不同碳氮比值下亚硝酸盐氧化菌和异养菌混合体系的微生物多样性

合集下载

不同碳氮比下煤热解废水中硝态氮的去除研究

不同碳氮比下煤热解废水中硝态氮的去除研究

462020WATER &WASTEWATER ENGINEERING Vol.462020不同碳氮比下煤热解废水中硝态氮的去除研究韩洪军1 张正文1 徐春艳2 郑梦启1(1哈尔滨工业大学环境学院,哈尔滨 150090;2哈尔滨工创环保科技有限公司,哈尔滨 150090) 摘要 通过调整煤热解废水的COD/N,废水中的总氮得到了有效的去除。

在COD/N为4、5和6时,总氮的出水浓度分别为(45.67±4.91)mg/L、(13.55±2.96)mg/L和(7.56±2.84)mg/L,COD的出水浓度分别为(92.71±14.13)mg/L、(60.21±9.74)mg/L和(132.08±20.38)mg/L;废水的脱氢酶抑制率在COD/N为5时最低,为0.25,即此时的微生物受到的抑制最小;微生物群落分析表明酚降解菌Ottowia可能利用甲醇作为共代谢基质降解酚类物质,反硝化菌Hyphomicrobium在COD/N为5时的相对丰度为16.44%,高于COD/N为6时的13.32%,即过量的甲醇投加使有机异养菌数量增加,Hyphomicrobium的丰度下降。

关键词 煤热解废水 反硝化 碳氮比 可生化性 微生物中图分类号:TU992文献标识码:A文章编号:1002-8471(2020)S2-0231-06DOI:10.13789/j.cnki.wwe1964.2020.S2.035基金项目:新疆生产建设兵团重点领域科技攻关计划项目(2020AB001);黑龙江省重点研发项目(GX18C017)。

Nitrate removal in coal pyrolysis wastewater underdifferent COD to nitrogen ratioHan Hongjun1,Zhang Zhengwen1,Xu Chunyan2,Zheng Mengqi 1(1.School of Environment,Harbin Institute of Technology,Harbin 150090,China;2.Harbin Gongchuang Environmental Protection Technology Co.,Ltd.,Harbin 150090,China)Abstract:The total nitrogen(TN)in coal pyrolysis wastewater was efficiently removed byadjusting the COD to nitrogen ratio of the wastewater.The effluent TN concentration was(45.67±4.91)mg/L,(13.55±2.96)mg/L,and(7.56±2.84)mg/L during the COD/N of 4,5,and 6,respec-tively.And the effluent COD concentration was(92.71±14.13)mg/L,(60.21±9.74)mg/L,and(132.08±20.38)mg/L during the COD/N of 4,5,and 6,respectively.The dehydrogenase inhibi-tion of the wastewater was 0.25when the COD/N was 5,which lower than that when the COD/Nwas both 4and 6.Microbial community analysis indicated that the methanol might be applied by phe-nol-degrading bacteria Ottowia as the co-metabolic substrate.Hyphomicrobium,as the denitrifyingbacteria,exhibited the relative abundance of 16.44%at the COD/N of 5which was higher than thatin COD/N of 6(13.32%),implying that the extra addition of methanol increased the abundance oforganic heterotrophic bacteria while decreased the abundance of Hyphomicrobium.Keywords:Coal pyrolysis wastewater;Denitrification;COD to nitrogen ratio;Biodegradability;Mi-crobial community analysis462020WATER &WASTEWATER ENGINEERING Vol.4620200 引言随着我国的发展,对清洁能源的需求也越来越迫切,低阶煤热解联产技术将煤炭资源转变为气、液以及固三相产品,能够实现对低阶煤的梯级利用,因此成为低阶煤洁净化利用的主要方式之一[1-2]。

生物脱氮原理及6大参数

生物脱氮原理及6大参数

生物脱氮原理及6大参数高氨氮废水是我们经常会遇到的一种废水,想要将污水中的氨氮去除,除了要了解各种脱氮原理,还要从经济有效的角度来考虑选用哪种工艺,而生物脱氮技术恰恰符合以上条件,成为污水脱氮中最常见的工艺之一。

今天我们就来聊一聊生物脱氮原理和主要控制参数。

污水中的氮主要以氨氮和有机氮的形式存在,通常没有或只有少量亚硝酸盐和硝酸盐形式的氮。

只有不到20%——40%的氮在传统的二级处理中被去除。

污水生物处理脱氮主要是靠一些专性细菌实现氨形式的转化,经过氨化、硝化、反硝化过程,含氮有机化合物最终转化为无害的氮气,从污水中去除,其过程如图所示:1、工艺原理及过程硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物--亚硝酸盐菌和硝酸盐菌。

这两类细菌统称为硝化菌,这些细菌所利用的碳源是CO32-、HCO3-和CO2等无机碳。

第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。

这两个反应过程都释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。

反硝化过程是反硝化菌异化硝酸盐的过程,即由硝化菌产生的硝酸盐和亚硝酸盐在反硝化菌的作用下,被还原为氮气后从水中溢出的过程。

反硝化过程也分为两步进行,第一步由硝酸盐转化为亚硝酸盐,第二步由亚硝酸盐转化为一氧化氮、氧化二氮和氮气。

同时,反硝化菌利用含碳有机物和部分分硝酸盐转化为氨氮用于细胞合成,该碳源既可以是污水中的有机碳或细胞体内碳源,也可以外部投加。

2、生物脱氮的工艺控制(1)消化过程(硝化菌)的影响因素1.温度:硝化反应的最适宜温度范围是30一35℃,温度不但影响硝化菌的比增长速率,而且影响硝化菌的活性。

温度低于5℃,硝化细菌的生命活动几乎完全停止:在5一35℃的范围内,硝化反应速率随温度的升高而加快;但达到30℃后,蛋白质的变性会降低硝化菌的活性,硝化反应增加的幅度变小。

不同碳氮比有机肥对有机农业土壤微生物生物量的影响

不同碳氮比有机肥对有机农业土壤微生物生物量的影响

不同碳氮比有机肥对有机农业土壤微生物生物量的影响作者:魏元茂来源:《农业与技术》2016年第21期摘要:本文对不同碳氮比的有机肥和有机农业土壤中的微生物生物量的关系进行了分析,从而确定合适的碳氮比范围。

关键字:碳氮比;有机肥;有机农业;土壤微生物量;影响中图分类号: S963.91 文献标识码:A DOI:10.11974/nyyjs.201611310061 前言土壤中的微生物是土壤中的化学性质的重要体现,也是土壤生物化学性质的关键成分,而土壤中的微生物含量以及土壤中的微生物种类的变化是导致土壤中肥力出现变化的主要原因。

