高考物理出题方式及解答技巧之复合场
带电粒子在复合场中的运动解题技巧

带电粒子在复合场中的运动解题技巧带电粒子在电场力作用下的运动和在洛伦兹力作用下的运动,有着不同的运动规律。
带电粒子在复合场中的运动是高考的重点考点,那么掌握答题技巧是关键。
接下来店铺为你整理了带电粒子在复合场中的运动解题技巧,一起来看看吧。
带电粒子在复合场中的运动解题技巧:分离的电场与磁场带电粒子在电场中的加速运动可以利用牛顿第二定律结合匀变速直线运动规律,或者从电场力做功角度出发求出粒子进入下一个场的速度。
对于带电粒子在电场中的偏转,要利用类平抛运动的规律,根据运动的合成与分解,结合牛顿定律和能量关系,求出粒子进入下一个场的速度大小,再结合速度合成与分解之间的关系,速度偏转角正切值与位移偏转角正切值的关系求出速度方向。
带电粒子垂直进入匀强磁场,其运动情况一般是匀速圆周运动的一部分,解决粒子在磁场中的运动情况,关键是确定粒子飞入点和飞出点的位置以及速度方向,再利用几何关系确定圆心和半径。
值得注意的是,若带电粒子从磁场中某个位置飞出后,再经电场的作用在同一个位置以相同的速度大小再次飞入磁场中时,由于飞出和飞入速度方向相反,洛伦兹力的方向相反,粒子两次在磁场中的运动轨迹并不重合!需要强调的是,带电粒子从一个场进入另外一个场,两场之间的连接点是这类问题的中枢,其速度是粒子在前一个场的某速度,是后一个场的初速度,再解决问题时要充分利用这个位置信息。
带电粒子在复合场中的运动解题技巧:多场并存的无约束运动多场并存的无约束运动在解决复合场问题时应首先弄清楚是哪些场共存,注意电场和磁场的方向以及强弱,以便确定带电粒子在场中的受力情况。
带电粒子在复合场中运动时如果没有受到绳子,杆,环等的约束,则带电粒子在空间中可以自由移动,只受场力的作用。
根据空间存在的场的不同,一般带电粒子的运动规律不同,通常可以分为以下几类:1、静止或匀速直线运动如果是重力场与电场共存,说明电场力等于重力。
如果是重力场与磁场共存,说明重力与洛伦兹力平衡。
高考物理复合领域知识点总结

高考物理复合领域知识点总结高考物理复合场的知识归纳复合场是指重力场、电场和磁场或其中两种共存。
配送模式或同一区域同时存在,或存在子区域。
复合场是高中物理中力学和电磁学综合问题的高度集中。
既体现了运动情况反映受力情况、受力情况决定运动情况的思想,又能考查电磁学中的xx知识。
因此,这类问题近年来备受青睐。
从上表可以看出,复合场因其综合性强,覆盖众多考点,有望继续成为20xx 高考(微博)的热点。
如何回答复合字段的问题:复合场可以直接以图形形式给出,也可以结合各种仪器(质谱仪、回旋加速器、速度选择器等)给出。
).首先,引力场、电场和磁场存在于不同的区域(如质谱仪和回旋加速器)这种解题方法要求掌握平抛运动、类平抛运动和圆周运动的基本公式和解法。
重力场:平抛运动电场:1。
动能定理2。
准平抛运动或动能定理。
磁场:圆周运动第二,重力场、电场和磁场存在于同一区域(如速度选择器)带电粒子在复合场中做什么取决于带电粒子的合力和初速度。
因此,将带电粒子的运动和力结合起来是解决这类问题的关键。
(1)如果带电粒子在复合场中作匀速直线运动,则应根据平衡条件来解决问题,如速度选择器。
有Eq=qVB(2)当带电粒子在复合场中循环运动时,那么Eq=mgqVB=mv2/R(2009天津第十题)如图,直角坐标系xOy位于垂直面,水平X轴下方有均匀磁场和均匀电场。
磁场的磁感应强度为B,方向垂直于xOy平面且向内,电场线平行于Y轴。
一个质量为M、电荷为Q的带正电的球,从Y轴上的A点水平向右抛,通过X轴上的M点进入电场和磁场,刚好可以做匀速圆周运动,第一次离开X轴上N点的电场和磁场,Mns之间的距离为L,球通过M点的速度方向与X轴方向的夹角为。
不考虑空气阻力,重力加速度是g,求(1)电场强度e的大小和方向;(2)从A点抛球时的初速度v0的大小;(3)从A点到X轴的高度h。
分析:本题考查平抛运动和起电。
球在复合场地的运动。
球平抛,然后做圆周运动。
高考物理带电粒子在复合场中的运动解题技巧讲解及练习题

