第二十二届“希望杯”全国数学邀请赛初二一试二试题、答案及解析

合集下载

历届希望杯初二试题及答案

历届希望杯初二试题及答案

历届希望杯初二试题及答案一、选择题(每题5分,共20分)1. 下列哪个数不是质数?- A. 2- B. 3- C. 4- D. 5答案:C2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?- A. 5- B. 6- C. 7- D. 8答案:A3. 一个数的平方根是4,这个数是多少?- A. 16- B. 8- C. 4- D. 2答案:A4. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?- A. 25π- B. 50π- C. 100π- D. 200π答案:B二、填空题(每题3分,共15分)1. 一个数的立方根是2,这个数是______。

答案:82. 如果一个数的绝对值是5,那么这个数可能是______或______。

答案:5,-53. 一个数的倒数是1/4,这个数是______。

答案:44. 一个圆的直径是10厘米,那么它的半径是______厘米。

答案:55. 一个直角三角形的两个锐角的度数之和是______度。

答案:90三、解答题(每题10分,共30分)1. 一个长方形的长是宽的两倍,如果长是10厘米,求这个长方形的面积。

答案:首先,我们知道长方形的宽是长的一半,即5厘米。

长方形的面积是长乘以宽,所以面积是10厘米乘以5厘米,等于50平方厘米。

2. 一个数列的前三项是2,4,8。

如果这个数列是一个等比数列,求第四项。

答案:等比数列的每一项都是前一项的固定倍数。

这里,每一项都是前一项的2倍。

所以,第四项是8乘以2,等于16。

3. 一个水池的容积是100立方米,如果每小时流入水池的水是5立方米,求需要多少小时才能填满水池。

答案:要填满100立方米的水池,每小时流入5立方米,需要的时间是100除以5,等于20小时。

结束语希望杯数学竞赛不仅考查学生的数学知识,更注重考查学生的逻辑思维和解决问题的能力。

通过这样的竞赛,学生能够更好地理解数学知识,提高自己的数学素养。

八年级数学希望杯第1-22届试题汇总(含答案与提示)

八年级数学希望杯第1-22届试题汇总(含答案与提示)

希望杯第一届(1990)第二试试题 (1)希望杯第二届(1991年)初中二年级第二试试题 (5)希望杯第三届(1992年)初中二年级第二试题 (10)希望杯第四届(1993年)初中二年级第一试试题 (18)希望杯第四届(1993年)初中二年级第二试试题 (24)希望杯第五届(1994年)初中二年级第一试试题 (26)希望杯第五届(1994年)初中二年级第二试试题 (32)第六届(1995年)初中二年级第一试试题 (45)希望杯第六届(1995年)初中二年级第二试试题 (50)希望杯第七届(1996年)初中二年级第一试试题 (56)希望杯第七届(1996年)初中二年级第二试试题 (62)希望杯第八届(1997年)初中二年级第一试试题 (72)希望杯第八届(1997年)初中二年级第二试试题 (79)第九届(1998年)初中二年级第一试试题 (88)希望杯第九届(1998年)初中二年级第二试试题 (98)1999年第十届“希望杯”全国数学邀请赛第二试 (108)2000年第十一届“希望杯”数学竞赛初二第一试 (111)2000年第十一届“希望杯”数学竞赛初二第二试 (114)2001年希望杯第十二届初中二年级第一试试题 (119)2001年希望杯第12届八年级第2试试题 (122)2002年第十三届全国数学邀请赛初二年级第一试 (129)2002年度初二“希望杯”全国数学邀请赛第二试 (132)2003年第十四届“希望杯”全国数学邀请赛初二第1试 (139)2003年第十四届“希望杯”(初二笫2试) (142)2004年第十五届“希望杯”全国数学邀请赛初二 (148)2004年第十五届“希望杯”全国数学邀请赛初二第2试 (151)2005年第十六届希望杯初二第1试试题 (157)2005年第十六届“希望杯”全国数学邀请赛第二试 (159)2006年第十七届“希望杯”全国数学邀请赛第一试 (163)2006年第十七届“希望杯’’数学邀请赛第二试 (166)2007年第十八届”希望杯“全国数学邀请赛第一试 (171)2007年第十八届“希望杯”全国数学邀请赛第二试 (173)2008年第19届“希望杯”全国数学邀请赛初二第2试试题 (179)2009年第二十届“希望杯”全国数学邀请赛第一试 (183)2009年第20届“希望杯”全国数学邀请赛第二试 (186)2010年第二十一届“希望杯”全国数学邀请赛第一试 (193)2010年第二十一届“希望杯”全国数学邀请赛第二试 (195)2011年第二十二届“希望杯”全国数学邀请赛第二试 (201)希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ]A.7.5 B.12. C.4. D.12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ]A .M >P >N 且M >Q >N.B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1,则∠BDA=[ ]A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种二、填空题:(每题1分,共5分)1. △ABC 中,∠∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2. 2(2)0ab -=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____. 3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=300,三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______. 5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列n 1<n 2<n 3<n 4……,试求:n 1·n 2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a,b,c的关系可以写成( ) A.a<b<c. B.(a-b)2+(b-c)2=0. C.c<a<b. D.a=b≠c5.如图30,AC=CD=DA=BC=DE.则∠BAE是∠BAC的 ( )A.4倍. B.3倍. C.2倍. D.1倍6.D是等腰锐角三角形ABC的底边BC上一点,则AD,BD,CD满足关系式( )A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 27.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为的x 2、y 2的值是( )A.x 2y 22,y 2C. x 2y 22,y 29.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( )A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b a a b +等于( ) A.2213; B.5821; C.240249; D.36538. 二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______. 6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______.9.2x x +++______.10.已知两数积ab ≠1.且2a2+1234567890a+3=0,3b2+1234567890b+2=0,则ab=______.三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1.已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989 (1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。