土壤中的生态系统,若想发生有机物质和土壤养分的动力变化,则需要依靠土壤中的微生物含量发生变化。

土壤中的微生物可以帮助土壤进行土壤中有机物质的分解,并帮助土壤生成一定的腐殖质[1]。

对于调节土壤中的能量,进行土壤的养分循环具有至关重要的作用,是实现土壤中植物养分储备的主要动力。

有机农业是绿色环保的农业,拒绝使用化学肥料。

此外,有机农业还注重植物养分的储存和生成,对于改善土壤环境的肥料具有严格的要求。

有机农业的发展的主要肥料来源是有机肥,同时在有机农业的发展中,对于有机肥料具有特殊的要求。

若有机农业中使用有机肥的种类不同,土壤中受到有机肥料的影响也大不相同。

有机肥中含有多种微量元素,其中包含碳元素、氮元素、磷元素以及其他元素等,这些微量元素在微生物的作用下,释放在土壤中,为土壤中植物的生长提供动力。

而土壤中有机肥料影响土壤结构主要由有机肥料中的碳氮比来决定。

当前,国际上很多研究人员都在研究有机肥以及无机肥中不同碳氮比在有机肥以及无机肥配比中的土壤的影响情况。

因为有机农业中严禁使用化肥,所以之前的研究结果都不能为有机农业的研究提供一定的科学依据。

当前有机农业的研究已经有了一定的进展,但是在碳氮比的角度来分析的较少,而本文则是从不同碳氮逼得角度来分析有机肥对有机农业土壤中的微生物影响。

生物脱氮机理、影响因素及应用工艺详解

生物脱氮机理、影响因素及应用工艺详解

生物脱氮机理、影响因素及应用工艺详解生物脱氮是指在微生物的联合作用下,污水中的有机氮及氨氮经过氨化作用、硝化反应、反硝化反应,最后转化为氮气的过程。

其具有经济、有效、易操作、无二次污染等特,被公认为具有发展前途的方法,关于这方面的技术研究不断有新的成果报道。

一、机理详解1、氨化反应氨化反应是指含氮有机物在氨化功能菌的代谢下,经分解转化为 NH4+的过程。

含氮有机物在有分子氧和无氧的条件下都能被相应的微生物所分解,释放出氨。

2、硝化反应硝化反应由好氧自养型微生物完成,在有氧状态下,利用无机氮为氮源将NH4+化成NO2-,然后再氧化成NO3-的过程。

硝化过程可以分成两个阶段。

第一阶段是由亚硝化菌将氨氮转化为亚硝酸盐(NO2-),第二阶段由硝化菌将亚硝酸盐转化为硝酸盐(NO3-)。

3、反硝化反应反硝化反应是在缺氧状态下,反硝化菌将亚硝酸盐氮、硝酸盐氮还原成气态氮(N2)的过程。

反硝化菌为异养型微生物,多属于兼性细菌,在缺氧状态时,利用硝酸盐中的氧作为电子受体,以有机物(污水中的BOD成分)作为电子供体,提供能量并被氧化稳定。

二、生物脱氮主要影响因素1、温度生物硝化反应的适宜温度范围为20~30℃,15℃以下硝化反应速率下降,5℃时基本停止。

反硝化适宜的温度范围为20~40℃,15℃以下反硝化反应速率下降。

实际中观察到,生物膜反硝化过程受温度的影响比悬浮污泥法小,此外,流化床反硝化温度的敏感性比生物转盘和悬浮污泥的小得多。

2、溶解氧硝化反应过程是以分子氧作为电子终受体的,因此,只有当分子氧(溶解氧)存在时才能发生硝化反应。

为满足正常的硝化效果,在活性污泥工艺运行过程中,DO值至少要保持在2mg/L以上,一般为2~3mg/L。

当DO值较低时,硝化反应过程将受到限制,甚至停止。

反硝化与硝化在溶解氧的需求方面是一个对立的过程。

传统的反硝化过程需要在严格意义上的缺氧环境下才能发生,这是因为DO与NO3-都能作为电子受体,存在竞争行为。

日粮不同碳源和碳氮比对罗非鱼生长性能、肠道形态和非特异性免疫的影响

日粮不同碳源和碳氮比对罗非鱼生长性能、肠道形态和非特异性免疫的影响

罗非鱼是世界上最有发展前途的鱼种之一,其具有耐高盐度、耐低氧、抗病性和抗逆性强、生长速度快、市场可接受性强等特点,被广泛养殖。

生物絮凝技术是支持罗非鱼集约化生产的技术之一。

生物絮凝技术是在有限的水资源和空间利用率下提高水产养殖生产力的一种新途径,这项技术的基础是吸收废弃的营养物质,并将其转化为微生物利用,而微生物或其代谢物又可以作为水产动物的天然食物来源,尤其是那些具有有害习惯的水产物种,如罗非鱼和虾(De Schryver 等,2008)。

营养废物的同化可以使培养基中有毒废物维持在较低水平,使水分交换最小化,从而提高水利用效率和更高的生物安全性(Ekasari 等,2014)。

Haridas 等(2017)发现,微生物絮体系统对罗非鱼的生长发育、消化酶和抗氧化酶分泌及体液非特异性免疫反应具有正向影响。

生物絮体系统是通过控制水中碳氮比形成的微生物集合体,培养基中增加碳氮比可以刺激异养菌的生长和增殖,加速无机氮同化过程,促进有机物的利用(Ferreira 等,2015)。

碳氮比值可以通过向水中添加额外的有机碳源或通过增加饲料中的碳水化合物与蛋白质的比值来控制。

因此,本研究旨在评价不同碳源和两种碳氮比生物絮体系统对罗非鱼饲养系统水质、生长性能、饲料利用率、肠道形态特征和免疫反应的影响。

1 材料与方法1.1 试验设计 试验采用5×2因子设计,即5种不同的碳源和两个碳氮比,由10个生物絮体系统和一个清水系统(对照组)构成。

试验选择330日粮不同碳源和碳氮比对罗非鱼生长性能、肠道形态和非特异性免疫的影响张 雯,崔宝禄,邹 溪,韦玲冬,张玉明,陈 志*(贵州省都匀市黔南民族师范学院,贵州都匀 558000)[摘要]文章旨在研究不同碳源和碳氮比生物絮体系统对罗非鱼苗生长性能、肠道形态和非特异性免疫反应的影响。

试验采用5×2因子设计,即5种不同的碳源和两个碳氮比值,由10个生物絮体系统和一个清水系统(对照组)构成。

不同碳氮比及氮源对菇渣发酵的影响

不同碳氮比及氮源对菇渣发酵的影响

不同碳氮比及氮源对菇渣发酵的影响白永娟;徐炜南;常晓晓;胡晓辉【摘要】为探讨菇渣作为无土栽培基质的适宜发酵条件,通过设置不同 C/N 比(25∶1、30∶1和35∶1)和不同氮源(牛粪、鸡粪和尿素)试验组合,测定分析不同发酵阶段菇渣的发酵温度、积温、体积质量、总孔隙度、通气孔隙度、持水孔隙度、大小孔隙比、电导率(electrical conductivity,EC)值及 pH 值。

结果表明:除氮源对总孔隙度的变化无显著影响外,C/N比和氮源均显著影响其他指标。

其中:C/N 比为30∶1、氮源为牛粪+尿素和鸡粪+尿素的处理使堆体大于50℃的高温分别持续8、8和9 d,即有利于发酵堆体保持较长时间的高温,缩短菇渣发酵腐熟的时间;C/N比为30∶1处理的菇渣体积质量、孔隙度从发酵第70天开始均趋于稳定,有利于菇渣的腐熟;氮源为牛粪+尿素和鸡粪+尿素处理的菇渣体积质量、持水孔隙度、p H 值和 EC 值从发酵第70天开始趋于稳定。

