肠道菌群与肠上皮细胞和肠道免疫系统的相互作用机制

肠道菌群与肠上皮细胞和肠道免疫系统的相互作用机制
肠道菌群与肠上皮细胞和肠道免疫系统的相互作用机制

4.肠道菌群与肠上皮细胞和肠道免疫系统的相互作用机制

武庆斌(苏州大学附属儿童医院消化科苏州 215003)

哺乳动物的胃肠道寄生着最为复杂的微生物群体,被称之为肠道原籍菌群,新近的研究认为这些细菌有近1000多种。新生儿出生时胃肠道是无菌的,免疫系统几乎没有发育,但很快有种类繁多的细菌定植。随着细菌的定植,肠道菌群的建立,刺激机体产生大量的淋巴细胞和淋巴组织,促进全身免疫系统和粘膜免疫系统的正常发育并逐步成熟,这其中也包括肠相关淋巴组织(gut-associated lymphoid tissues ,GALTs)的发育和成熟。GALTs发育成熟的结果是对肠道原籍菌群的耐受和对病原菌的免疫反应。由于宿主基因易感性,肠道粘膜屏障功能减弱或缺乏恰当的粘膜免疫反应(如免疫耐受丢失),就会导致粘膜对肠道菌群免疫反应失控,甚至引起全身免疫反应紊乱,引起慢性持续性的炎症,如过敏性炎症和炎性肠病(inflammatory bowel disease, IBD)就是例证[1,2] 。

一、肠道菌群对婴幼儿粘膜免疫的作用

和肠道菌群的建立、定植和演替一样,出生时GALTs的活性较低,与新生儿期间,全身免疫系统短时间不成熟是一致的[3,4]。新生儿生后,其外周血中几乎测不到分泌IgA的B型浆细胞——推测这种B细胞是由GALTs衍生出来,然后随血流到达粘膜效应部位。一个月后,这些细胞显著增加,12个月后达到最高峰值。这就意味着有持续不断的微生物和外界环境对GALT的刺激所致。无菌鼠的PP结(Peyer’s patches)发育程度低下:仅有极少的生发中心,数量很少的淋巴细胞,主要是CD4+T 细胞、α-βTCRCD8+细胞和分泌IgA浆细胞;脾脏和淋巴结的少有B-和T-细胞带或区域,异常内皮微血管的过度增生,以致结构不完整[5]。正常的口服饮食抗原免疫耐受能力缺失。恢复大龄无菌鼠的正常肠道菌群,食物抗原的免疫耐受功能依旧缺失。这说明在很早的初级阶段,肠道菌群的建立、定植和成熟,对先天免疫系统和获得免疫的启动有着极其重要的作用。的确肠道菌群通过“入侵”肠上皮细胞和M细胞,对GALTs的发育起着很重要的作用。Gronlund等[6] 研究0~6个月的健康的新生儿时,发现肠道内脆弱类杆菌和双歧杆菌定植的时间越早,外周血中IgA定向细胞的含量可以越早地被检测到;随着肠内脆弱类杆菌和双歧杆菌数目的增加,外周血中的IgA定向细胞的数量也逐渐增加。GALTs在未成熟的初期,允许有2种显著对立作用:1)适度、恰当的针对病毒和细菌病原体的炎症反应调控免疫防御机制的发育;2)促进对食物抗原产生免疫耐受的极其复杂的免疫机制。在婴儿期的肠道菌群不断的、进行的构建和演替过程中,GALTs对这些复杂的肠道菌群产生耐受的同时,也有助于免疫系统诱导产生上述2种功能[3]。

二、肠道粘膜免疫系统的防御机制

肠道粘膜免疫系统是由免疫反应启动的有高度器官化场所和分散在固有层和肠上皮间的效应淋巴细胞等两部分组成的防御系统。外来的抗原物质,如细菌、病毒、食物中的大分子蛋白质等被摄入到GALT(如,PP结)和肠壁淋巴结内,这些高度器官化的二级淋巴器官结构是诱导肠特异性免疫的主要部位。被抗原激活的B细胞和T细胞从诱导场所通过淋巴引流管迁移到肠系膜淋巴结,然后进入血液循环,随着血流最后再归巢到粘膜效应部位。这些效应部位是由抗原特异性的T细胞和B细胞、分化的浆细胞、巨噬细胞、树突状细胞(DC)以及嗜酸性粒细胞、嗜碱性粒细胞和肥大细胞等组成。总之,粘膜免疫系统的诱导部位和效应部位产生粘膜和血清抗体反应,T细胞介导免疫,局部免疫刺激或免疫抑制介质以及系统免疫无能(systemic anergy)[5,7]。

PP结位于肠粘膜下,是诱导肠特异性免疫的主要场所。在PP结圆顶区上分布有微皱褶细胞(microfold cell,M细胞)。M 细胞摄取和转运肠腔的抗原,如肠道病原菌、肠道原籍菌、病毒、食物中的抗原等到肠上皮下圆顶区,在此进行抗原处理和诱导特异性的免疫反应。圆顶区内有以B细胞为主的生发中心淋巴虑泡和以T细胞、巨噬细胞以及DC的滤泡间区。生发中心内含大量增殖淋巴母细

