协作、沟通表达及解决实际问题的能力。
情感态度价值观目标:1. 培养学生对化工原理学科的兴趣和热爱,激发学习积极性;2. 增强学生的环保意识,使其认识到化工过程对环境的影响及责任感;3. 培养学生严谨、求实的科学态度,提高其创新意识和实践能力。
本课程针对高年级学生,结合化工原理课程性质,注重理论与实践相结合,旨在培养学生运用基本原理解决实际问题的能力。
教学要求以学生为中心,注重启发式教学,激发学生的主动性和创造性。
课程目标分解为具体学习成果,以便于后续教学设计和评估。
通过本课程的学习,使学生能够全面掌握化工原理知识,为未来从事化工领域工作打下坚实基础。
二、教学内容本章节教学内容主要包括:1. 化工流体力学基础:流体静力学、流体动力学、流体阻力与流动形态等;参考教材第二章:流体力学基础。
2. 热力学原理及应用:热力学第一定律、第二定律,以及理想气体、实际气体的热力学性质;参考教材第三章:热力学原理及其在化工中的应用。
3. 传质与传热过程:质量传递、热量传递的基本原理,以及相应的传递速率计算;参考教材第四章:传质与传热。
4. 化工过程模拟与优化:介绍化工过程模拟的基本方法,如流程模拟、动态模拟等,以及优化策略;参考教材第五章:化工过程模拟与优化。
5. 典型化工单元操作:分析各类单元操作的基本原理及设备选型,如反应器、塔器、换热器等;参考教材第六章:典型化工单元操作。
教学大纲安排如下:第一周:化工流体力学基础;第二周:热力学原理及应用;第三周:传质与传热过程;第四周:化工过程模拟与优化;第五周:典型化工单元操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算说明书目录
1. 设计任务书 2. 带控制点工艺流程图与工艺说明 3. 精馏塔工艺计算 4. 塔板结构设计 5. 精馏塔工艺条件图 6. 换热器的选型 7. 符号说明 8. 结束语 9. 参考文献 10.附录
塔釜釜残液组成:环己醇1%,苯酚99% 5. 塔顶压强:760 mmHg(绝压) 6. 公用工程:循环冷却水:进口温度32℃,出口温度38℃
导热油:进口温度260℃,出口温度250℃
总体要求: 绘制带控制点工艺流程图,完成精馏塔工艺设计以
及有关附属设备的计算与选型。绘制塔板结构简图,编 制设计说明书。
塔板间距和塔径的经验关系(化原下册P129)
NT 14.7 11.8 10.7 9.9 9.3
9.0
绘制NT ~ R关系图,找出最佳回流比。
(一般R取1.2~2Rmin,曲线不太陡的位置)
说明:R取(1.0、1.2、1.4、1.6、 1.8、2.0)Rmin 6 个点
3. 图解法求理论板数及加料板位置
在y-x图上,利用图解法求得NT,加料板位置nT
1. 精馏塔工艺设计内容:全塔物料恒算、确定回流比 ;确定塔径、实际板数及加料板位置。
2. 精馏塔塔板工艺设计内容:塔板结构设计、流体力 学计算、负荷性能图、工艺尺寸装配图。
3. 换热器设计:确定冷热流体流动方式以及换热器结 构,进行换热器的热负荷计算,根据换热面积初选换热 器;
课程设计的要求
❖带控制点工艺流程图用A3图纸画 ❖塔工艺条件图(带管口)用A3纸画 ❖其余工艺设计图用坐标纸
化工原理课程设计
-板式精馏塔设计-
塔顶气相
进料
回流液
塔底液相
-常州大学石油化工学院-基础化工部-
常压分离环己醇–苯酚连续操作
筛板精馏塔工艺设计任务书
基础设计数据: 1. 处理能力:50000 t/a(年工作按8000小时计) 2. 进料组成:环己醇30%,苯酚70%(mol%,下同) 3. 进料状态:泡点进料 4. 产品要求:塔顶馏出液组成:环己醇98%,苯酚2%
Rmi n xyD e xyee0 0..6 9 8 8 0.07 6.380 7 0.76
2. 确定操作回流比R 由Fenske方程计算最小理论板数Nmin