综上所述,在本试验条件下,菇渣宜采用初始C/N比为30∶1、氮源为鸡粪+尿素或者牛粪+尿素的组合进行发酵。

%Summary With the increase production of agricultural products by years,large quantitative accumulations of agricultural waste have brought severe environmental problems and wasting ofresources.Therefore,recycling and reusing the agricultural waste become urgent.Recently,composting of agricultural waste has become the research focus of soilless culture substrate.With the advantages such as stable physiochemical property,adequate supply of fat,wide variety of sources and low cost,soilless culture substrates have been accepted by majority of farmers, and the demand for substrates increased quickly.Mushroom waste contains large amounts of mycoprotein,a variety of metabolites andunderutilized nutrients,which is a good substrate material.In thisstudy,mushroom residue was selected as the main material for composting,the effects of different carbon-to-nitrogen ratios and nitrogen sources on physiochemical properties of composting were investigated,to find the optimal condition for transformation of mushroom residue to soilless culture substrate,to provide optimized composting parameters for the practical production,to offer scientific basis for the widespread application of the mushroom substrates. The carbon-to-nitrogen (C/N) ratio was set at three levels of 25∶1,30∶1,and 35∶1.Five different combinations of nitrogen sources were selected,including cow manure,chicken manure,urea,a mixture of cow manure and urea,and a mixture of chicken manure and urea.Actually,the C/N ratio of mushroom w as 40∶1 , and the dry cow manure,dry chicken manure and urea were used to adjust the C/N ratio.Each treatment contained 100 kg mushroom residue and 3% effective microorganism (EM) agents,and the water content was adjusted to 60%.Static composting at high temperature was applied and the experimental containers were covered by plastic sheeting.The piles were turned over every 10 days,and were sampled every 15 days for a study period of 80 posting temperature,total porosity,air-filled porosity,water holding capacity,air-water ratio, electrical conductivity(EC),pH and bulk density were measured for each sample.The temperature in center of each pile was recorded using a temperature meter every day. The results showed that during the composting period, the C/N ratios had significant influence on all parameters,while thenitrogen sources had significant influence on all parameters except total porosity.The optimal condition to keep high temperature(>50 ℃,and last for 8,8 and 9 days,respectively),and to shorten the composting period of mushroom residue was C/N ratio of 30∶1,and adding the mixture of cow manure or chicken manure and urea as an additive nitrogen source.Under the C/N ratio of 30∶1,bulk density and porosity tend to be stable after 70-day fermentation,beneficial to composting of mushroom residue.When the mixture of cow manure or chicken manure and urea was added as nitrogen source,bulk density,water holding capacity,pH and EC values tended to be stable after 70-day composting. In conclusion,the optimal condition for composting of mushroom residue is the initial C/N ratio of 30∶1 and the mixture of cow manure or chicken manure and urea as the nitrogen source.【期刊名称】《浙江大学学报(农业与生命科学版)》【年(卷),期】2016(042)006【总页数】9页(P760-768)【关键词】菇渣;碳氮比;氮源;发酵;无土栽培基质【作者】白永娟;徐炜南;常晓晓;胡晓辉【作者单位】西北农林科技大学园艺学院,农业部西北设施园艺工程重点实验室/陕西省设施农业工程技术研究中心,陕西杨凌 712100;西北农林科技大学园艺学院,农业部西北设施园艺工程重点实验室/陕西省设施农业工程技术研究中心,陕西杨凌 712100;西北农林科技大学园艺学院,农业部西北设施园艺工程重点实验室/陕西省设施农业工程技术研究中心,陕西杨凌 712100;西北农林科技大学园艺学院,农业部西北设施园艺工程重点实验室/陕西省设施农业工程技术研究中心,陕西杨凌 712100【正文语种】中文【中图分类】X71;S141.4伴随我国农产品数量逐年增加,农业废弃物的大量积累,进而产生了较为严重的环境及资源浪费问题[1];因此,农业废弃物的资源化及再利用问题亟待解决.近年来,农业废弃物发酵成无土栽培基质已成为研究热点,其中,关于油菜秸秆、棉秆、柠条、椰糠等废弃物的研究报道较多[25].菇渣废弃物中含有大量的菌体蛋白、多种代谢产物及未被充分利用的养料,是较好的栽培基质原料[6].前人对菇渣利用的研究多为基质配比方面,如:李海燕等[7]筛选出适宜的蘑菇渣代替草炭栽培基质的配方为V(草炭)∶V(菇渣)=1∶1,适宜番茄幼苗的生长;郭淑云等[8]发现,按V(菇渣)∶V(炉渣)∶V(鸡粪)=9∶5∶3的比例混合可以作为黄瓜的最优栽培基质配方;但是关于菇渣发酵影响因素的研究少见报道.碳氮比(C/N)和氮源是影响农业废弃物发酵的核心因素,通常,发酵初始的C/N比控制在25∶1到35∶1之间[911],但不同农业废弃物存在一定的差异.菇渣作为农业废弃物,含有大量的有机质,所以需要选择合适的氮源来调节发酵初始的C/N比.由于无机氮源更容易被微生物所利用,而有机氮源中的氮需要将有机氮转化成无机氮才可以被微生物所利用,所以有机氮源更有利于微生物的持续利用.为确定适宜菇渣发酵的C/N比和氮源,本文以菇渣为发酵主原料,研究不同C/N比和氮源对菇渣发酵理化性质的影响,旨在确定菇渣转化为栽培基质的适宜的发酵条件,为菇渣的基质化利用提供发酵参数,以及为菇渣基质的实际生产和应用提供科学依据.1.1 试验材料与设计发酵原料为杏鲍菇菇渣废弃物、牛粪和鸡粪,各物质养分含量见表1.试验于2014年12月至2015年3月在陕西杨凌西北农林科技大学北校区园艺场玻璃温室内进行.设置不同C/N比和氮源2个因素,其中:C/N比设置3个水平,分别为T1(25∶1)、T2(30∶1)、T3(35∶1);氮源设置5个水平,分别为S1(牛粪)、S2(鸡粪)、S3(牛粪+尿素)、S4(鸡粪+尿素)、S5(尿素).共15个处理,3个重复.每个处理含100 kg菇渣,通过添加不同氮源调节C/N比;氮源添加量见表2.采用静态高温堆腐方式,加入发酵物总质量3%的有效微生物群(effective microorganisms,EM)菌剂,相对含水量调至60%.采用5点取样法,每个重复取样200 g,每隔15 d取一次样,每隔10 d翻堆一次,堆置80 d.1.2 测定项目与方法发酵温度测定:利用HL2008多路温度巡检仪(杭州威博科技有限公司),将温度探头插入堆体中心,每15 min记录一次.每天所测温度的平均值记为当天发酵的温度.发酵后菇渣体积质量(容重)、总孔隙度、通气孔隙度、持水孔隙度、电导率(electrical conductivity, EC)、p H值的测定参照郭世荣[12]的方法;有机碳、全氮、全磷、全钾测定参照鲍士旦[13]的方法.1.3 数据分析利用Excel 2010进行数据整理分析和作图,测定结果利用SPSS 20.0软件的邓肯多重比较法分析各处理间的差异(P<0.05).2.1 不同C/N比和氮源对发酵过程中菇渣温度和积温的影响2.1.1 不同C/N比对菇渣发酵过程中温度变化的影响从图1A可以看出,在发酵过程中不同C/N比处理的菇渣温度均呈现先上升后下降的变化趋势.各处理都从堆腐的第2天开始迅速升温;第4天各处理温度均达到45℃以上;第6天,T2和T3处理温度达到50℃以上,并持续8 d,而T1处理最高温度只达到47℃,并仅持续2 d;T2处理从第57天到发酵结束,温度显著高于其他处理.由此表明,将菇渣发酵初始C/N比控制在30∶1有利于堆体的高温发酵腐熟.2.1.2 不同氮源对菇渣发酵过程中温度变化的影响从图1B可以看出,在发酵过程中不同氮源处理的菇渣温度均呈现先上升后下降的变化趋势.各处理从第2天开始均迅速升温.S3、S4和S5处理到第3天时温度均达到40℃以上,S2、S3、S4和S5处理的温度高于50℃的时间分别持续2、8、9和3 d,而S1处理的温度最高达到49.5℃,并持续3 d.S5处理从第8天开始显著低于其他处理;S3处理从第18到27天,温度显著高于其他处理;S4处理从第53天到发酵结束,温度显著高于其他处理.这说明在菇渣发酵中,氮源为有机物和无机物混合的处理有利于堆体的高温发酵腐熟.2.1.3 不同C/N比和氮源对发酵过程中菇渣积温的影响由表3可知:C/N比为30∶1处理的积温明显高于其他2个水平的处理,达到1 900.94℃;氮源为鸡粪+尿素处理的积温最高,为1 916.98℃,且牛粪+尿素处理的积温为1 876.43℃,两者之间差异无统计学意义(P>0.05).从表4可以看出,C/N比和氮源对菇渣发酵有效积温的影响均极为显著.2.2 不同C/N比和氮源对菇渣发酵前后C/N比的影响由表3可以看出:在菇渣发酵前后的不同C/N比处理下,初始C/N比为25∶1和30∶1的处理在发酵后C/N比相对较低,为14∶1;氮源为牛粪(S1)、鸡粪(S2)、牛粪+尿素(S3)处理的降低比例较多.在发酵过程中,C/N比和氮源对菇渣发酵后C/ N 比的降低均无显著影响(表4).2.3 不同C/N比和氮源对菇渣发酵影响的主因素分析双因素试验的方差分析结果(表4)表明:发酵菇渣C/N比的变化既不受单因素(C/N 或氮源)的影响,也不受两者交互作用的影响;总孔隙度的变化受C/N比及交互作用的影响极显著,但不受单因素氮源的影响;C/N比、氮源以及两者交互作用对体积质量、通气孔隙度、持水孔隙度、大小孔隙比、p H值、EC值及积温变化的影响均极显著.2.4 不同C/N比和氮源对发酵过程中菇渣理化性质的影响2.4.1 不同C/N比和氮源对发酵过程中菇渣物理性质的影响由图2A可知:T2处理的菇渣体积质量在发酵第70到80天的变化趋于稳定;第30到70天, S4处理的菇渣体积质量上升趋势显著,从第70天开始变化趋于平缓;且在T2水平下,S3处理的增长率最大(表4).从图2B可知,T2处理的总孔隙度在第45到70天变化趋势平缓;添加相同的氮源,总孔隙度的变化为T2>T1>T3处理,且在T2水平下的S4处理的通气孔隙度变化最大(表4).从图2C可知:第80天,通气孔隙度为T2>T1>T3处理;从第70天开始,S3和S4处理的变化趋于稳定.从图2D可以看出,T2处理在第15天时持水孔隙度达到87%,S3和S4处理在发酵第30到 70天变化趋于稳定,到第80天,两者的持水孔隙度分别达到81%和83%,为最大值.由图2E可知:S4处理在发酵第30到80天,大小孔隙比下降趋势明显,第70天,显著低于其他各处理;发酵第80天时,S3处理的大小孔隙比最高,显著高于其他各处理;在T1水平下S1处理和T2水平下S4处理的大小孔隙比变化最大(表4).2.4.2 不同C/N比和氮源对菇渣发酵过程中EC和p H值的影响由图3 A可知:在整个发酵过程中EC值的变化为T1>T2>T3处理;T2处理从发酵第70天开始呈现相对稳定的趋势;S2处理的EC值一直为最大;S1和S3处理在发酵第30到70天变化趋于稳定.由图3B可知:在整个发酵过程中p H值呈现为T3>T2>T1处理,且p H值都呈碱性;S3处理从第45天开始变化趋势趋于稳定,维持在8.6到8.7之间;S1处理的p H值变化一直处于最高状态;S4处理在发酵第80天的p H值相比于其他处理为最低.无土栽培基质以其廉价、易获得,以及稳定的理化性质和丰富的营养物质等特点,已经被广大农户所认可并加以利用,且需求量逐年增加.而农业废弃物转化为无土栽培基质,则需要发酵腐熟过程.基质发酵过程是通过微生物的发酵作用,对有机物进行有效的生物降解,将其转化为富含营养物质的腐殖质[14].这个过程包括4个阶段,即升温阶段、高温阶段、降温阶段、稳定阶段.在高温期可以杀死有机物中的一些病原微生物,所以温度可以判断有机物是否发酵腐熟.如果发酵温度太低,将影响微生物的新陈代谢,并且有机基质得不到有效的氧化分解,所以高温是有机质得到有效降解的必要条件,并在适宜的范围内降解得更快[15].有研究表明,发酵温度在40℃到65℃之间为最佳发酵温度,当温度高于55℃时,可以使一些病原微生物致死[16].在发酵过程中,发酵温度维持50℃以上的高温5~10 d,有机质中所含的虫卵等物质就会被杀死,有毒物质会被微生物分解[1718].在本试验中,各处理温度在发酵第3天均达到高温,并持续一段时间,且在前面所述的适宜发酵温度范围内.C/N为30∶1的处理积温高于C/N比为25∶1和35∶1的处理,且C/N比为30∶1和35∶1的处理温度达50℃以上,并持续8 d;因此,C/N比为30∶1更有利于菇渣的发酵腐熟.氮源为鸡粪+尿素和牛粪+尿素的处理在整个发酵过程中持续高温的时间比较长,可能由于禽畜粪便内含有大量的微生物,可以维持较长时间的高温,而且尿素能够被微生物迅速利用,使得微生物的活动旺盛,加快了有机质的降解,所以氮源为禽畜粪便+尿素更有利于菇渣的发酵腐熟.基质理化性质对作物生长有较大的影响.在本试验中,菇渣理化性质在发酵前后有明显的变化.适宜作物生长的基质体积质量在0.1~0.8 g/cm3之间,总孔隙度在54%~96%的范围内[12].在本试验中,菇渣体积质量均在0.2~0.5 g/cm3之间,经过发酵后,菇渣的总孔隙度有所下降,在93%~96%的范围内.贺满桥[19]研究表明,在蘑菇废弃物的发酵试验中,通气孔隙度在发酵结束时大于10%,通气性比泥炭好.本试验在菇渣发酵结束后,各处理的通气孔隙度均大于10%,其中C/N比为30∶1的处理在发酵前后变化明显,并且从发酵第70天开始,变化趋于稳定.对于持水孔隙度,C/N比为30∶1的处理在发酵前后变化较大,氮源为禽畜粪便+尿素的处理(S3和S4)从发酵第70天开始变化趋于稳定,且在发酵结束时两者的持水孔隙度分别达到81%和83%.刘宁等[20]在棉秆发酵试验中发现,发酵后棉秆持水孔隙度有明显的增加.本试验结果与此一致.适宜植株生长的EC值应低于0.6~2.0 mS/cm,若高于3.5 mS/cm,则会抑制植株的正常生长[21].本试验在菇渣发酵过程中,EC值呈上升趋势,均大于4.0 mS/cm,并且与添加粪肥的量呈正相关,粪肥量越多,EC值越高;且氮源为鸡粪的处理EC值高于其他处理,而氮源为尿素的处理EC值较低,氮源为有机氮的处理EC值高于无机氮的处理,禽畜粪便+尿素的处理处于中间状态.张晔等[3]研究表明,发酵时用有机氮作为氮源更有利于EC值的提高.本试验结果与此一致.在发酵过程中p H值是影响微生物活动的重要因素,中性或者弱碱性的环境适宜微生物的生活,p H值一般在6.7~8.5之间[22].在本试验中,C/N比为30∶1的处理发酵前后p H值变化较大,且发酵结束时p H值为8.6,而C/N比为35∶1的处理在发酵过程中p H值偏高,在8.4~8.9之间;氮源为牛粪的处理在发酵过程中p H值最高,在8.2~9.2之间.p H值可以作为发酵物是否腐熟的重要指标之一,发酵腐熟物的p H值一般在8~9之间,呈弱碱性[23].本试验结果与其一致.通过2因素方差分析可知:C/N比和氮源对菇渣发酵积温的影响显著,且C/N比对菇渣体积质量、总孔隙度、通气孔隙度、持水孔隙度、EC值和p H值的变化均有显著影响,T2处理的体积质量、总孔隙度、通气孔隙度以及EC值从发酵第70天开始就趋于稳定,所以,当C/N比为30∶1(T2处理)时有利于菇渣的腐熟;氮源对菇渣体积质量、通气孔隙度、持水孔隙度、EC值和p H值的变化有显著影响,S3(牛粪+尿素)和S4(鸡粪+尿素)处理的体积质量、持水孔隙度、p H值以及EC值从发酵第70天开始趋于稳定,所以,添加禽畜粪便+尿素有利于菇渣的腐熟.