胞,多数为IgA+细胞,另外含有以下包括TGF-β、IL-10以及由DCs释放的细胞信使和CD+CD40L+T细胞(促使同源的IgM细胞转换为IgA+细胞)。在滤泡间区的T细胞包括CD4+和CD8+ T细胞, 95%以上的T 细胞表达αβTCR,而一小部分表达γδTCR,在PP 结中50 %~60 %αβTCR T细胞是CD4+(辅助)T 细胞,剩下的是CD8+(细胞毒/抑制)T细胞。

肠道黏膜免疫系统的防御机制是非常复杂的,除肠道的内环境非常复杂外, 还需要依靠严格的调节机制来区分来自于肠道内环境中的危险信号和无害信号。在生物体的肠道黏膜免疫系统持续地受到包括病原体、食物蛋白和共生菌群在内的信号刺激, 对于无害信号刺激,GALT或是保持一种低反应性的免疫监视状态,或是调动免疫耐受机制;而对于危险信号, GALTs则及时反应将其清除,从而维持

肠道内环境的稳定[7]。

肠道内有大量的微生物定居,肠道生态系统的长期进化最终导致GALTs下调针对正常存在的共生菌群的固有炎症反应,有人把它称之为“生理性炎症”。GALT对共生菌的低反应性主要是由共生菌自身的特点、小肠上皮细胞(intestinal epithelial cell ,IEC) 表面的特性及肠道粘膜固有层(lamina propria ,LP)内免疫细胞的特点等三个方面的因素所决定。1).共生菌自身的特点:与致病菌不同, 共生菌不能表达粘蛋白酶及黏附、定居和侵入因子,因此不能分解肠道内保护性的粘液层,小肠蠕动形成的粘液层流可以将共生菌冲离肠道表面,使其不能粘附IEC ,破坏上皮屏障。2).IEC 表面缺少识别共生菌病原相关分子模式(pathogen-associated molecular pattern , PAMP) 的Toll 样受体( Toll likereceptor ,TLR) ,如TLR2、TLR4、MD2 和CD14[8 ] ,因此不能有效地识别共生菌的PAMP。研究发现,诱导活化细胞核受体过氧化物酶体增殖子活化受体γ( proliferator-activated receptor-γ, PPAR-γ) 可抑制TLR诱导的NF-κB 信号传导通路[9] ,从而抑制了炎症反应的发生。3). LP 内含有特殊的耐受性DC 、巨噬细胞和调节性T细胞,这些免疫细胞可以产生许多抗炎症的细胞因子,从而下调针对共生菌的固有炎症反应,维持了肠道内环境的稳定[10]。

对于正常的食物蛋白,肠道黏膜免疫系统主要通过由调节性T细胞介导的主动抑制和抗原特异性T细胞克隆无反应或缺失(clonal anergy or deletion) 等机制诱导的口服耐受来防止对食物蛋白的过敏反应[11]。

GALTs针对病原体引发的危险信号的反应起始于PP结、肠系膜淋巴结或小肠黏膜中的孤立淋巴滤泡[12]。病原体主要是通过M细胞进行摄取, 并呈递到抗原呈递细胞(antigen-presenting

cell,APC) ,APC 继而将抗原呈递到黏膜内的淋巴细胞,活化的淋巴细胞在归巢受体的介导下到达效应组织。在效应位点处,抗原起始的免疫球蛋白A(IgA) B细胞分化成为IgA浆细胞,并向肠腔内分泌大量的抗原特异性的二聚化或多聚化的IgA ,以捕获和清除腔内的抗原。另外,效应组织中还含有多种T细胞亚型,表现出辅助、调节和细胞毒性T淋巴细胞(CTL) 等活性,以完成和调节黏膜表面保护性的免疫反应。同时,黏膜组织摄取的抗原还可以进入淋巴循环,诱导全身性免疫反应的发生。对于小肠过量的共生菌,这种危险信号可以被隐窝内上皮细胞表面的TLR和NOD2/ CARD15分子识别[9] ,继而引发固有免疫反应,诱导潘氏细胞(paneth cell) 分泌抗菌多肽,清除过量存在的微生物体。

三、宿主与肠道菌群相互作用的生理和病理的影响

通过对限菌动物的研究证明,肠道菌群对于宿主的器官结构、生理和免疫的发育有着极其重要的影响,其中包括IEC的功能和GALTs结构功能的影响。Backhed等发现无菌鼠体内脂肪增加60%,原因可能是独立过氧化物酶体增殖物活化激活受体α(peroxisome proliferator-activated receptor -α-independent,独立PPAR-α)下调和诱发禁食脂肪细胞因子(fasting-induced adipocyte factor,Fiaf)被抑制。肠道短连脂肪酸的多少于肠道细菌酶的活性有关。IEC的能量供给70%是靠丁酸氧化提供,同时,丁酸还是炎症因子NF-κB信使途径抑制剂。给无菌鼠接种多形类杆菌(Bacteroides thetaiotaomicron),可以诱导有利于肠道粘膜屏障功能、营养物吸收、异型生物质(xenobiotic)代谢、分化、防御以及血管生成等一套基因的表达。肠上皮细胞对多形类杆菌的定植的反应有别于大肠杆菌或婴儿型双歧杆菌( Bifidobacterium infantis),这就支持了细菌在与宿主肠上皮细胞对话中