一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUmB =,2(1,2,3,,1)n k =-(3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
重难点08 带电粒子在复合场中的运动(解析版)

2022年高考物理【热点·重点·难点】专练(全国通用)重难点08 带电粒子在复合场中的运动【知识梳理】考点带电粒子在组合场中的运动1.带电粒子在组合场中的运动是力电综合的重点和高考热点.这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场等.其运动形式包含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动等,涉及牛顿运动定律、功能关系等知识的应用.复习指导:1.理解掌握带电粒子的电偏转和磁偏转的条件、运动性质,会应用牛顿运动定律进行分析研究,掌握研究带电粒子的电偏转和磁偏转的方法,能够熟练处理类平抛运动和圆周运动.2.学会按照时间先后或空间先后顺序对运动进行分析,分析运动速度的承前启后关联、空间位置的距离关系、运动时间的分配组合等信息将各个运动联系起来.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要进行正确的受力分析,确定带电粒子的运动状态.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键【重点归纳】1、求解带电粒子在组合复合场中运动问题的分析方法(1)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(2)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理.(4)画出粒子运动轨迹,灵活选择不同的运动规律.2、带电粒子在复合场中运动的应用实例(1)质谱仪(2)回旋加速器(3)速度选择器(4)磁流体发电机(5)电磁流量计工作原理【限时检测】(建议用时:30分钟)一、单选题1.如图所示,两个平行金属板水平放置,要使一个电荷量为-q、质量为m的微粒,以速度v沿两板中心轴线S1S2向右运动,可在两板间施加匀强电场或匀强磁场。
设电场强度为E,磁感应强度为B,不计空气阻力,已知重力加速度为g。
下列选项可行的是()A.只施加垂直向里的磁场,且满足mg Bqv =B.同时施加竖直向下的电场和垂直纸面向里的磁场,且满足mg Bv Eq=+C.同时施加竖直向下的电场和水平向右的磁场,且满足mgq E=D.同时施加竖直向上的电场和垂直纸面向外的磁场,且满足mg E Bvq =+【答案】 C【解析】A.只施加垂直向里的磁场,根据左手定则,洛伦兹力竖直向下,无法跟重力平衡。
高考物理带电粒子在复合场中的运动解题技巧及练习题含解析

一、带电粒子在复合场中的运动专项训练1.如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v c ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)【解析】 【分析】 【详解】小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B=(2)从A 到C 根据动能定理:2102f mgh W mv -=- 解得:2212f E W mgh m B=-(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212x at =从D 到P ,根据动能定理:150a a +=,其中2114mv 联立解得:()22222()P Dmg qE v t v m+=+ 【点睛】解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.2.如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场. 图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l 的相同平行金属板构成,极板长度为l 、间距为d,两对极板间偏转电压大小相等、电场方向相反. 质量为m 、电荷量为+q 的粒子经加速电压U0 加速后,水平射入偏转电压为U1 的平移器,最终从A 点水平射入待测区域. 不考虑粒子受到的重力.(1)求粒子射出平移器时的速度大小v1;(2)当加速电压变为4U0 时,欲使粒子仍从A 点射入待测区域,求此时的偏转电压U; (3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F. 现取水平向右为x 轴正方向,建立如图所示的直角坐标系Oxyz. 保持加速电压为U0 不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示.请推测该区域中电场强度和磁感应强度的大小及可能的方向. 【来源】2012年普通高等学校招生全国统一考试理综物理(江苏卷) 【答案】(1)012qU v m=1U?4U = (3)E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°,若B 沿-x 轴方向,E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°. 【解析】(1)设粒子射出加速器的速度为0v 动能定理20012qU mv =由题意得10v v =,即012qU v m=(2)在第一个偏转电场中,设粒子的运动时间为t 加速度的大小1qU a md=在离开时,竖直分速度yv at = 竖直位移2112y at =水平位移1l v t = 粒子在两偏转电场间做匀速直线运动,经历时间也为t 竖直位移2y y v t =由题意知,粒子竖直总位移12y?2y y =+ 解得210U l y U d=则当加速电压为04U 时,1U?4U =(3)(a)由沿x 轴方向射入时的受力情况可知:B 平行于x 轴. 且FE q= (b)由沿y +-轴方向射入时的受力情况可知:E 与Oxy 平面平行.222F f (5F)+=,则f?2F =且1f?qv B =解得02F mB BqU =(c)设电场方向与x 轴方向夹角为.若B 沿x 轴方向,由沿z 轴方向射入时的受力情况得222sin )(cos )(7)f F F F αα++=( 解得=30°,或=150°即E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°. 同理,若B 沿-x 轴方向E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°.3.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
高考物理一轮复习:创新题拔高练:考点6 复合场