(2020年编辑)第二十二届()“希望杯”全国数学邀请赛初二培训题(含答案)

(2020年编辑)第二十二届()“希望杯”全国数学邀请赛初二培训题(含答案)

第二十二届(2011年)“希望杯”全国数学邀请赛培训题初中二年级一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内)1.如图1,数轴上的四个点A B C D 、、、分别代表整数a b c d 、、、.若1,1a b c b --=--=-,则d 的值是( )(A )3- (B) 0 (C)1 (D )4 1. 已知201020111,,20092011201020122011a b c ===⨯⨯,则( )(A )a b c <<(B)c b a << (C )b a c << (D )c a b <<2. 下列各数中,最大的是( )(A )37+ (B) 26+ (C )20 (D )114522+3. 已知a 是实数,并且2201040a a -+=则代数式228040200954a a a -+++的值是( )(A )2009 (B) 2010 (C )2011 (D )2012 4. Giventwonon-zerorealnumbersaandb,satisfy()2242342a b a b a -+++-+=,then the value of a b + is ( )(A )-1 (B) 0 (C )1 (D )25. If the linear function y ax b =+ passes through the point (-2, 0),but not the first Quadrant,then the solution set for ax b > is ( )(A )2x >- (B) 2x <- (C ) 2x > (D )2x < 6. 已知反比例函数k y x =的图像经过点1,b a -⎛⎫⎪⎝⎭,那么它可能不经过点( ) (A )1,b a ⎛⎫- ⎪⎝⎭ (B) 1,a b -⎛⎫ ⎪⎝⎭ (C ),1b a ⎛⎫- ⎪⎝⎭ (D ),1b a -⎛⎫ ⎪⎝⎭7. 已知a 是实数,关于x y 、的二元一次方程组235212x y ax y a-=⎧⎨+=-⎩的解不可能出现的情况是( )(A )x y 、都是正数 (B) x y 、都是负数 (C )x y 是正数、是负数 (D )x y 是负数、是正数8. If a and b are non -zero real numbers and ()()1991991a b -+=,then the value for111ab-+ is ( )(A )1 (B)100 (C )-1 (D )-1 9. 如图2是反比例函数ky x=在第二象限的图像,则k 的可能取值是( )(A )2 (B)-2 (C )12 (D )12-11. 在直角坐标系上,点(),11x y 关于电()22,x y 的对称点坐标是( )(A )()2121,22x y x y -- (B) ()1212,22x y y x -- (C )()12122,2x x y y -- (D )()21212,2x x y y --12. 一个长方体盒子的最短边长50cm ,最长边长90cm.则盒子的体积可能是( )(A )45003cm (B) 1800003cm (C )900003cm (D )3600003cm 13. 若两个角可以构成内错角,则称为“一对内错角”.四条直线两两相交,且任意三条直线不交于同一点.那么,在这个几何图形中,可以构成的内错角的两个角的对数是( )(A )12 (B) 24 (C )36 (D )48 14. 如图3,已知ABC 中,,AB AC BAC ACB =∠∠和的角平分线相交于D 点,130ADC ∠=︒,那么CAB ∠的大小是( ) (A )80︒ (B) 50︒ (C )40︒ (D )20︒ 15. GivenABC with 90ACB ∠=︒,15ABC ∠=︒,1AC =,then the length of BC is ( )(A )23+ (B) 32+(C )32- (D )23+16. 已知三角形三边的长分别为,,a b c ,且,,a b c 均为整数,若7,b a b =<,则满足条件的三角形的个数是( )(A )30 (B)36 (C )40 (D )45 17. 三角形三边的长分别为,,a b c ,且a ab cb c b c a++=+-,则三角形是( ) (A )等边三角形 (B) 直角三角形(C )以a 为腰的等腰三角形 (D )以a 为底的等腰三角形 18. 有4个命题:一组对边相等,一组对角相等的四边形是平行四边形; 一组对边平行,一组对角相等的四边形是平行四边形;O 是四边形ABCD 内一点,若AO=BO=CO=DO ,则四边形ABCD 是矩形;若四边形的两条对角线互相垂直,则这个四边形是菱形。