存在着细菌特异性因子(bacteria-specific factors)这个说法[13]。有证据表明,通过修饰肠上皮细胞的功能,肠道菌群和肠上皮细胞相互协助促成了肠道的微生态系统的建立。例如无菌鼠定植多形类杆菌可诱导宿主肠上皮细胞产生特异性的果糖结合糖;多形类杆菌还诱导基质金属蛋白酶裂解素(matrix metalloprotease matrilysin)的表达,这种物质被认为是能激活肠粘膜抗微生物多肽或防御素前体的。将普通鼠肠道菌群接种到无菌鼠后,观察到无菌鼠的Paneth细胞RegIIIγ再生基因在mRNA 和蛋白水平的表达[13]。RegIIIγ是具有抗菌特性的C型凝集素。脆弱类杆菌NCTC9342的细菌多糖通过MHCII的加工和呈现,触发了粘膜免疫系统的细胞免疫的生理成熟[14]。研究证实IBD病人RegIII

γ的表达增加,相反,CD病人的防御素水平下降。

普通鼠和无菌鼠的免疫反应有非常大的区别。的确,无菌鼠上皮内淋巴细胞的数量和细胞毒活性都是较低的,并且LP的淋巴细胞数量很少,有丝分裂的活性很低,PP结也很小,几乎没有发育。严重联合免疫缺陷(SCID)的鼠用成熟胸腺T细胞进行免疫重建,肠道粘膜淋巴细胞的数量与肠道原籍菌群关系很大。Mazmanian等证实脆弱类杆菌NCTC9342的细菌多糖通过MHCII的加工和呈现,触发了粘膜免疫系统的细胞免疫的生理成熟[15].

数量巨大的肠道菌群、肠上皮细胞与粘膜的免疫细胞之间的相互作用是非常复杂的,最重要的先决条件是免疫功能和防御机制的成熟。为使肠道相关免疫系统的发育成熟,肠道菌群介导了由机体严格控制的一系列“炎症过程”,即所谓的“生理性炎症”[1]。生理性炎症有下列作用:1.短暂地激活免疫反应;2.免疫耐受的获得;3.肠上皮功能的改变;4.抗微生物的物质表达的增加;5.肠道能量平衡(增加丁酸盐和体内脂肪的含量);6.促进PP结的发育;7.增加肠上皮间和固有层的淋巴细胞数量。对于遗传易感宿主而言,当环境刺激因素如病原菌感染或药物治疗,破坏了肠道上皮水平的微生态平衡,就可能会导致“生理性炎症”失控,以致发展成为“慢性炎症”[1]。例如IBD就是例证。这种慢性炎症有以下表现:1.肠腔微生物多样性的种属减少;2.粘膜细菌的密度增加;病原菌诱导的特异性的炎症反应;3.炎症反应的持续活动;4.调节机制的缺乏(如,PPARγ、TGF-β);5.TLR表达增加以及NF-κβ被激活;6.炎症因子和粘附分子产出过多(如,IL-23、TNF、INF、ICAM-1);

7.抗微生物物质水平变化;8.过多地DC细胞被激活;9.益生菌和重组工程菌可以用于治疗这种慢性炎症。

四、益生菌对慢性炎症发展的防护作用

由于肠上皮的微生态环境遭到破坏,使得“生理性炎症”失控而发展成为“慢性炎症”。适当数量的益生菌有可能能预防和控制这种慢性炎症。研究发现结肠使用罗伊氏乳杆菌能增加小鼠的粘膜屏障功能和减缓结肠炎的发生,植物乳杆菌DSM9843(Lactobacillus plantarum DSM9843)对氨甲蝶呤诱发的小鼠小肠结肠炎亦有相类似的保护作用。鼠李糖乳杆菌GGATCC53103通过激活Akt/

蛋白激酶B信号途径,在IEC水平上可以抑制细胞因子引起的细胞凋亡。这些研究的结果支持益生菌帮助维护肠上皮的屏障功能,可能的机制之一是在肠粘膜炎症反应时肠屏障功能丧失。近期的研究发现,肠道的慢性炎症最可能的由于是肠上皮细胞的缺陷引起,而非淋巴细胞功能缺陷所致。用侵袭性大肠杆菌O29NM感染IEC后,内皮生长因子(Epidermal Growth Factor ,EGF)受体激活受阻,使用嗜酸乳杆菌ATCC4356和嗜热链球菌ATCC19258处理感染的IEC,EGF受体激活的功能恢复[16]。可以认为益生菌是通过增加IEC的紧密联结的蛋白表达和改善屏障功能而起作用。Gionchetti等用VSL#3(含有8种乳酸菌的复合制剂)治疗IBD患者,发现VSL#3能抑制肠粘膜的TNF和上调IL-10而阻止慢性结肠袋炎的复发[17]。还有很多学者对VSL#3进行了许多有益的研究:可以促使UC长期缓解;使得结肠功能、肠道屏障的完整性和肠组织病理学等恢复正常;通过抑制NF-κB减少热休克蛋白的表达以及阻断蛋白酶体功能等。

作用于肠道慢性炎症的益生菌不仅仅局限于乳酸菌类的细菌,例如大肠杆菌Nissle1917可以维持UC患者的缓解状态,其效果等同于马沙拉嗪。对右旋葡聚糖硫酸钠小鼠溃疡性结肠炎(DSS-induced colitis),大肠杆菌Nissle1917的正面作用是通过依赖TLR2和TLR4信使途径。有学者研究发现,在IEC