创新题拔高练 考点6 复合场【答题模板】 复合场问题①明确场的分布:通过审题,明确复合场中除了磁场外还有哪些场,这些场方向如何,是否有边界,是否随时间变化,是组合场还是叠加场等情况②分析粒子的运动:分析粒子受力,结合粒子的初速度确定粒子的运动形式,画出粒子运动轨迹示意图,确定图中必要的几何关系。
注意:粒子的电性、磁场方向未知时是否会引起多解;场的边界、场随时间的周期性变化是否会引起粒子在空间上的周期性运动;多阶段运动中前一阶段的末速度是后一阶段的初速度等。
③方程分析求解:根据粒子运动性质及运动过程所遵从的规律方程,联立几何关系分析求解待求问题 【拔高训练】1.如图所示为质谱仪的结构图,该质谱仪由速度选择器与偏转磁场两部分组成,已知速度选择器中的磁感应强度大小为0B 、电场强度大小为E ,荧光屏PQ 下方匀强磁场的方向垂直纸面向外,磁感应强度大小为02B 。
三个带电荷量均为q 、质量不同的粒子沿竖直方向经速度选择器由荧光屏上的狭缝O 进入偏转磁场,最终打在荧光屏上的123S S S 、、,相对应的三个粒子的质量分别为123m m m 、、(粒子的质量均未知),忽略粒子的重力以及粒子间的相互作用。
则下列说法正确的是( )A.如果M 板带正电,则速度选择器中磁场方向垂直纸面向里B.打在3S 位置的粒子速度最大C.打在1S 位置的粒子质量最大D.如果13S S x =∆,则2031qB xm m E⋅∆-=2.有一束粒子流中有α粒子、β粒子,沿直线经过正交的电场、磁场后,从平行板电容器的中间以速度v 射入极板,若α粒子刚好从极板边缘射出,如图所示,β粒子轨迹未画出,不计粒子重力,以下说法正确的是( )A.α粒子比β粒子的比荷大B.β粒子也打在平行板电容器下极板上C.β粒子能穿过平行板电容器D.β粒子在平行板电容器中运动的时间小于L v3.光滑水平面上有两个相邻互不影响的有界匀强磁场Ⅰ、Ⅱ,磁场方向为垂直纸面,两磁场的磁感应强度大小相等方向相反,如图所示,磁场宽度均为0.18m L =,有一边长也为L 的正方形闭合线框,从磁场外以速度02m /s v =进入磁场,当线框ab 边进入磁场I 时施加向右的水平恒力2N F =,ab 边进入磁场I 过程线框做匀速运动,进入磁场Ⅱ区域某位置后线框又做匀速运动,已知线框的质量0.2kg m =,以下说法正确的是( )A.线框ab 边刚进入磁场Ⅱ时加速度大小为210m/sB.线框第二次匀速运动的速度大小为0.5 m/sC.线框ab 边在磁场Ⅰ、Ⅱ中运动时间为0.3 sD.线框ab 边在磁场Ⅰ、Ⅱ中运动时整个线框产生的内能为0.375 J4.如图所示,第I 象限存在垂直于平面向外的磁感应强度为B 的匀强磁场,第Ⅲ象限存在沿y 轴正方向的匀强电场,已知P 点坐标为2,3L L ⎛⎫-- ⎪⎝⎭.一个质量为m ,电荷量为q 的带电粒子以03v 的速度从P 点沿x 轴正方向射出,恰好从坐标原点O 进入匀强磁场中,不计粒子的重力,以下说法正确的是( )A.电场强度243mv E qL=B.带电粒子到达O 点时的速度大小05v v =C.粒子射出磁场位置到O 点的距离08mv d qB =D.在磁场中带电粒子运动的时间53π90mt qB= 5.如图所示,区域I 和区域Ⅱ是宽度相同的匀强磁场,区域I 内磁场的磁感应强度大小为2B,方向垂直纸面向里,区域Ⅱ内磁场的磁感应强度大小为B ,方向垂直纸面向外。
高中物理模型法解题——复合场