第二十二届“希望杯”全国数学邀请赛厦门市八年级获奖情况公布

第二十二届“希望杯”全国数学邀请赛厦门市八年级获奖情况公布

初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二 初二
厦门外国语学校 肖 宜 厦门外国语学校 郑润丰 厦门双十中学 张煜风 厦门双十中学 王晨霖 厦门十一中 张宇辰 厦门一中 吴凡 厦门一中 曾正 厦门一中 游路加 厦门一中 吴品萱 厦门同安一中 陈秀梅 厦门同安一中 高 恬 厦门同安一中 林 薇 厦门同安一中 黄雅兰 厦门同安一中 洪 妍 厦门同安一中 张剑岚 厦门同安一中 邵禹铭 厦门翔安一中 郭增佳 厦门英才学校 方艺鸿 厦门五缘实验学校 纪聪杰 厦门五缘实验学校 江薇 厦门五缘实验学校 曾昊 厦门外国语学校 陈 轲 厦门外国语学校 曲玥玥 厦门外国语学校 黄 宇 厦门双十中学 白若泰 厦门市莲花中学 王维 厦门市湖里区蔡塘学校 郑晓婷 厦门市槟榔中学 荆远方 厦门九中 卜昕月 厦门一中 陈见淳 厦门一中 陈嘉琪 厦门一中 许文熙 厦门一中 郑佳欣 厦门第六中学 涂锦程 厦门第六中学 李欧阳 厦门第六中学 刘雅文 厦门大同中学(兴华校区) 姚毓群 厦门同安一中 张睿 厦门市启悟中学 苏文宇 厦门五缘实验学校 刘航尔 厦门外国语学校 陈思曲 厦门外国语学校 阮聪逸 厦门市汀溪中学 叶栋梓 厦门一中 李途越 厦门一中 康梓屹 厦门五中 罗蔚榕 厦门五缘实验学校 刘豪
全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖 全国三等奖

初二第22届希望杯”一试试题+解析

初二第22届希望杯”一试试题+解析

第二十二届“希望杯”全国数学邀请赛初二 第1试一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将正确答案前的英语字母写在1、将a 千克含盐10%的盐水配制成含盐15%的盐水,需加盐水x 千克,则由此可列出方程为( ) A 、%)151)(x a (%)101(a -+=- B 、%15)x a (%10a ⨯+=⨯ C 、%15a x %10a ⨯=+⨯ D 、%)151(x %)101(a -=-2、一辆汽车从A 地匀速驶往B 地,如果汽车行驶的速度增加a%,则所用的时间减少b%,则a ,b 的关系是( ) A 、%a 1a 100b +=B 、%a 1100b +=C 、a 1a b +=D 、a100a100b +=3、当1x ≥时,不等式|2x |m 1x |1x |--≥-++恒成立,那么实数m 的最大值是( ) A 、1 B 、2 C 、3 D 、44、在平面直角坐标系中,横、纵坐标都是整数的点称为整点,已知k 为整数,若函数1x 2y -=与k kx y +=的图象的交点是整点,则k 的值有( )A 、2个B 、3个C 、4个D 、5个5、The sum of all such integers x that satisfy inequality 6|1x 2|2≤-≤ is ( ) A 、8 B 、5 C 、2 D 、0(英汉词典:sum 和;integer 整数;satisfy 满足;inequality 不等式)6、若三角形的三条边的长分别为a ,b ,c ,且0b c b c a b a 3222=-+-,则这个三角形一定是( ) A 、等腰三角形 B 、直角三角形 C 、等三角形 D 、等腰直角三角形7、As shown in figure 1,point C is on the segment BG and quadrilateral ABCD is a square. AG intersects BD and CD at points E and F, respectively. If AE=5 and EF=3, then FG=( ) A 、316 B 、38C 、4D 、5 (英汉词典:square 正方形;intersect …at … 与…相交于…) 8、1215-能分解成n 个质因数的乘积,n 的值是( ) A 、6 B 、5 C 、4 D 、3 9、若关于x ,y 的方程组⎩⎨⎧=+-=++0a y 2bx 01ay x 没有实数解,则( )A 、2ab -=B 、2ab -=且1a ≠C 、2ab -≠D 、2ab -=且2a ≠10、如图2,∠AOB=45°,OP 平分∠AOB ,PC ⊥OB 于点C , 若PC=2,则OC 的长是( )A 、7B 、6C 、222+D 、32+二、A 组填空题(每小题4分,共40分) 11、化简:5252549+=++;12、若关于x ,y 的方程组⎩⎨⎧=--=+2y 3x 21k y 2x 3的解使2y 7x 4>+,则k 的取值范围是3k >;figure 1A O BP C 2 图213、如图3,平行于BC 的线段MN 把等边△ABC 分成一个 三角形和一个四边形,已知△AMN 和四边形MBCN 的周长相 等,则BC 与MN 的长度之比是 4:3 ;14、小华测得自家冰箱的压缩机运转很有规律,每运转5分钟, 停机15分钟,再运转5分钟,再停机15分钟,……,又知8月份 这台冰箱的耗电量是24.18度 (1度=1千瓦时),则这台冰箱的压缩 机运转时的功率是 130 瓦;15、已知自然数a ,b ,c ,满足c 12b 4a 442c b a 222++<+++和02a a 2>--,则代数式c1b 1a 1++的值是 1; 16、已知A 、B 是反比例函数x2y =的图象上的两点,A 、B 的横坐标分别是3,5.设O 为原点,则△AOB 的面积是1516;17、设完全平方数A 是11个连续整数的平方和,则A 的最小值是 121 ;18、将100个连续的偶数从小到大排成一行,其中第38个数与第63个数的和为218,则首尾两个数的和是 218 ; 19、A 、B 两地相距15km ,甲、乙两人同时从A 出发去B 。