培养基中,加入大肠杆菌Nissle1917通过诱导NF-κB信使瀑布效应,触发β-防御素的生成,增强了肠上皮的先天防御功能[18]。除了细菌外,真菌也对肠道慢性炎症有很好的作用,如布拉格酵母菌(Saccharomyces boulardii)作用于肠系膜淋巴结的T细胞,通过IFN-γ的累积从而抑制了慢性炎症[19]。甚至有研究认为布拉格酵母菌可以预防IBD的发生。重组工程菌的研究非常引人瞩目,例如乳酸乳球菌菌株(Lactococcus lactis)产生有细胞保护作用的三叶素或有免疫抑制作用的IL-10,是将来最具潜力的治疗IBD的药物。Braat等报道应用乳酸乳球菌在粘膜水平释放IL-10的一期临床试验结果,认为用于人类的IBD是可行的[20]。

参考文献(省)

肠道菌群与肠上皮细胞和肠道免疫系统的相互作用机制作者:武庆斌

作者单位:苏州大学附属儿童医院消化科 苏州 215003

本文链接:https://www.360docs.net/doc/36975820.html,/Conference_7163537.aspx

肠道菌群生物学意义与婴幼儿过敏性疾病

健康研讨:肠道菌群生物学意义与婴幼儿过敏性疾病 益生菌哪个品牌好抗过敏益生菌“台敏乐”典型代表新选择 摘要:肠道菌群是一个被遗忘的“器官”,其在宿主消化营养免疫发育等诸多方面发挥着极为重要的作用。0~3岁是婴幼儿肠道菌群建立的关键时间窗,其与肠道免疫系统的成熟同步,是形成免疫耐受的关键时期,如果这一时期肠道菌群发生紊乱,可导致免疫耐受破坏,引起婴幼儿过敏性疾病。近年来流行病学调查和实验研究提示婴幼儿早期肠道菌群紊乱与过敏性疾病的发生发展密切相关,本研究就婴幼儿常见过敏性疾病如特应性皮炎、食物过敏、哮喘、过敏性鼻炎等与肠道菌群的相关性进行综述。 2004年世界变态反应组织(WAO)针对全球过敏展开了一项调查,调查结果于2006年公布:在33个国家进行的过敏性疾病流行病学调查,结果显示这些国家的13.9亿人口中,约22%患有不同种类的过敏性疾病。过敏性疾病的发生发展有着一定的自然规律,婴幼儿最早出现的过敏问题是特应性皮炎和食物过敏,可持续数年,并逐步发展成过敏性鼻炎和哮喘。本研究就肠道菌群与婴幼儿过敏性疾病的关系,以及几种常见的儿童过敏性疾病作一综述。 一、肠道菌群的建立及生物学意义 新生儿刚出生时胎粪是无菌的,出生后大约2h即可从肠道检出大肠埃希菌、肠球菌、葡萄球菌等,即微生物开始在肠道定植,最终形成以厌氧菌为优势菌的菌群结构,此过程一般需3年左右的时间。伴随着肠道菌群的定植,宿主的黏膜屏障和免疫系统也在发育成熟,主要体现在出生后肠上皮细胞增殖增强,淋巴细胞开始迁移分化。出生后到脱奶期(0-1岁)是To11样受体(To11-like receptor,TLR)介导的免疫耐受形成的关键时间窗,期间肠道菌群的异常定植会导致TLR表达异常,免疫耐受无法正常形成。婴幼儿肠道菌群的建立受分娩方式、喂养方式、环境卫生和抗生素应用等多种因素的影响。健康成人肠道栖息着约1014个细菌,多达近1000~1150种细菌。肠道菌群承载着人类后天获得基因,参与人类正常生理和疾病病理过程,是被遗忘的特殊器官。生理状态下,肠道菌群的功能主要体现在以下方面。 1、维持和增强肠道黏膜屏障:肠道内的共生菌通过占位性保护效应、营养代谢产生有机酸和拮抗作用发挥生物屏障功能。 2、促进固有和获得性免疫的发育成熟:肠道菌群能够通过不断刺激局部或着全身免疫应答来促进肠黏膜相关淋巴组织(gut-associated lymphoid tissues,GALT)的发育,可激发Th1免疫应答,平衡Th1/ Th2,共生菌DHN特定的CpG基序能刺激Th1细胞分化。 3、刺激肠道分泌sIgA: sIgA黏附于肠道黏液层,阻止病原微生物的黏附并促使其随肠道蠕动排出体外。 4、参与免疫耐受的形成。肠道共生菌通过抑制转录因子NFKB的活性(普氏粪杆菌),或通过抑制NFKB的抑制剂IKB的磷酸化、泛素化、降解,或通过促进NFKB的亚基ReIA出核,减弱其转录因子功能(多形拟杆菌),从而达到抑制炎症反应的作用。 二.过敏性疾病的发生机制 过敏性疾病的发生是由遗传因素和环境因素两者相互作用的结果。近年来过敏性疾病的发病率显著升高,这显然已经不能简单地用遗传因素来解释。Strachan提出的“卫生假说”认为,生命早期因缺少细菌、病毒、寄生虫等微生物的接触,从而导致免疫系统发育不成熟,进而增加了患过敏性疾病的可能性。细菌和病毒感染引发的自然免疫可以诱导Th1细胞因子的释放,胎儿及初生时免疫反应以为主,随着出生后环境中抗原的刺激,免疫反应逐渐向Th1转化,达到“Th1/Th2平衡”。如今随着家庭大小、生长环境、个人卫生、生活方式的不断改善,“过度卫生”的环境使得婴幼儿受环境中抗原刺激的机会减少,造成机体免疫反应向Th2偏移,分泌的IL-4、IL-5、IL-13等细胞因子增多,刺激B细胞产生