菇渣发酵初始C/N比为30∶1、氮源为禽畜粪便+尿素的组合处理在发酵过程中有较高的有效积温,菇渣体积质量、总孔隙度、持水孔隙度、EC值、p H值等理化指标从发酵第70天开始趋于稳定,即缩短了菇渣发酵的时间.综上所述,在本试验条件下,宜采用初始C/N比为30∶1、鸡粪+尿素或者牛粪+尿素为氮源进行菇渣发酵.Summary With the increase production of agricultural products by years,large quantitative accumulations of agricultural waste have brought severe environmental problems and wasting ofresources.Therefore,recycling and reusing the agricultural waste become urgent.Recently,composting of agricultural waste has become the research focus of soilless culture substrate.With the advantages such as stable physiochemical property,adequate supply of fat,wide variety of sources and low cost,soilless culture substrates have been accepted by majority of farmers, and the demand for substrates increased quickly.Mushroom waste contains large amounts of mycoprotein,a variety of metabolites and underutilized nutrients,which is a good substrate material.In thisstudy,mushroom residue was selected as the main material for composting,the effects of different carbon-to-nitrogen ratios and nitrogen sources on physiochemical properties of composting were investigated,to find the optimal condition for transformation of mushroom residue to soilless culture substrate,to provide optimized composting parameters for the practical production,to offer scientific basis for the widespread application of the mushroom substrates.The carbon-to-nitrogen(C/N)ratio was set at three levels of25∶1,30∶1,and 35∶1.Five different combinations of nitrogen sources were selected,including cow manure,chicken manure,urea,a mixture of cow manure and urea,and a mixture of chicken manure and urea.Actually,theC/N ratio of mushroom was 40∶1, and the dry cow manure,dry chickenmanure and urea were used to adjust the C/N ratio.Each treatment contained 100 kg mushroom residue and 3%effectivemicroorganism(EM)agents,and the water content was adjusted to60%.Static composting at high temperature was applied and the experimental containers were covered by plastic sheeting.The piles were turned over every 10 days,and were sampled every 15 days for a study period of 80 posting temperature,total porosity,air-filled porosity,water holding capacity,air-water ratio, electrical conductivity(EC),p H and bulk density were measured for each sample.The temperature in center of each pile was recorded using a temperature meter every day. The results showed that during the composting period,the C/N ratios had significant influence on all parameters,while the nitrogen sources had significant influence on all parameters except total porosity.The optimal condition to keep high temperature(>50℃,and last for 8,8 and 9days,respectively),and to shorten the composting period of mushroom residue was C/N ratio of 30∶1,and adding the mixture of cow manure or chicken manure and urea as an additive nitrogen source.Under the C/N ratio of 30∶1,bulk density and porosity tend to be stable after 70-day fermentation,beneficial to composting of mushroom residue.When the mixture of cow manure or chicken manure and urea was added as nitrogen source,bulk density,water holding capacity,p H and EC values tended to be stable after 70-day composting.In conclusion,the optimal condition for composting of mushroom residueis the initial C/N ratio of 30∶1 and the mixture of cow manure or chicken manure and urea as the nitrogen source.【相关文献】[1] 彭靖.对我国农业废弃物资源化利用的思考.生态环境学报, 2009,18(2):794-798. PENGJ.Review and discussion on utilization of agricultural waste resources in China.Ecology and Environmental Sciences,2009,18(2):794-798.(in Chinese with English abstract)[2] 汪季涛,朱世东,胡克玲,等.油菜秸秆适宜发酵条件研究.中国农学通报,2006,22(12):373-376. WANG J T,ZHU S D,HU K L,et al.Studies on the favorable condition of Cole stalk fermentation.Chinese Agricultural Science Bulletin,2006,22(12):373-376.(in Chinese with English abstract)[3] 张晔,余宏军,杨学勇,等.棉秆作为无土栽培基质的适宜发酵条件.农业工程学报,2013,29(12):210-217. ZHANG Y,YU H J,YANG X Y,et al.Favorable conditions of cotton straw composting using as soilless culture substrate.Transactions of the Chinese Society of Agricultural Engineering,2013,29(12):210-217.(inChinese with English abstract)[4] 冯海萍,曲继松,杨志刚,等.氮源类型与配比对柠条粉基质化发酵品质的影响.农业机械学报,2015,46(5):171-178. FENG H P,QU J S,YANG Z G,et al.Effects of type and proportion of nitrogen on fermentation quality of Caragana powder for substrateproduction.Transactions of the Chinese Society for Agricultural Machinery,2015,46(5):171-178. (in Chinese with English abstract)[5] 陈艳丽,李绍鹏,高新生,等.椰糠在不同氮源发酵过程中养分变化规律的研究.热带作物学报,2010,31(4):525-529. CHEN Y L,LI S P,GAO X S,et al.Nutrient variation of crumbled coconut husk fermented under different nitrogen sources.Chinese Journal of Tropical Crops,2010,31(4): 525-529.(in Chinese with English abstract)[6] 王春雨.基于农业废弃物利用的茄果类蔬菜育苗基质研究.山东,泰安:山东农业大学,2010:5-6. WANG C Y.Study on the seedling media based on agricultural wastes for solanaceous fruit vegetables.Tai'an, Shandong:Shandong Agricultural University,2010:5-6.(in Chinese with English abstract)[7] 李海燕,李絮花,王克安,等.蘑菇渣替代草炭的栽培基质对番茄幼苗氮素状况的影响.中国农学通报,2011,27(31): 244-247. LI H Y,LI X H,WANG K A,et al.Effects of mushroom compost replace peat on substrates formula on N nutrition status of tomato seedlings.Chinese Agricultural Science Bulletin,2011,27(31):244-247.(in Chinese with English abstract)[8] 郭淑云,吴晓刚,赵静杰.菇渣有机生态型无土栽培基质配方初探.中国园艺文摘,2014(3):34-35. GUO S Y,WU X G,ZHAO J J.Preliminary test study on organic ecotype soilless culture on cucumber.Chinese Horticulture Abstracts,2014(3):34-35.(in Chinese with English abstract)[9] VUORINEN A H,SAHARINEN M H.Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system. Agriculture,Ecosystems and Environment,1997,66(1):19-29. [10] GOLUEKE C G.Principles of composting:Understanding the process//The Art and Science of Composting.Emmaus, Pennsylvania,USA:The JG Press,1991:14-27.[11] 黄国锋,吴启堂,黄焕忠.有机固体废弃物好氧高温堆肥化处理技术.中国生态农业学报,2003,11(1):159-161. HUANG G F,WU Q T,HUANG H Z.Aerobic and thermophilic composting technology of solid organic waste. Chinese Journal of Eco-Agriculture,2003,11(1):159-161. (in Chinese with English abstract)[12] 郭世荣.无土栽培学.北京:中国农业出版社,2005:423-425. GUO S R.SoillessCulture.Beijing:Chinese Agricultural Press,2005:423-425.(in Chinese)[13] 鲍士旦.土壤农化分析.北京:中国农业出版社,2000:44-48. BAO S D.Soil and Agricultural Chemistry Analysis. Beijing:Chinese Agricultural Press,2000:44-48.(in Chinese)[14] HAUG R post Engineering:Principles and Practice.Michigan,USA:Ann Arbor Science,1980:28-62.[15] 秦莉,沈玉君,李国学,等.不同C/N比对堆肥腐熟度和含氮气体排放变化的影响.农业环境科学学报,2009,28(12): 2668-2673. QIN L,SHEN Y J,LI G X,et al.The impact of composting with different C/N on maturity variation and emission of gas concluding N.Journal of Agro-Environment Science,2009, 28(12):2668-2673.(in Chinese with English abstract)[16] BERTOLDI M,VALLINI G,PERA A.The biology of composting.Waste Management and Research,1983,1: 157-176.[17] 钱晓雍,沈根祥,黄丽华,等.畜禽粪便堆肥腐熟度评价指标体系研究.农业环境科学学报,2009,28(3):549-554. QIAN X Y,SHEN G X,HUANG L H,et al.An index system for evaluating the maturity of animal manure composting.Journal of Agro-Environment Science,2009,28 (3):549-554.(in Chinese with English abstract)[18] 吕子文,顾兵,方海兰,等.绿化植物废弃物和污泥的堆肥特性研究.中国土壤与肥料,2010(1):57-64. LÜZ W,GU B,FANG H L,et post characteristics with greening plant waste and sewage sludge.Soil and Fertilizer Sciences in China,2010(1):57-64.(in Chinese with English abstract)[19] 贺满桥.蘑菇栽培废弃物的生物转化及在蔬菜育苗基质中应用.杭州:浙江大学,2012:25-26. HE M Q.The research on biological fermentation and application of mushroom castoff in vegetable nursery substrate.Hangzhou:Zhejiang University,2012:25-26.(in Chinese with English abstract)[20] 刘宁,边洋,王威,等.发酵棉秆屑的重组理化性质研究及配比筛选.新疆农业科学,2011,48(4):702-706. LIU N,BIAN Y,WANG W,et al.Study on recombinant physico-chemical properties of fermented cotton straw crumbs and the combination screening.Xinjiang Agricultural Sciences,2011,48(4):702-706.(in Chinese with English abstract)[21] CHONG C.Experiences with the utilization of wastes in nursery potting mixes and as field soil amendments. Canadian Journal of Plant Science,1999,79:139-148.[22] 李国学,张福锁.固体废弃物堆肥化与有机复混肥生产.北京:化学工业出版社,2000:23-24. LI G X,ZHANG F posting of Solid Waste and Production of Organic Compound Fertilizer.Beijing: Chemical Industry Press,2000:23-24.(in Chinese)[23] 李艳霞,王敏健,王菊思.有机固体废弃物堆肥的腐熟度参数及指标.环境科学,1999,20(2):98-103. LI Y X,WANG M J,WANG J S.The maturity indexes and standards of organic solid waste composting.Chinese Journal of Environmental Science,1999,20(2):98-103.(in Chinese with English abstract)。