第22届“希望杯”全国数学邀请赛初2第1试

第22届“希望杯”全国数学邀请赛初2第1试

第二十二届“希望杯”全国数学邀请赛初二 第一试一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将正确答案前的英文字母写在下面的表格内.1.将a 千克含盐10%的盐水配制成含盐15%的盐水,需加盐x 千克,则由此可列出方程( )A .()()()110%115%a a x -=+-B .()10%15%a a x ⋅=+⋅C .10%15%a x a ⋅+=⋅D .()()110%115%a x -=-【解析】 选A .加盐前后盐水中水的质量不变即可列式.2.一辆汽车从A 地均速驶往B 地,如果汽车行驶的速度增加%a ,则所用的时间减少%b ,则a b 、的关系是( ) A .1001%ab a =+B .1001%b a =+C .1a b a=+ D .100100ab a=+【解析】 D .由,A B 两地距离不变可以列式:()()1%1%1a b +-=,解之得:100100ab a=+.3.当1x ≥时,不等式12x m x ++--恒成立,那么实数m 的最大值是( )A .1B .2C .3D .4【解析】 C .原不等式可化为12m x x ++-≤,而由绝对值的几何意义知123x x ++-≥,于是1233x x ++-≥,当且仅当1x =时取等号.于是3m ≥,即最大值为3.4.在平面直角坐标系中,横、纵坐标都是整数的点称为整点,已知k 为整数,若函数21y x =-与y kx k =+的图象的交点是整点,则k 的值有( )个 A .2B .3C .4D .5 【解析】 C .联立函数方程可知交点坐标为13,22k k k k +⎛⎫⎪--⎝⎭,仅需横坐标为整数即可.而13122k k k+=-+--,则21,3k -=±±,于是k 的值有4个.5.(英语意译)已知整数x 满足不等式2216x -≤≤,则x 的值是( ) A .8B .5C .2D .0【解析】 C .由21x -为奇数,有213,5x -=±±,仅有C 选项符合题意.此题x 的值有4个解.6.若三角形的三条边的长分别为a b c 、、,且22230a b a c b c b -+-=,则这个三角形一定是( ) A .等腰三角形 B .直角三角形 D .等边三角形 D .等腰直角三角形 【解析】 A .()()()()()2223220a b a c b c b a b b c a b a b b c -+-=--=-+-=,于是a b =或者b c =.于是为等腰三角形.7.如图1,点C 在线段BG 上,四边形ABCD 是一个正方形,AG 与BD 、CD 分别相交于点E 和F ,如果5AE =,3EF =,则FG =( ) A .163B .83C .4D .5图1ABCDFE G53【解析】 A .由ABE DEF △∽△,知53AB DF =.不妨设5,3AB x DF x ==,于是2FC x =. 又由FCG ABG △∽△,知216853FG FG FC x FG AG FG AB x ===⇒=+.8.1621-能分解成n 个质因数的乘积,n 的值是()A .6B .5C .4D .3【解析】 C .()()16882121213517257-=-+=⋅⋅⋅.于是4n =.9.若关于x y 、的方程组1020x ay bx y a ++=⎧⎨-+=⎩,没有实数解,则()A .2ab =-B .2ab =-且1a ≠C .2ab ≠-D .2ab =-且2a ≠【解析】 A .容易知道112a b a=≠-.于是2ab =-且22a ≠-,而后者显然成立.于是选A .10.如图2,45AOB ∠=︒,OP 平分AOB ∠,PC OB ⊥于点C .若2PC =,则OC 的长是( )A .7B .6 C.2+ D.22图2OCP BA【解析】 C .延长CP 交OA 于M,于是有PC OC PM PM AO ==⇒=于是2OC PC PM =+=+二、A 组填空题(每小题4分,共40分)11.【解析】2222==+12.若关于x y 、的方程组321232x y k x y +=-⎧⎨-=⎩的解使472x y +>,则k 的取值范围是___________.【解析】 3k >.由()()4723223242x y x y x y k +=⋅+--=->,知3k >.13.如图3,平行于BC 的线段MN 把等边ABC △分成一个三角形和一个四边形,已知AMN △和四边形MBCN 的周长相等,则BC 与MN 的长度之比是_____________.ABCM N 图3【解析】 4:3.不妨设1,MN BC x ==,于是AMN △的周长为3,四边形MBCN 的周长为()211x x -++.于是有()3221x x =-++,解得43x =.14.