高中物理模型法解题———复合场模型【模型概述】1、粒子速度选择器:只选速度,不选电性。
即不管是带正电还是带负电,只要初速度满足一定的关系,粒子均能沿直线飞出。
如图,粒子以速度v0,进入正交的电场和磁场,受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中出去,根据qv0B=qE,得v0=E/B,故若v= v0=E/B,粒子做直线运动,与粒子电量、电性、质量无关若v<E/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.若v>E/B,洛伦兹力大,粒子向磁场力方向偏,电场力做负功,动能减少.2、质谱仪:组成:离子源O,加速场U,速度选择器(E,B),偏转场B2,胶片.作用:主要用于测量粒子的质量、比荷、研究同位素.(1)加速场中qU=½mv2(2)选择器中:v=E/B1(3)偏转场中:d=2r,qvB2=mv2/r比荷:122q E m B B d =质量122B B dqm E =3、回旋加速器:(1)回旋加速器的构造:两个D 形金属盒,粒子源,半径为R D ,大型电磁铁,高频振荡交变电压U .(2)用途:回旋加速器是产生大量高能量的带电粒子的实验设备. (3 ) 原理:a.电场加速:221mv qU =b.磁场约束偏转:r mv BqV 2=,Bq mvr =c .加速条件:高频交流电源的周期与带电粒子在D 形盒中运动的周期相同,即:Bq m 2T π==回旋电场T3、(1)电场加速:(2)磁场约束偏转:, (3)加速条件:高频交流电源的周期与带电粒子在D 形盒中运动的周期相同,即: (4) M 和N 间的加速电场很窄,可忽略加速时间.故粒子在回旋加速器中运动时间为:22max mv nUq =,2T n t =,22max 1222D B R m t Uq Bq U ππE =⋅⋅= 带电粒子在电场中的时间不能忽略:21t t t +=,22max mv nUq =,22T n t = , a V t max 1=或者max 1mv Ft = (5) 回旋加速器的优点是体积小,缺点是粒子的能量不会很高。
高考物理带电粒子在复合场中的运动解题技巧(超强)及练习题

一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。
在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且2mtqBπ=,两板间距2210mEhqBπ=。
(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。
(2)求粒子在板板间做圆周运动的最大半径(用h表示)。
(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。
【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值115sh=(2)粒子在极板间做圆周运动的最大半径225hRπ=(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s121012s at =① 0qEa m=②又已知200200102,mE m t h qB qB ππ== 联立解得:115s h = (2)解法一粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。
设运动速度大小为v 1,轨道半径为R 1,周期为T ,则10v at =21101mv qv B R =联立解得:15h R π= 又002mT t qB π== 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。
在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 22210012s v t at =+解得:235s h =由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:210v v at =+22202mv qv B R =解得225h R π=由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理出题方式及解答技巧之复合场
复合场是指重力场、电场、磁场并存,或其中两场并存。
分布方式或同一区域同时存在,或分区域存在。
通过上表可以看出,由于复合场的综合性强,覆盖考点较多,预计在2019年高考中仍是一个热点。
复合场的出题方式:
复合场可以图文形式直接出题,也可以与各种仪器(质谱仪,回旋加速器,速度选择器等)相结合考查。
一、重力场、电场、磁场分区域存在(例如质谱仪,回旋加速器)
此种出题方式要求熟练掌握平抛运动、类平抛运动、圆周运动的基本公式及解决方式。
重力场:平抛运动
电场:1.加速场:动能定理2.偏转场:类平抛运动或动能定理
磁场:圆周运动
二、重力场、电场、磁场同区域存在(例如速度选择器)
带电粒子在复合场做什么运动取决于带电粒子所受合力及
初速度,因此,把带电粒子的运动情况和受力情况结合起来分析是解决此类问题的关键。
(一)若带电粒子在复合场中做匀速直线运动时应根据平衡条件解题,例如速度选择器。
则有Eq=qVB
(二)当带电粒子在复合场中做圆周运动时,
则有Eq=mg qVB=mv2/R
(2009年天津10题)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴。
一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN 之间的距离为L,小球过M点时的速度方向与x轴的方向夹角为θ。
不计空气阻力,重力加速度为g,求
(1)电场强度E的大小和方向;
(2)小球从A点抛出时初速度v0的大小;
(3)A点到x轴的高度h。
解析:本题考查平抛运动和带电
小球在复合场中的运动。
小球先做平抛再做圆周运动
(1)小球在电场、磁场中恰能做匀速圆周运动,说明电场力和重力平衡(恒力不能充当圆周运动的向心力),有Eq=mg 得E=mg/q
重力的方向竖直向下,电场力方向只能向上,由于小球带正电,所以电场强度方向竖直向上。
(2)小球做匀速圆周运动,O′为圆心,MN为弦长,O′为M点速度垂线与MN中垂线的交点。
设半径为R,
由几何关系知L/2R=sinθ
小球做匀速圆周运动的向心力由洛仑兹力提供向心力,设小球做圆周运动的速率为v,有qVB=mV2 /R 由速度的合成与分解知
V0 /V=cosθ
得V0 =qBL/2mtanθ
(3)设小球到M点时的竖直分速度为Vy,它与水平分速度的关系为
Vy = V0 ×tanθ
由匀变速直线运动规律
V2 =2gh
得h=q2 B2L2 /8gm2
(三)当带电粒子在复合场中做非匀变速曲线运动时,应用动能定理或能量守恒解决。