铁基质自养反硝化去除水中硝酸盐污染物的研究 (1)

文章编号:1007‐2284(2014)11‐0059‐04铁基质自养反硝化去除水中硝酸盐污染物的研究王弘宇1,张惠宁1,吕 斌2,杨 开1(1.武汉大学土木建筑工程学院,武汉430072;2.武汉纺织大学环境工程学院,武汉430072) 摘 要:传统的生物脱氮技术是通过投加有机碳源作为电子供体,利用异养反硝化微生物,经过硝化反硝化过程,将硝酸盐还原为氮气。

近年来以铁基质为电子供体的自养反硝化菌的发现,为生物脱氮领域引入了全新的概念和思路。

铁基质自养反硝化的实现是以NO-3作为电子受体,单质铁或Fe(Ⅱ)作为电子供体,通过微生物的氧化还原反应获取能量的新型代谢途径。

概述了目前国内外对铁基质自养反硝化菌的研究现状及反应机理,并就铁自养反硝化微生物应用于污水处理领域的前景进行了展望。

关键词:铁基质;自养反硝化;生物脱氮 中图分类号:X172 文献标识码:AResearchonNitrateRemovalbyFe-dependentAutotrophicDenitrificationBacteriaWANGHong-yu1,ZHANGHui-ning1,LÜBin2,YANGKai1(1.SchoolofCivilEngineering,WuhanUniversity,Wuhan430072,China;2.SchoolofEnvironmentEngineering,WuhanTextileUniversity,Wuhan430072,China)Abstract:Thetraditionalbiologicalremovalofnitrateutilizesheterotrophicdenitrifyingbacteriathroughoutthenitrificationanddeni‐trificationstagestoconvertnitratetonitrogenwiththeextraorganicmattersastheelectrondonor.However,abrand-newconceptandmentalityforthebiologicalnitrogenremovalareintroducedwithseveralisolatedstrainsofFe-dependentdenitrifyingbacteriainrecentyears.ItisanewdiscoveryofmicrobialmetabolismthatmicroorganismsutilizeNO-3aselectronacceptorsandFeorFe(Ⅱ)aselectrondonorsandgetenergythroughthebiochemicalreactionforgrowth.Inthispaper,thecharacteristicsandmechanismsofFe(Ⅱ)-dependentautotrophicdenitrifyingbacteriaarereviewed,andprospectsofthesebacteriumarealsodiscussed.Keywords:Fe-dependent;autotrophicdenitrification;biologicaldenitrification收稿日期:2014‐02‐26基金项目:国家自然科学基金资助项目(51008239;51378400);湖北省自然科学基金资助项目(2013CFB289;2013CFB308)。