小华测得自家冰箱的压缩机运转很有规律,每运转5分钟,停机15分钟,再运转5分钟,再停机15分钟,…,又知8月份这台冰箱的耗电量是24.18度(1度=1千瓦时),则这台冰箱的压缩机运转时的功率是__________________瓦.【解析】 130.已知冰箱的运转时间占工作时间的515154=+,于是8月份的运转时间为124311864⋅⋅=小时.于是功率为24.181000130186⋅=.15.已知自然数a b c 、、满足222424412a b c a b c +++<++和220a a -->,则代数式111a b c++的值是___________________.【解析】 1.由()()()2222262a b c -+-+-<知2,2,6a b c ---中之多有一个绝对值为1,其余绝对值为0.而()()210a a -+>,知2a >,于是21a -=,即3a =.于是2b =,6c =.则代数式的值为1111a b c++=.16.已知A B 、是反比例函数2y x=的图象上的两点,A B 、的横坐标分别是3,5.设O 为原点,则AOB △的面积是________________.【解析】 1615.易知223,,5,35A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.分别过点,A B 做x 轴的垂线,垂足为,M N .由2216352215AOB ABMN S S +==⋅=△.17.设完全平方数A 是11个连续整数的平方和,则A 的最小值是_________________. 【解析】 121.()()()()()22222543...45110A =-+-+-+++=.18.将100个连续的偶数从小到大排成一行,其中第38个数与第63个数的和为218,则首尾两个数的和是__________________.【解析】 218.首尾两数的和与第38个数与第63个数的和相同.于是均为218.19.A 、B 两地相距15km ,甲、乙两人同时从A 地出发去B 地.甲先乘汽车到达A B 、之间的C 地,然后下车步行,乙全程骑自然车,结果两人同时到达.已知甲步行的速度是乙骑自行车速度的一半,乙骑自行车的速度是甲乘汽车速度的一半,那么,C 地与A 地相距_______________km .【解析】 10.不妨设,C A 两地之间的距离为x ,,C B 之间的距离为15x -,乙全程自行车的速度为v ,于是利用两者时间相等可列式:151522x x v v v -+=,解之得10x =.20.已知b c a c a bk a b c+++===,则直线y kx k =+必经过点______________________. 【解析】 (10)-,.()1y k x =+,于是当1x =-时,0y =.于是答案为()1,0-.在条件下,当0a b c ++=时,直线表示1y x =--,否则直线表示22y x =+.三、B 组填空题(每小题8分,共40分)21.等腰三角形的两个内角之比是2:5,则这个三角形的最大内角的度数是____________或________.【解析】 75︒;100︒.当三角形三内角之比为2:2:5时,最大内角为51801009⋅=;当内角比为2:5:5时,最大内角为51807512⋅=.22.已知10个数12310x x x x ,,,,中,110x =,对于整数1n >,有1n n nx x -=,则12x x =____________,2310x x x =_______________.【解析】 2;384.由1n n x x n -=知:122x x =;344x x =;566x x =;...;91010x x =.于是()234101 (24681038410)x x x x =⋅⋅⋅⋅⋅=.23.从甲、乙、两三名男生和A B 、两名女生中选出一名男生和一名女生,则所有可能出现的结果有_____________种;恰好选中男生甲和女生A 的概率是____________. 【解析】 6;16.男生一共有3种选择,女生一共有2种选择,于是所有可能结果数为326⋅=.对于任何一种特定组合都是16的概率被选中.24.若关于x 的方程b b x a x a +=+的解是12b x a x a ==,,那么方程2211x a x a -=---的解是1x =___________,2x =__________________. 【解析】a ;31a a --.原方程可写为221111x a x a ---+=-+--,于是12211,11x a x a --=--=-.化简即可.25.若两个自然数的差是一个数码相同的两位数,它们的积是一个数码相同的三位数,那么这两个自然数是__________和____________.【解析】37;15.由于他们乘积为111的倍数,而111有质因数37,于是这两数至少有一数为37或者其倍数74.于是容易判断出两数只能是37,15.。