肠道菌群与肠上皮细胞和肠道免疫系统的相互作用机制

4.肠道菌群与肠上皮细胞和肠道免疫系统的相互作用机制 武庆斌(苏州大学附属儿童医院消化科苏州 215003) 哺乳动物的胃肠道寄生着最为复杂的微生物群体,被称之为肠道原籍菌群,新近的研究认为这些细菌有近1000多种。新生儿出生时胃肠道是无菌的,免疫系统几乎没有发育,但很快有种类繁多的细菌定植。随着细菌的定植,肠道菌群的建立,刺激机体产生大量的淋巴细胞和淋巴组织,促进全身免疫系统和粘膜免疫系统的正常发育并逐步成熟,这其中也包括肠相关淋巴组织(gut-associated lymphoid tissues ,GALTs)的发育和成熟。GALTs发育成熟的结果是对肠道原籍菌群的耐受和对病原菌的免疫反应。由于宿主基因易感性,肠道粘膜屏障功能减弱或缺乏恰当的粘膜免疫反应(如免疫耐受丢失),就会导致粘膜对肠道菌群免疫反应失控,甚至引起全身免疫反应紊乱,引起慢性持续性的炎症,如过敏性炎症和炎性肠病(inflammatory bowel disease, IBD)就是例证[1,2] 。 一、肠道菌群对婴幼儿粘膜免疫的作用 和肠道菌群的建立、定植和演替一样,出生时GALTs的活性较低,与新生儿期间,全身免疫系统短时间不成熟是一致的[3,4]。新生儿生后,其外周血中几乎测不到分泌IgA的B型浆细胞——推测这种B细胞是由GALTs衍生出来,然后随血流到达粘膜效应部位。一个月后,这些细胞显著增加,12个月后达到最高峰值。这就意味着有持续不断的微生物和外界环境对GALT的刺激所致。无菌鼠的PP结(Peyer’s patches)发育程度低下:仅有极少的生发中心,数量很少的淋巴细胞,主要是CD4+T 细胞、α-βTCRCD8+细胞和分泌IgA浆细胞;脾脏和淋巴结的少有B-和T-细胞带或区域,异常内皮微血管的过度增生,以致结构不完整[5]。正常的口服饮食抗原免疫耐受能力缺失。恢复大龄无菌鼠的正常肠道菌群,食物抗原的免疫耐受功能依旧缺失。这说明在很早的初级阶段,肠道菌群的建立、定植和成熟,对先天免疫系统和获得免疫的启动有着极其重要的作用。的确肠道菌群通过“入侵”肠上皮细胞和M细胞,对GALTs的发育起着很重要的作用。Gronlund等[6] 研究0~6个月的健康的新生儿时,发现肠道内脆弱类杆菌和双歧杆菌定植的时间越早,外周血中IgA定向细胞的含量可以越早地被检测到;随着肠内脆弱类杆菌和双歧杆菌数目的增加,外周血中的IgA定向细胞的数量也逐渐增加。GALTs在未成熟的初期,允许有2种显著对立作用:1)适度、恰当的针对病毒和细菌病原体的炎症反应调控免疫防御机制的发育;2)促进对食物抗原产生免疫耐受的极其复杂的免疫机制。在婴儿期的肠道菌群不断的、进行的构建和演替过程中,GALTs对这些复杂的肠道菌群产生耐受的同时,也有助于免疫系统诱导产生上述2种功能[3]。 二、肠道粘膜免疫系统的防御机制 肠道粘膜免疫系统是由免疫反应启动的有高度器官化场所和分散在固有层和肠上皮间的效应淋巴细胞等两部分组成的防御系统。外来的抗原物质,如细菌、病毒、食物中的大分子蛋白质等被摄入到GALT(如,PP结)和肠壁淋巴结内,这些高度器官化的二级淋巴器官结构是诱导肠特异性免疫的主要部位。被抗原激活的B细胞和T细胞从诱导场所通过淋巴引流管迁移到肠系膜淋巴结,然后进入血液循环,随着血流最后再归巢到粘膜效应部位。这些效应部位是由抗原特异性的T细胞和B细胞、分化的浆细胞、巨噬细胞、树突状细胞(DC)以及嗜酸性粒细胞、嗜碱性粒细胞和肥大细胞等组成。总之,粘膜免疫系统的诱导部位和效应部位产生粘膜和血清抗体反应,T细胞介导免疫,局部免疫刺激或免疫抑制介质以及系统免疫无能(systemic anergy)[5,7]。 PP结位于肠粘膜下,是诱导肠特异性免疫的主要场所。在PP结圆顶区上分布有微皱褶细胞(microfold cell,M细胞)。M 细胞摄取和转运肠腔的抗原,如肠道病原菌、肠道原籍菌、病毒、食物中的抗原等到肠上皮下圆顶区,在此进行抗原处理和诱导特异性的免疫反应。圆顶区内有以B细胞为主的生发中心淋巴虑泡和以T细胞、巨噬细胞以及DC的滤泡间区。生发中心内含大量增殖淋巴母细