碳源及碳氮比对异养反硝化微生物异养反硝化作用的影响

碳源及碳氮比对异养反硝化微生物异养反硝化作用的影响
•相关推荐
碳源及碳氮比对异养反硝化微生物异养反硝化作用的影响
摘要:碳源(甘油和柠檬酸钠)及碳氮比对纯培养的`异养反硝化菌HP1(Pseudomonas alcaligenes)异养反硝化能力影响的试验表明,碳源种类对硝酸还原酶活性没有明显影响,对氧化亚氮还原酶活性有影响.批式培养方式下最适C/N为8,菌株HP1可以利用NO-3作为唯一氮源进行反硝化作用,证明HP1至少有2种硝酸还原途径.连续培养方式下温度对菌株HP1异养反硝化作用中间产物的积累有影响,不同C/N时均有NH4+积累,C/N为3时还有NO-2的积累. 作者:傅利剑郭丹钊史春龙黄为一 FU Li-jian GUO Dan-zhao SHI Chun-long HUANG Wei-yi 作者单位:南京农业大学,生命科学学院,微生物学系/农业部农业环境微生物工程重点开放实验室,江苏,南京,210095 期刊:农村生态环境ISTICPKUCSSCI Journal:RURAL ECO-ENVIRONMENT 年,卷(期):2005, 21(2) 分类号:X172 Q935 关键词:异养反硝化微生物反硝化作用碳源 C/N。

不同碳源和碳氮比对一株好氧反硝化细菌脱氮性能的影响


env ironm en t. The resu lts sh ow ed that n itrate reductase activ ity w as in flu enced by d ifferent carbon sou rce. The nitrogen rem oval rate by us ing succin ate and
K eywords: aerob ic den itrification; b iolog ical n itrogen rem ova;l C /N; P seudom ona s
1 引言 ( Introduct ion)
随着水体中氮素污染日益严重, 脱氮成为目前 水处理研究中的 重要课题. 目前普遍认为, 生物脱 氮是从废水中去除氮素污染的较为经 济有效的方
C /N rat io of 1 ~ 14, n it rate reduction ma in ly occu rred in the grow th phase of the 4~ 10 hou r and there w as m in im n itrite accumu lation in the p rocess.
2. 3 试验装置
试验装置由 2 L 具塞密闭的试剂瓶及管件组成
( 见图 1) , 整个反应器是密闭的, 进出口两端配有孔
径为 0. 25 m 的滤菌器. 在反应器中装入 1 L DM 培
养基后密封, 与氧气罐连接, 打开进气口和排气口,
以 3L m in- 1的流量通入纯氧气 3m in, 驱走反应器和
T echnology, H arb in 150090
2. D ep artm en t of M un icipal Engineering, W uhan U n ivers ity, W uhan 430072

生物反硝化脱氮碳源上微生物的多样性

生物反硝化脱氮碳源上微生物的多样性王小娇;席亚萍;张明【摘要】为了研究废弃农作物作为反硝化脱氮处理的新型碳源和生物膜载体中微生物的多样性及微生物的群落结构,将玉米芯作为反硝化碳源和生物膜的载体伽置在河道中,采集同步脱氮过程中的玉米芯样品并提取微生物总DNA,使用细菌通用引物对(GC341F和518R)从总DNA中成功扩增出目标16SrDNA片段,然后对扩增的16SrDNA进行变性梯度凝胶电泳(DGGE)测定,对凝胶染色并进行条带统计分析和切胶测序.结果表明以玉米芯为载体的生物膜优势菌变化规律与生存环境的变化存在较好的相关性,当水体中溶解氧提高后,生物膜上的优势种群以好氧/兼氧的异养杆状细菌Bacillus为主.【期刊名称】《上海化工》【年(卷),期】2010(035)006【总页数】4页(P1-4)【关键词】16SrDNA;PCR;DCGE【作者】王小娇;席亚萍;张明【作者单位】华东师范大学资源与环境学院,上海,200062;华东师范大学资源与环境学院,上海,200062;华东师范大学资源与环境学院,上海,200062【正文语种】中文【中图分类】Q935由于城市化进程的加快和工农业生产的迅猛发展,氮、磷等营养元素通过多种途径汇入河流等水体,造成水体污染和富营养化问题日益突出。