第二十二届希望杯全国数学邀请赛八年级第1试与简答

第二十二届希望杯全国数学邀请赛八年级第1试与简答

第二十二届“希望杯”全国数学邀请赛 1试初二第_______________30 得分日上午8:30至11:2011年3月13以下每题的四个选项中,仅有一个是正确的,请将正确答案前的英语字分)一、选择题(每小题4分,共40 母写在下面的表格总得2345678910题1DACACCC答CAA( ) 千克,则由此可列出方程为、将a千克含盐10%的盐水配制成含盐15%的盐水,需加盐水x1%15%?(a?x)?a(1?10%)?(a?x)(1?15%)?10a、BA、%15?10%?x?a?a%)1510%)?x(1??a(1、C、 D( )的关系是则所用的时间减少b%,则a,b2、一辆汽车从A地匀速驶往B地,如果汽车行驶的速度增加a%,a100100aa100?b?b?b?b、A C、、 D B、a?a1001?a%1?a%1?1x?|?2x?1|?x?1?m?|x|( )m、当3时,不等式的最大值是恒成立,那么实数4 3 D、、2 C、1 BA、kkx?1y?y?2x?与横、纵坐标都是整数的点称为整点,已知k为整数,若函数4、在平面直角坐标系中,( )k的值有的图象的交点是整点,则个 D、5、2个 B、3个 C、4个A6??1|2?|2x is ( )The sum of all such integers x that satisfy inequality 5、0、2 D、A、8 B、5 C) 满足;inequality 不等式(英汉词典:sum 和;integer 整数;satisfy32220b?c?bc?aab?( ) b,c,且,则这个三角形一定是6、若三角形的三条边的长分别为a, D、等腰直角三角形、等腰三角形 B、直角三角形 C、等三角形Aintersects AG ABCD is a square. the 7、As shown in figure 1,point C is on segment BG and quadrilateralBD and CD at points E and F, respectively. If AE=5 and EF=3, then FG=( )8165 4 D、 BA、、 C、A D 33 E 5 ) 与…相交于…square 正方形;intersect…at… (英汉词典:F3 151?2( ) n能分解成n个质因数的乘积,8、的值是G34 D、A、6 B、5 C、BCfigure 10?x?ay?1?( )没有实数解,则、若关于x,y的方程组9?0??2ya?bx?2?2a?a?1ab??2ab?2?ab?2ab??且 DA、C且、 B、、于点C,AOB°,OP平分∠,PC⊥、如图10OB2,∠AOB=45A( ),则OC的长是若PC=22?2232?、A、7 B、6 C、 D P 2 ) 分4分,共40二、A 组填空题(每小题O BC 549?2图?2?5; 11、化简:5?23x?2y?k?1?k?32y?74x?;,则k的解使的方程组,、若关于12xy的取值范围是?2?3x2?y?1AABC分成一个的线段MN把等边△13、如图3,平行于BC的周长相AMN和四边形MBCN三角形和一个四边形,已知△;MN的长度之比是 4:3 等,则BC与M N 、小华测得自家冰箱的压缩机运转很有规律,每运转5分钟,14 8月份分钟,再停机停机15分钟,再运转515分钟,……,又知CB3图 ),则这台冰箱的压缩度=1千瓦时这台冰箱的耗电量是24.18度 (1 130 瓦;机运转时的功率是1112222??02a???4a?4b?12ca?a?b?c?42的,满足和,则代数式15、已知自然数a,b,c cba;值是 12?y的面AOBO为原点,则△3,5.16、已知A、B是反比例函数设B的图象上的两点,A、的横坐标分别是x16;积是15;的最小值是 121 是11个连续整数的平方和,则A17、设完全平方数A 218,则首尾两个数的和是38个数与第63个数的和为个连续的偶数从小到大排成一行,其中第18、将100 218 ;地,然后下车步行,之间的C。