肠道菌群及其生物学意义

肠道菌群及其生物学意义 食工081 2008031050 姜欢笑 人体所携带的细菌种类繁多,数量巨大。估计每个人的自身菌群细胞数超过1013,约为人体细胞总数的10 倍。它们主要分布在人体与外界相通的腔道如肠道、呼吸道和泌尿生殖道以及体表。由于体表的细菌主要来源于人体所接触的外环境,而且经常随外环境的变化而变化,因此也称为暂住菌群;而定植在体腔内的细菌主要源自出生时所接触的母体菌群,包括分娩时接触的阴道菌群,母乳中的细菌以及周边环境的细菌,一旦定植后比较稳定。所谓人体的正常菌群主要指这些存在于体腔内的细菌。对正常菌群研究报道很多,而了解较透彻的是其中的肠道菌群 肠道菌群的生物学功能可以从三方面来阐述:即维持肠道的正常结构和生理功能,拮抗病原微生物的定植,感染和刺激/调控人体的免疫功能。这些功能相互密切关联,互相促进。因此,充分了解肠道菌群的功能和生物学意义,对于人群尤其是儿童的健康和促进抗感染功能都是极为重要的。 人体肠道菌的来源主要是母体和乳汁中的细菌和出生时的外环境,如剖宫产的婴儿肠道中就会定植一部分来自医院环境如儿科ICU 的细菌,而正常分娩的婴儿肠道中几乎完全是来自母体的细菌。新生儿的肠道菌群大约于出生后数小时开始形成, 4 ~ 6 个月时达到成年人的水平。大量的肠道菌在肠黏膜表面形成密集的菌膜,亦称为生物膜。肠道菌总量约为1014,主要分布在结肠。就每克粪便计算,其中致病性细菌如铜绿假单胞菌、变形杆菌、葡萄球菌和梭状芽孢杆菌等的量在104 左右,益生菌如乳酸杆菌、双歧杆菌等在108-10水平,而条件致病菌如肠球菌、大肠杆菌和拟杆菌等约为106-10 左右。到目前为止,尚有60%的肠道菌不能在体外培养,但根据已有的研究结果估计,肠道菌的总基因数为人体基因数的140 倍,是一个极其庞大的生物种群。肠道中的细菌不断刺激肠道黏膜分泌黏液素,保持必要的润滑、保护作用。同时,肠道菌的繁殖还有助于维持肠腔内的pH值并分泌一些维生素类的物质,如维生素K 和一些B 族维生素。动物研究发现,肠道菌群发育不良的动物的肠黏膜比较薄而干燥,而且肠道的通透性高,使一些原本不易进入人体循环的大分子得以穿透肠道上皮。这也许是这些新生儿过敏症发生率较高的原因之一。肠道菌在人体的肠道内以极高的密度存在,这些细菌作为生物膜物理性地阻止入侵细菌的黏附,使致病菌无法黏附到黏膜细胞上,因而不能在肠黏膜上形成微菌落;或不能激发肠道上皮细胞内的跨膜信号活化,使细菌无法通过内在化(internalization)侵入到上皮细胞内形成感染。更为重要的是,大量繁殖的肠道菌群极度消耗肠道微环境中细菌生长繁殖所必须的营养物,特别是铁离子,从外部入侵的致病菌由于其载铁体远不如正常菌群发达因而无法竞争生长,避免了可能的定植和引发感染。自上世纪80 年代始,随着免疫学研究的快速发展,人们对肠道菌的免疫调节功能有了越来越多的了解。肠道作为重要的免疫器官,其所含有的免疫活性细胞占人体免疫细胞总数的60%~ 70%,它们和呼吸道、泌尿生殖道等

肠道菌群与粘膜免疫系统

肠道菌群与粘膜免疫系统 Michael H.Chapman , Ian R.Sanderson 英国伦敦大学Barts & The London,圣玛丽医院成人及儿童胃肠病科, Turner Street, 伦敦 E1 2AD ,英国 前言 出生时胃肠道是无菌的,但很快有种类繁多的细菌定植,因此成为人体接触病原微生物的首要部位,甚至90%的微生物是通过胃肠道进入人体的。胃肠道最主要的功能在于摄取营养和维持体液的平衡以驱除有害的微生物和其它一些毒素物质。我们就胃肠道粘膜免疫系统的基本组成及病原微生物如何与其和肠道功能的其它方面相互作用进行综述。 肠道的正常菌丛 出生时胃肠道的粘膜免疫系统的活性较低,与成年人比较淋巴细胞和Payer斑都较少。出生后经口菌群定植很快发生。肠道菌群在不断地发生变化直到成年才变得稳定,且会随着饮食结构的改变而发生变化。例如,母乳中IgA水平在婴儿期就起着非常重要的作用。 胃肠道的菌群总量是非常大的,近50%的粪便是细菌,约为1012/克。随着胃肠道的长度发生变化,其细菌数目和种类也不同。除口腔外,菌落随着胃肠道的延伸而逐渐增多,而胃和近端小肠却只有少量的以革兰氏阳性为主的细菌。菌群在小肠远端和结肠变成一个非常复杂的微生物环境。这些区域也正是炎性肠疾病(IBD)最容易受累的部位,这使我们推测粘膜免疫系统对胃肠道菌群的无效或不正常的反应在这些疾病的发病机制中扮演了非常重要的角色。 胃肠道的菌群总量是非常大的,粪便中近50%是细菌,约为1012/克粪便 由于许多方面的原因定义正常的肠道菌群是非常困难的。已知有超过500种不同种类的微生菌群在肠道定植,在回肠末端及结肠部的主要定植菌群包括乳酸杆菌、双歧杆菌、肠球菌和拟杆菌[1-2]。由于许多菌群无法在体外进行培养因而对其研究也一度受到阻碍,近来,借助于新的研究方法如变性梯度凝胶电泳(DGGE)和荧光原位杂交(FISH,利用菌群特异性探针对其进行组织定位)使对这些菌群研究取得重大进展。肠腔和其相关联的粘膜上微生物菌群的数量和类型也是有差别的[3]。粘膜相关菌