我国南方河流普遍存在低碳高氮现象,水体磷氮比过低使河流自净过程中反硝化所需的碳源不足,导致硝态氮难以有效去除。

本测试基于生物硝化-反硝化原理,研究了在模拟河道中提高水体中的碳浓度,营造反硝化环境,这种好氧、兼氧的生物膜环境为脱氮提供了良好的环境。

尽管很多研究者对脱氮的工艺条件进行了大量研究,但是对其脱氮的微生物机理尚不清楚,现代分子生物学为深入研究环境中微生物提供了先进的技术手段。

通过从模拟河道装置中提取总DNA,并进行聚合酶链式反应(PCR)和变性梯度凝胶(DGGE)和DNA测序等新的分子生物学技术,对生物膜中细菌多样性和微生物群落进行了研究,以获得生物膜中细菌组成和动态变化规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用与环境生物学报 2009,15 ( 3 ): 351~355Chin J Appl Environ Biol=ISSN 1006-687X2009-06-25DOI: 10.3724/SP.J.1145.2009.00351Biological nitri f i c ation process has been widely applied to remove nitrogen pollutants (ammonia and nitrite) in municipal wastewater treatment plants (WWTPs). The process of nitrification, including ammonia-oxidizing process and nitrite-oxidizing process, was performed using two phylogenetically unrelated groups of obligately chemolithotrophic bacteria. Ammonia-oxidizing bacteria (AOB) first oxidize ammonia to nitrite, and subsequently nitrite-oxidizing bacteria (NOB) oxidizenitrite to nitrate. Various parameters influence the nitrification process. Major factors of the process include dissolved oxygen (DO), temperature, pH, ammonia and nitrite concentrations, organic loading, and hydraulic loading rate [1]. The effect of soluble organic matter on nitrification was extensively investigated by many researchers [2~4]. Their results indicated that high C/N ratios induced interspecific competition for oxygen between nitrifying bacteria and heterotrophic bacteria, which resulted in nitri f i cation retardance.However, so far the effects of organic carbon on nitri f i cation were studied with respect either to reactor performance or不同C/N值下亚硝酸盐氧化菌和异养菌混合体系的微生物多样性*胡 杰 李大平** 陶 勇 张金莲 钟 琦 何晓红 王晓梅(中国科学院成都生物所应用与环境微生物中心 成都 610041)Microbial Diversity of Nitrite-oxidizing and Heterotrophic Bacterial Communities under Different C/N Ratios *HU Jie, LI Daping **, TAO Yong, ZHANG Jinlian, ZHONG Qi, HE Xiaohong & WANG Xiaomei(Center for Applied and Environmental Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences , Chengdu 610041, China)Abstract The microbial diversity of nitrite-oxidizing and heterotrophic bacterial communities at three C/N ratios of feed solutions was experimentally investigated using PCR- restriction fragment length polymorphism (RFLP) technique and correlated with nitrification performances of the mixture. At C/N = 0, the dominant populations were mainly autotrophic and oligotrophic bacteria (85.1%), including nitrite-oxidizing bacteria (NOB), and some strains of Bacteroidetes, Alphaproteobacteria, Actinobacteria, and green nonsulfur bacteria. At C/N = 0.44, autotrophic bacteria reduced, while heterotrophic bacteria (members of Gammaproteobacteria) increased. At C/N =8.82, members of Gammaproteobacteria dominated (93.8%), especially denitrifiers, i.e., Pseudomonas sp. And on the other side, a striking shift of nitrification performance occurred from a normal nitrite oxidation process to a simultaneous nitri fi c ation and denitri f i c ation process along with increasing C/N. The nitri fi c ation performances at the three C/N ratios could be well explained by the obtained microbial diversities. This study demonstrated the linkage between the functional performance (nitrification performance) and the microbial diversity, suggesting that PCR- RFLP technique together with functional parameter analysis has potential as a tool for relating functional variety to bacterial community shifts. Fig 3, Tab 2, Ref 13Keywords microbial diversity; PCR-restriction fragment length polymorphism (RFLP); nitrite-oxidizing bacteria (NOB);C/N ratioCLC Q938.15摘 要 采用PCR-RFLP 技术研究了不同C/N 比下亚硝酸盐氧化菌及异养菌混合体系的微生物多样性,并探讨了微生物菌群结构与其功能(硝化性能)的关系. C/N=0时,混合体系主要由自养菌和寡营养菌(85.1%)组成,包括亚硝酸盐氧化菌(NOB)、拟杆菌门、α-变形菌纲、浮霉菌门和绿色非硫细菌中的一些菌株. C/N=0.44时,混合体系中的自养菌减少,异养菌(主要是γ-变形菌纲的成员)大量出现. C/N=8.82时,γ-变形菌纲的菌株尤其是反硝化菌Pseudomonas sp.占主导(93.8%). 与此同时,随着C/N 升高,该混合体系的硝化性能也由专一的亚硝酸盐氧化过程转变为同时硝化反硝化过程. 微生物菌群结构的转变较好地解释了其硝化性能的改变. 本研究揭示了微生物菌群结构与其功能的内在联系,同时表明PCR-RFLP 技术与化学分析相结合是研究微生物菌群结构与功能的有力工具. 图3 表2 参13关键词 微生物多样性;PCR-限制性片段长度多态性(RFLP);亚硝酸盐氧化菌(NOB);C/N 比CLC Q938.15Received: 2008-03-27 Accepted: 2009-05-06∗Supported by the National High-tech Research and Development Program (“863” Program) of China (Nos. 20062AA05Z103,2007AA06Z324)**Corresponding author (E-mail: lidp@)35215 卷应 用 与 环 境 生 物 学 报 Chin J Appl Environ Biol to microbial spatial distribution, but hardly to the microbial community shifts. Understanding of the biodiversity and dominant species of the microbial community is greatly important in studying contaminant degradation pathways, optimizing treatment processes and improving removal efficiencies. The use of molecular techniques allows a more complete understanding of the diversity and distribution of bacteria than simply using cultivation-based methods. PCR- restriction fragment length polymorphism (RFLP) provides information about sequence variation in a mixture of PCR fragments of almost full-length 16S rDNA, and it can be used conveniently to infer the differences in microbial community compositions [5, 6]. PCR-RFLP allowed the detection of specific groups of bacteria and permitted their presence to be correlated with key environmental factors. Hence, in this study we chose PCR-RFLP technique to investigate microbial population shifts when supplied with organic carbon.This study focused on the linkage between nitrification performance and the microbial diversity. Furthermore, unlike other studies focusing on the ammonia-oxidizing process, and the community shifts of AOB and heterotrophic bacteria, we examined the nitrite-oxidizing process and the community shifts of NOB and heterotrophic bacteria.1 Material & methods1.1 Bacteria preparation and experimental designThe nitrite-oxidizing and heterotrophic bacteria were separated and enriched from Sanwayao Wastewater Treatment Plant (WWTP) in Sichuan Province (China) and were further studied under laboratory conditions. Three batch reactors (with 100 mL working volume) were used to culture the mixture under agitation (150 r/min) at 30 °C. The nutrient medium contained K 2HPO 4·H 2O 2 g/L, KH 2PO 4 1.5 g/L, MgSO 4·7H 2O 0.1 g/L, nitrogen source (NaNO 2) 1g/L and sodium acetate 0 g/L, 0.5 g/L and 10g/L (for C/N ratios of 0, 0.44, and 8.82, respectively). The changes in effluent water quality, that is, (1) nitrite-N, (2) nitrate-N, (3) total nitrogen and (4) chemical oxygen demand (COD), were measured after three days. When the nitrite was absolutely removed, the bacterial community was centrifuged and analyzed for microbial diversity. The experiment was repeated twice.1.2 PCRThe genomic DNA was extracted by using TIANamp bacterial genomic DNA extraction kit (TIANGEN, China). PCRs targeting total bacteria were performed with primers (27F [5’-AGAGTTTGATCCTGGCTCAG-3’] and 1492R [5’- GGTTACCTTGTTACGACTT-3’]) [7]. PCRs were carried out in a Peltier thermal cycler with 50 μL reaction volume (Bio-Rad, Hercules, CA, USA). The reaction mixture contained 10 ng of template DNA, 0.2 μmol/L of each primer, 1×PCR buffer, 200 μmol/L of each deoxynucleoside triphosphate, 2 mmol/L MgCl 2 and 1 U of Taq DNA polymerase (TaKaRa). The PCR conditionswere: at 95 °C for 3 min, 33 cycles at 95 °C for 1 min, at 51°C for 1 min and at 72 °C for 90 s, and final extension at 72 °C for 3 min. Amplification products were firstly examined by standard agarose gel electrophoresis (1.2% agarose, 0.5×TAE) with ethidium bromide staining to confirm the product size and then purified with TIANgel midi purification kit (TIANGEN, China).1.3 Restriction fragment length polymorphism(RFLP)The purified PCR products were ligated into the TaKaRa pMD18-T vector in Escherichia coli JM109 transformants. A total of 140 clones were randomly selected and were analyzed. The cloned inserts of 1 500 bp were grouped by RFLP to form operational taxonomic units (OTUs) using the type II restriction enzymes Hha I [GCG’C] and Msp I [C’CGG] simultaneously. After restriction digestion at 37 °C for 4 h, the banding patterns were compared by electrophoresis, and the clones showing the same RFLP pattern were grouped into a single OTU. The cloned inserts were sequenced in the Bioasia Company Shanghai Ltd. The OTUs with chimeric 16S rRNA gene sequences were removed by CHECK_CHIMERA program of Ribosomal Database Project II.1.4 Phylogenetic analysisAll sequences were submitted to GenBank database (Accession numbers: EU305563- EU305581 and EU305596- EU305601) and were searched for homology using the Ribosomal Database Project (RDP-II, ). The sequences were aligned with Clustal X, and phylogenetic tree was constructed with MEGA software (version 4.0) [8].1.6 Diversity indicesThe Shannon index (H’) [9] was calculated applying theformula H’ =, where P i is the proportion of theindividuals of OTUs pattern, and S relative to the total number of OTUs patterns. The Shannon evenness index (E ) [9] was calculated using the formula E = H’/ln S , where S is the total number of OTUs patterns. Coverage was calculated using the equation C = 1-n /N , where n is the number of clones that occurred only once and N is the total number of the examined clones.2 Results2.1 Nitrification performanceThe initial conditions used in the reactors and nitrification performance at different C/N ratios are listed in Table 1. The nitrite-N could be absolutely removed under all the conditions. The nitrate-N concentration was decreased as the C/N ratios increased. Total