2011第二十二届“希望杯”数学竞赛初二一试试题

2011第二十二届“希望杯”数学竞赛初二一试试题

第二十二届“希望杯”全国数学邀请赛初二 第一试2011年3月13日 上午8:30至10:00 得分一、选择题(每小题4分,共40分。

)以下每题的四个选项中,仅有一个是正确的,请将正确答案前的英文字母写在下面的表格内。

1、 将a 千克含盐10﹪的盐水配制成含盐15﹪的盐水,需加盐x 千克,则由此可列出方程( ) (A )()()().%151%101-+=-x a a (B )()%.15%10∙+=∙x a a (C )%.15%10∙=+∙a x a (D )()().%151%101-=-x a2、一辆汽车从A 地匀速驶往B 地,如果汽车行驶的速度增加a ﹪,则所用的时间减少b ﹪,则a 、b 的关系是( ) (A )%1100a a b +=(B )%1100a b += (C )a a b +=1 (D )aab +=1001003、当1≥x 时,不等式211--≥-++x m x x 恒成立,那么实数m 的最大值是( )(A )1. (B )2。

(C )3。

(D )4。

4、在平面直角坐标系中,横、纵坐标都是整数的点称为整点,已知k 为整数,若函数12-=x y 与k kx y +=的图象的交点是整点,则k 的值有( )个(A )2. (B )3。

(C )4。

(D )5。

5、(英语意译)已知整数x 满足不等式6122≤-≤x ,则x 的值是( ) (A )8. (B )5。

(C )2。

(D )0。

6、若三角形的三条边的长分别为a 、b 、c ,且.03222=-+-b c b c a b a 则这个三角形一定是( ) (A )等腰三角形 (B )直角三角形 (C )等边三角形 (D )等腰直角三角形 7、如图1,点C 在线段BG 上,四边形ABCD 是一个正方形,AG 与BD 、CD 分别相交于点E 和F ,如果AE=5,EF=3,则FG=( ) (A )316。

(B )38。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
D
C
18. 如图 6 边长为 2 3 的正方形 ABCD 内有一点 P,且PAB=30,PA=2, 在正方形 ABCD 的边上有一点 Q,且△PAQ 为等腰三角形,则符合条件
A
的点 Q 有 个.
2 P 30
图6
B
19. 已知 a,b,c 为实数,并且对于任意实数 x,恒有 | xa || 2xb |=| 3xc |, 则 a:b:c= .
b 的取值 a
1 (x1),那么 f ( f ( f ( f ( 2011) ))) = 1 x
2011個f
.
y 2 1
y ax
y 2 xb 3
15. 函数 y=ax 与函数 y=
2 xb 的图像如图 5 所示,则关于 x,y 的 3
. ;b= .
x 2 O 1
ax y 0 方程组 的解是 3 y 2 x 3b
图5
16. 若 a,b 是自然数,且 a>b,2011=a(a1)b.那么 a=
17. 一个骰子,六个面上的数字分别是 1,2,3,4,5,6.两次掷这个骰子,朝上一面的数依
mx ny 1 次记为 m,n.则关于 x,y 的方程组 ,有解的概率为 2 x y 3
BE:CE=3:1,则 DF:FC 等于 (A) 4:1 (B) 3:1 (C) 2:1 (D) 1:1
图3
10. 如图 4,a,b,c,d,e 分别代表 1,2,3,4,5 中的一个数.
b
若 bac 及 dae 除以 3 都余 1,则不同的填数方法有 (A) 2 种 (B) 4 种 (C) 8 种 (D) 16 种 .
(2) 如果一列数 a1,a2,…,am 一定是“3 阶可重复的”,求 m 的最小值. (3) 假设一列数不是“5 阶可重复的”且第 4 个数是 1,但若在这列数最后一个数再添加一个 0 或 1,均可使新的一列数是“5 阶可重复的”,那么原来的数列中的最后一个数是什么?说明理 由.
第二十二届”希望杯”全国数学邀请赛
4. 如果直线 y=2xm 与直角坐标系的两坐标轴围成的三角形的面积等于 4,则 m 的值是 (A) 3 (B) 3 (C) 4 (D) 4
5. 若 n1=2010220112,则 2n 1 = (A) 2011 (B) 2010 (C) 4022 (D) 4021 6. 有四个命题: 若两个等腰三角形的腰相等,腰上的高也相等,则这两个等腰三角形全等 有一条边相等的两个等腰直角三角形全等 有一条边和一个锐角对应相等的两个直角三角形全等 两边以及另一边上的高对应相等的两个三角形全等 其中,正确的命题有 (A) 0 个 (B) 1 个 (C) 2 个 (D) 3 个
A D C E B
图1
7. 如图 1,Rt△ABC 两直角边上的中线分别为 AE 和 BD, 则 AE2BD2 与 AB2 的比值为 (A)
3 4
(B) 1
(C)
5 4
(D)
3 2
A F B
P E
D
8. As shown in figure 2, ABCD is a rectangle and AD=12, AB=5, P is any point on AD and PEBD at point E, PFAC at point F.
d
a c
e
二、填空题 (每小题 4 分,共 40 分)
11. 右表为甲、乙两人比赛投篮球的记录, 以命中率(投进球数与投球次数的比值) 来比较投球成绩的好坏,若他们的成绩 一样好.现有以下关系式: ab=5; ab=18; 其中正确的是 a:b=2:1; a:18=2:3;
图4 学生 甲 乙 投进球数 10 a 没投进球数 5 b 投球次数 15 18
figure 2
C
Then PEPF has a total length of (A)
48 13
(B)