肠道菌群与疾病

转自《生物学通报》2004年第39卷第3期,26页。 肠道菌群与疾病 尹军霞 (绍兴文理学院生物学系浙江绍兴312000) 林德荣 (绍兴第二医院肿瘤科浙江绍兴312000) 摘要:一般情况下,肠道茵群与人体和外部环境保持着一个平衡状态,对人体的健康起着重要作用,但在某些情况下,这种平衡可被打破,形成肠道茵群失调,引发疾病或者加重病情,引起并发症甚至发生多器官功能障碍综合症或多器官功能衰竭。本文对肠道菌群在种类、数量、比例、定位和疾病的关系以及调整肠道菌群失调的措施作了简单的介绍。 1 肠道菌群一般介绍 刚出生的婴儿由于在子宫内是处于无菌的环境.所以肠道内是无菌的,出生后,细菌迅速从口及肛门侵人,2 h左右,其肠道内很快有肠球菌、链球菌和葡萄球菌等需氧菌植入,以后随着饮食,肠道就有了更多的不同菌群进驻,3 d后细菌数量接近高峰…。而一个健康成人胃肠道细菌大约有1014个,由30属、500种组成,包括需氧、兼性厌氧菌和厌氧菌。从来源上看,有常住菌和过路菌两种,前者是并非由口摄入,在肠道内保持稳定的群体;而后者则由口摄入并经胃肠道。常住菌是使过路菌不能定植的一个因素。 人体胃肠道各部位定植的细菌的数量和种类不同:胃内酸度高,含大量消化酶,不适合细菌成长,所以胃内菌数量很少,总菌数0~103个,主要是一些需氧抗酸性细菌,如链球菌、乳杆菌等。而小肠是个过渡区,虽然pH值稍偏碱,但含有消化酶,蠕动强烈,肠液流量大,足以将细菌在繁殖前冲洗到远端回肠和结肠。所以,小肠菌量在胃和结肠之间逐渐增多;空肠菌数105个,仍以需氧菌为主;回肠菌较多,总菌数103-107个,以厌氧菌为主,如拟杆菌、双歧杆菌等;结肠内菌量最多达1011-1012个,厌氧菌占绝对优势,占98%以上,菌种也达300多种,干大便的重量近1/3是由细菌组成。 同一肠道,不同类菌的空间分布也不相同。总的来说,人体肠道菌群在肠腔内形成3个生物层:深层的紧贴粘膜表面并与粘膜上皮细胞粘连形成细菌生物膜的菌群称为膜菌群,主要由双歧杆菌和乳酸杆菌组成,这两类菌是肠共生菌,是肠道菌中最具生理意义的两种细菌,对机体有益无害;中层为粪杆菌、消化链球菌、韦荣球菌和优杆菌等厌氧菌;表层的细菌可游动称为腔菌群,主要是大肠杆菌、肠球菌等好氧和兼性好氧菌…。 肠道菌群的种类和数量只是相对稳定的,它们受饮食、生活习惯、地理环境、年龄及卫生条件的影响而变动。 正常情况下,肠道菌群、宿主和外部环境建立起一个动态的生态平衡,对人体的健康起着重要作用。 1.1 防御病原体的侵犯 1)直接作用