nitrogen (TN) removal rates were 0% and 70% at C/N = 0.44 and 8.82, respectively. The COD removal was around 87% with supplement of organic matter.2.2 Microbial diversityAfter excision of 16 non-target sequences and 6 chimeric sequences, a total of 25 different phylotypes were obtained. Three3533 期HU Jie, et al .:Microbial Diversity of Nitrite-oxidizing and Heterotrophic Bacterial Community under Different C/N Ratiosfull-length 16S rDNA clone libraries (reflecting the total bacterial community structure under three C/N ratios) were generated by PCR-RFLP (Fig. 1). The coverage was about 87.2%~93.8%, indicating that a majority of microbial community was covered in the three full-length 16S rDNA clone libraries. Diversity analysisof the three 16S rDNA clone libraries is shown in Table 2. The Shannon diversity indices (H ) were calculated to be 1.76, 1.25 and 1.08, and the Shannon evenness indices (E ) were found to be 0.71, 0.64 and 0.60. It was demonstrated that the three clone libraries had low diversity and evenness of the distribution of OTUs.The sequences obtained from the study were subjected to phylogenetic analysis. The sequenced clones were affiliated withTable 1 Initial conditions used in the reactor and nitrification performance at different C/N ratiosDifferent C/N ratios00.448.82Initial conditionsNitrite-N (ρ/mg L -1)100±3100±3100±3Nitrate-N (ρ/mg L -1)000Nitrification performance Nitrite-N (ρ/mg L -1)000Nitrate-N (ρ/mg L -1)101±490±30TN removal (r /%)02±0.570.0±1.8COD removal (r /%)88.5±3.086.4±1.5Fig. 1 Patterns after restriction digestion of the cloned inserts in different16S rDNA clone librariesa. C/N = 0;b. C/N = 0.44;c. C/N = 8.82Table 2 Diversity analysis of the three 16S rDNA clonelibraries at different C/N ratiosDifferent C/N ratios 00.448.82No. of clones 473932No. of OTUs 1276Coverage (r /%)87.292.393.8H 1.76 1.25 1.08E0.710.640.60Fig. 2 Patterns and their proportions of the three 16S rDNA clone libraries atdifferent C/N ratiosa. C/N = 0,b. C/N = 0.44,c. C/N = 8.8235415 卷应 用 与 环 境 生 物 学 报 Chin J Appl Environ Biolsequences from five major lineages of the bacteria, namely the Bacteroidetes, Alpha-, Beta- and Gamma-subdivisions of the Proteobacteria and Actinobacteria (Fig. 2). Phylogenetic tree was derived from full-length 16S rDNA by the neighbor-joining algorithm (Fig. 3).For C/N = 0, the sequences were obtained mainly from Bacteroidetes, Alpha- and Gamma-subdivisions of Proteobacteria and Actinobacteria. Phylogenetic analysis showed that 24 clones (53.2% of total clones) were members of Bacteroidetes and were mainly grouped with unclassified Sphingobacteriales. Eight clones (17.0%) were found in Alphaproteobacteria and those of Nitrobacter accounted for 37.5% of the total of Alphaproteobacteria. Seven clones were found within Gammaproteobacteria and those of Pseudomonas accounted for 28.6% of the total of Gammaproteobacteria. Six clones (12.8%) belonged to green nonsulfur bacteria (GNS), and the rest one to Actinobacteria.Fo r C /N =0.44, t h e m e m b e r s of B a c t e r oid e t e s , Alphaproteobacteria, Actinobacteria and GNS decreased, whilethese of Gammaproteobacteria increased to 87.2% and were found mainly belonging to Pseudomonas sp. (64.1%). The OTU 2-A and OTU 2-B were 99.9% and 95.2% similar to Pseudomonas stutzeri (88.0% of Pseudomonas sp.) and Pseudomonas nitroreducens (12.0% of Pseudomonas sp.), respectively. One clone was classified to Betaproteobacteria and its similarity to AB186827 was 99.7%.For C/N=8.82, the members of Gammaproteobacteria increased to 93.8%, and the rests belonged to Alphaproteobacteria (6.3%). The OTU 3-A and OTU 3-D were 99.9% and 99.6% similar to Pseudomonas stutzeri (80.0% of Pseudomonas sp.) and Pseudomonas nitroreducens (20.0% of Pseudomonas sp.), respectively. The main strains of Alphaproteobacteria were similar to Mesorhizobium sp. S1-8 and their similarity was 99.4%.3 DiscussionThe study on microbial diversity using PCR-RFLP technique and nitrification performance provides a moreFig. 3 Neighbor-joining phylogenetic tree based on the three 16S rDNA clone libraries at different C/N ratiosFrom 1-A to 1-L, C/N = 0; from 2-A to 2-G, C/N = 0.44; from 3-A to 3-F, C/N = 8.82. GenBank accession numbers were indicated in the following brackets respectively. Bootstrap values (1 000 replicates) are shown at the nodes. GNS: Green nonsulfur bacteria355 3 期HU Jie, et al.:Microbial Diversity of Nitrite-oxidizing and Heterotrophic Bacterial Community under Different C/N Ratioscomplete understanding of the functional parameters and community diversity shift of nitrite-oxidizing and heterotrophic bacterial communities with treatment of organic matter. At C/N =0, the culture was under autotrophic condition, nitrite-N was converted to equal quantity of nitrate-N, and the dominant populations were found belonging to the strains of Bacteroidetes, Alphaproteobacteria, Actinobacteria and green nonsulfur bacteria (mainly autotrophic and oligotrophic bacteria). At C/N = 0.44, the culture was under mixotrophic condition, the increase in nitrate-N was not equal to the decrease in nitrite-N, indicating a partial loss of nitrogen, and the strains dominating under the autotrophic condition decreased, but the members of Gammaproteobacteria (mainly Pseudomonas sp.) increased. At C/N = 8.82, the culture was also under mixotrophic condition, the concentration of nitrate-N, as well as that of nitrite-N, was zero, suggesting a obvious loss of nitrogen, and the dominated bacteria were Pseudomonas stutzeri and Pseudomonas nitroreducens. In the course of C/N ratios increasing, TN removal increased from 0% to 70%, and the dominant populations shifted from autotrophic bacteria to mainly Pseudomonas sp. The denitrification ability of the strains of Pseudomonas stutzeri, P. pseudoalcaligenes and P. nitroreducens had been proved by many articles [10~12]. TN removal is obviously performed by denitrifying bacteria; and it increased along with the increasing populations of denitrifying bacteria. On the other hand, the denitrifiers could also consume nitrite (besides nitrate) by denitrification [10, 13], and it was so presumed that nitrite was mainly removed by Pseudomonas sp. (not the decreasing NOB) at high C/N ratios.This study showed that the mixture treated with different C/N ratios had clearly distinctive communities, which had a linkage with nitrification performances. The shift of nitrification performance could be sufficiently explained by the obtained microbial diversities, suggesting that PCR- RFLP technique together with functional parameter analysis has potential as a tool for relating functional variety to bacterial community shifts. This study, therefore, demonstrates the usefulness of monitoring the performance of the nitrification process through a combined analysis of both nitrification parameters and microbial diversities.References1 Sharma B, Ahlert RC. Nitrification and nitrogen removal. Water Res,1977, 11: 897~9252 Ohashi A, de Silva DG, Mobarry B, Manem JA, Stahl DA, Rittmann BE.Influence of substrate C/N ratio on the structure of multi-species biofilms consisting of nitrifiers and heterotrophs. Wat Sci Tech, 1995, 32: 75~843 Okabe S, Hiratia K, Ozawa Y, Watanabe Y. Spatial microbialdistributions of nitrifiers and heterotrophs in mixed-population biofilms.Biotechnol Bioeng, 1996, 50: 24~354 Michaud L, Blancheton JP, Brunl V, Piedrahita R. Effect of particulateorganic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. Aquacult Eng, 2006, 34: 224~2335 Urakawa H, Kita-Tsukamoto K, Ohwada K. 16S rDNA genotyping usingPCR/RFLP (restriction fragment length polymorphism) analysis among the family Vibrionaceae. FEMS Microbiol Lett, 1997, 152: 125~1326 Ramirez-Moreno S, Martinez-Alonso MR, Mendez-Alvarez S, Esteve I,Gaju N. Seasonal population changes in the restriction fragment length polymorphism (RFLP) patterns from PCR-amplified 16S rRNA genes of predominant ribotypes in microbial mat samples from the Ebro Delta (Spain). Curr Microbiol, 2003, 46: 190~1987 Miyoshi T, Iwatsuki T, Naganuma T. Phylogenetic characterization of16S rRNA gene clones from deep-groundwater microorganisms that pass through 0.2-micrometer-pore-size filters. Appl Environ Microbiol, 2005, 71: 1084~10888 Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular EvolutionaryGenetics Analysis (MEGA) software version 4.0. Mol Biol & Evol, 2007, 24: 1596~15999 Hill TCJ, Walsh KA, Harris JA, Moffett BF. Using ecological diversitymeasures with bacterial communities. FEMS Microbiol Ecol, 2003, 43: 1~1110 Blaszczyk M. Effect of various sources of organic carbon and highnitrite and nitrate concentrations on the selection of denitrifying bacteria. II. Continuous cultures in packed bed reactors. Acta Microbiol Pol, 1983, 32: 65~7111 Ping L, De-Li L, Nahimana L, Chen SL, Yang X, Zhao L. High nitrogenremoval from wastewater with several new aerobic bacteria isolated from diverse ecosystems. J Environ Sci (China), 2006, 18: 525~52912 Song L, Wang H, Jiang J, Gao JS, Shi HC. Isolation, idetification of1,2,4-trichlorobenzene-degrading strain Pseudomonas nitroreducens J5-1 and cloning of chlorocatechol 1,2-dioxygenase gene. Environ Sci, 2007, 28: 1878~188113 Braker G, Zhou J, Wu L, Devol AH, Tiedje JM. Nitrite reductasegenes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities.Appl Environ Microbiol, 2000, 66: 2096~2104。

相关文档
最新文档