60 13
(C) 5
(D)
70 13
9. 如图 3,正方形 ABCD 的边 AB 在 x 轴的正半轴上,C(2,1),D(1,1). 反比例函数 y=
y D O A F E B C x
k 的图像与边 BC 交于点 E,与边 CD 交于点 F.已知 x
29 . The size relationship between B and C is 10
(D) uncertain
2. 已知 a2a=7,则代数式 (A) 3 (B)
1 a 1 a2 4 . 2 2 的值是 a 2 a 2a 1 a 1
(D) 5
7 2
(C) 4
3. 一个凸四边形的四个内角可以 (A) 都是锐角 (B) 都是直角 (C) 都是钝角 (D) 有三个是直角,另一个是锐角或钝角 .
初二
第 2 试简答
(只填序号).
2 x y 4 x m k 12. 已知方程组 的解为 ,又知点 A(m,n)在反比例函数 y= 的图像上,则 k 的值 x x y 5 y n
是 .
13. 等腰三角形的两个内角的度数之比为 a:b (a<b),若这个三角形是钝角三角形,则 范围是 14. 定义 f (x)= .
答案·解析
第二十二届”希望杯”全国数学邀请赛
2011 年 4 月 10 日
初二
第2试
上午 9:00 至 11:00
一、选择题(每小题 4 分,共 40 分.)以下每题的四个选项中,仅有一个是正确的,请将表示正 确答案的英文字母写在每题后面的圆括号内.
1. Given A:B= 3 2 : 3 ,A= 2 ,C= (A) B>C (B) B=C (C) B<C
3 3 k 的图像交于点 Q,当四边形 APQO’的面积为 9 时,求 的值. 2 x
23. (本题满分 15 分) 给定 m (m3)个数字组成的一列数 a1,a2,…,am,其中每一个数 ai (i=1,2,…,m)只能是 1 或 0.在这一列 数中,如果存在连续的 k 个数和另一组连续的 k 个数恰好按次序对应相等,则称这一列数是“k 阶可重复的”. 例如由 7 个数组成一列数:0,1,1,0,1,1,0,因为 a1,a2,a3,a4 与 a4,a5,a6,a7 按次序对应相等, 所以称这列数为“4 阶可重复的”. (1) 分别判断下面的两列数是否是“5 阶可重复的”?如果是,请写出重复的这 5 个数; 0,0,0,1,1,0,0,1,1,0; 1,1,1,1,1,0,1,1,1,1.
20. 一个自行车轮胎,若安装在前轮,则行驶 5000 千米后报废;若安装在后轮,则行驶 3000 千米后报废.现有一辆新自行车,在行驶一定路程后,交换前后两轮的轮胎,再继续行驶, 使得两个轮胎同时报废,那么该车最多行驶 千米.
三、解答题 每题都要写出推算过程.
21. (本题满分 10 分) 平面直角坐标系中,正方形 ABCD 四个顶点的坐标分别为(1,1),(1,1),(1,1),(1,1).设正方形 ABCD 在 y=| xa |a 的图像以上部份的面积为 S,试求 S 关于 a 的函数关系式,并写出 S 的最大值.
22. (本题满分 15 分) 若直线 l:y=x3 交 x 轴于点 A,交 y 轴于点 B.坐标原点 O 关于直线 l 的对称点 O’在反比例函数 y= 上. (1) 求反比例函数 y=
k 的图像 x
k 的解析式; x
(2) 将直线 l 绕点 A 逆时针旋转角 (0< <45),得到直线 l’,l’交 y 轴于点 P,过点 P 作 x 轴的并行线,与 上述反比例函数 y=
相关文档
最新文档