lg
xDLeabharlann 1xwNmin 1xD xw
lgm
4.9
利用吉利兰关联图(化原P200) ,计算NT ~ R如下表3:
R 0.863 0.988 1.140 1.292 1.444 1.520
筛板塔板 塔板上开圆孔,孔径:3 - 8 mm,大孔径筛板:12 - 25 mm。
lw
WD 优点:结构简单、造价低、塔板阻力小。
目前,广泛应用的一种塔型。
4.1 设计参数的计算(以塔顶第一块板为依据):
(参见《化工原理课程设计》P147-149)
液相密度 L = 950 kg / m3(化原p319有机液体相对密度图) 气相密度 V = PM/ RT = 2.92 kg / m3 液相表面张力 = 32 dyn /cm(化原p321有机液体表面张力
常压分离环己醇―苯酚连续操作 筛板精馏塔设计计算示例
1. 设计任务书 按要求填入处理量和进料组成
2. 带控制点工艺流程图与工艺说明 (1)带控制点工艺流程图(参考课程设计P14图1-3) (2)操作压力的选择 (3)加料状态的选择 (4)工艺流程叙述
3. 精馏塔工艺计算
3.1 相平衡关系
利用安托因方程计算(参考化原P184): log P°=A – B/ (t+C) 列出数据表1,在表后写出计算示例。
y-x图为20*20cm
.
3.3 全塔物料衡算 (化原设计p146)
料液平均分子量:Mm = 0.3×100 + 0.7×94 = 95.8 进料流量:F = 50000×103 /8000×95.8 = 65.24 kmol/h
F=D+W FxF = DxD + Wxw
D=19.5 kmol/h W=45.74 kmol/h
表1 苯-甲苯常压相平衡数据
t/0C PA°/kPa PB°/kPa xA yA α
80.1
81
…
110.6
i
yi xi
1 xi 1 yi
1 n
i
对于环己醇-苯酚体系:
m
1 39
i
说明:平均相对挥发度为 5.62
3.2 绘制t-x(y)图及y-x图 在坐标纸上绘图,大小要求t-x(y)图为10*10cm,
表2 物料衡算表
项目
数据
进料流量F,kmol/h 塔顶产品流量D, kmol/h 塔釜残液流量W, kmol/h 进料组成,xF(摩尔分数) 塔顶产品组成,xD(摩尔分数) 塔釜残液组成,xW(摩尔分数)
3.4 实际板数及进料位置的确定
1. 确定最小回流比Rmin q=1, xe=xF ye=f(xe) 由y~x图得出
ET0.49m 'L0.2450.495.320.30.2450.44
L xfi Li
ET
NT (不包括再沸器) N实
NF,实
N精 ET
1
.
表4 塔板数求取小结
回流比R 理论板数 板效率 实际板数 理论加料位置 实际加料位置
4. 塔板结构设计
包括板间距的初估,塔径的计算,塔板溢流 形式的确定,板上清液高度、堰长、堰高的初 估与计算,降液管的选型及系列参数的计算, 塔板布置和筛板的筛孔和开孔率,最后是水力 学校核和负荷性能图。
4.实际板数及加料板位置的确定
由t-x(y)图查tD、tW 、 tF (其中tD查露点线, 因为xD= y1 ; tW查泡点线; tF查泡点线)
t tD tW 2
由此平均温度查表得液体粘度μi和α
由此平均温度查t-x(y)图得进料的xi
全塔效率由奥康奈尔O’connell关联式计算: (化原p212图5-38或化原下P118 图10-20)
)
气相流量VS = (R+1) DM /3600 V=0.408 m3/s 液相流量LS = RDM / 3600 L =0.000684 m3/s
4.2 初估塔径
取板间距HT = 350 mm(化原设计p103),板上液层厚度hL= 0.07 m (化原设计p104) ,则HT -hL= 0.28m。