肠道菌群与婴儿免疫影响的相关性

肠道菌群与婴儿免疫影响的相关性 1 2 3 4 婴儿时期肠道菌群开始定殖,形成了数量众多、种类丰富的肠道菌群,但是其定殖情况 5 并不稳定,随着婴儿的生长,肠道微生物组会有很大的变化,直到三岁左右趋于稳定,稳定 6 的肠道微生物定殖对婴儿健康起着重要的作用。不稳定的肠道菌群定殖会对婴儿免疫系统产 7 生潜在的影响。本文从婴儿免疫系统特点入手,通过婴儿肠道菌群与免疫关系试图阐述肠道 8 微生物免疫作用机制。 9 1 婴儿肠道免疫 10 在胚胎发育早期,初级免疫器官骨髓和胸腺开始发育,非特异性免疫在胎儿时期血液循 11 环系统形成,血细胞分化成熟后即形成了单核-吞噬细胞,阻止病原菌的入侵。随着婴儿的 12 生长,特异性免疫也逐步形成。 13 肠道是人体最大的免疫器官。伴随着婴儿免疫系统发育,肠道上皮细胞也在逐渐发育 14 成熟。有研究表明,婴儿T细胞受体及其分化群辅助性T细胞及细胞毒性T细胞可以在胚 15 胎发育阶段被检测到,胚胎发育18周可以在肠道上皮细胞的固有层检测到。出生后的婴儿 16 几乎拥有完整的T细胞,从而进行非特异性免疫。B细胞在胚胎时期婴儿的肝脏及出生后骨 17 髓中分化形成,B细胞产生抗体,婴儿出生后这些细胞需要抗原刺激发生后渗透到肠道中, 18 并在肠道中释放抗体,在肠道中抗体主要是免疫球蛋白A。树突状细胞对婴儿免疫应答起了 19 很重要的作用,树突状细胞产生不同的信号,趋使Th细胞(辅助性T细胞)分化为Th1、 20 Th2细胞及Treg细胞。Treg细胞可以抑制其他免疫细胞的效应功能,特别是T细胞。它们21 在婴儿免疫平衡、自身免疫和过敏反应预防中发挥关键作用[2]。 22 2 肠道菌群对婴儿免疫细胞及免疫因子影响 23 婴儿肠道菌群对婴儿免疫细胞及免疫因子的产生均有一定的影响,同时对于婴儿常见的 24 免疫系统疾病也有着密切的关系。 25 2.1肠道菌群与婴儿免疫系统 肠道菌群可以增加婴儿先天免疫及后天性免疫的免疫应答。无菌新生鼠中肠道菌群定殖 26 27 会确保NK细胞的适量累积,适量的NK细胞同时会阻止病原菌的黏附,减少患病概率。有 28 研究者证实,给无菌的新生小鼠定殖脆弱拟杆菌,体内NK细胞不会过度积累,这样可以降 低成年后患病的风险。还有研究者认为复杂的菌群会影响婴儿的免疫系统。成年后机体免疫29 30 球蛋白E含量取决于婴儿肠道菌群的多样性,多样性越高,成年后IgE增长趋势越明显。 有研究者采用小鼠进行动物实验,发现发酵乳杆菌的摄入促进小鼠脾淋巴细胞分化产生Th1 31 32 细胞,同时小鼠粪便中检测到高浓度的免疫球蛋白A。研究证明肠道微生物能够诱导人体产 33 生IgG,从而抑制病原菌的感染。双歧杆菌同样对婴儿免疫系统产生影响,研究者将双歧杆 菌作用于外周血单核干细胞,发现双歧杆菌可以极大地刺激IL-10和TNF-α的产生,促进机 34 35 体免疫反应。另有研究发现肠道微生物能够对抗肺炎链球菌。研究者采用小鼠体内实验,发 36 现肠道菌群可以上调肺泡巨噬细胞的代谢途径,加强巨噬细胞功能,促进细胞因子TNF-α 37 及IL-10的产生。 38 2.2 肠道菌群与婴儿免疫性疾病 39 婴儿免疫力低下表征可能为湿疹、过敏性皮炎及哮喘等疾病,这些免疫疾病与婴儿肠道

长期喝可乐破坏肠道菌群导致自身免疫病的发生

炎炎夏日,可乐是夏季的必备饮品!但是,如果长期饮用,可乐可能就让我们 陷入一个个的健康危机之中。最近关于可乐的危害又有了新发现。 一项研究报道,经常喝高糖可乐与女性类风湿性关节炎的发病风险升高有关, 引起了人们对于可乐及自身免疫性疾病的影响的关注。最近,在《细胞发现》 杂志上发表的一项研究,发现长期饮用无咖啡因的高糖可乐饮料会加重实验性 小鼠自身免疫性脑脊髓炎的发生,且依赖于肠道菌群的存在。进一步的调查揭示,高糖可乐饮料会改变肠道菌群的组成,增加产生促炎因子Th17细胞的数量。 长期饮用无咖啡因的高糖可乐加重实验性自身免疫性脑脊髓炎的发生 研究人员采用实验性自身免疫性脑脊髓炎的小鼠模型,评估了几种最常见的高 糖可乐对自身免疫性疾病发生的影响,包括普通可口可乐、无咖啡因可口可乐、

普通百事可乐、无咖啡因百事可乐和无糖可口可乐。 小鼠连续8周自由摄入可乐饮料后,研究人员通过实验诱导小鼠自身免疫性脑 脊髓炎。结果显示,长期饮用无咖啡因可口可乐和无咖啡因百事可乐与饮水对 照组相比,显著加重实验性自身免疫性脑脊髓炎的发病。然而,普通可口可乐、普通百事可乐和无糖可口可乐则没有明显的影响。研究人员又进一步限制了每 天可乐饮料的摄入量,每天每只小鼠5毫升,结果发现无咖啡因可口可乐和无 咖啡因百事可乐仍然可以在早期加重实验性自身免疫性脑脊髓炎的发病。这些 结果表明 长期饮用无咖啡因的高糖可乐会增加小鼠实验性自身免疫性脑脊髓炎的风险。 无咖啡因高糖可乐在加剧实验性自身免疫性脑脊髓炎的过程中Th17细胞的致 病作用 Th17细胞通过产生促炎症的细胞因子在实验性自身免疫性脑脊髓炎的发病中发挥关键作用。Th17细胞产生的促炎因子IL-17A、GM-CSF和IFN-γ等可直接 诱导发病,也可招募中性粒细胞和巨噬细胞导致髓鞘破坏。为了研究无咖啡因 高糖可乐与该疾病关系,研究人员分离了中枢神经系统的淋巴细胞和腹股沟淋 巴结,检测了Th17细胞的水平。结果显示,无咖啡因高糖可乐的摄入使得中 枢神经系统浸润的促炎性的Th17细胞水平显著上升,而其它组没有变化。令 人惊讶的是,无咖啡因高糖可乐的摄入使得腹股沟淋巴结中的Th17细胞数目 也显著上升,表明这些饮料潜在的有害性。淋巴结中调节T细胞可通过抑制 Th17细胞的功能而抑制实验性自身免疫性脑脊髓炎的发病,研究人员又检测了淋巴结中调节T细胞的百分比,发现各组之间并没有显著的差异。这些结果表 明高糖可乐饮料特异性的增强Th17反应而不影响调节T细胞的百分比。 为了进一步验证IL-17A在致病过程中的作用,研究人员通过中和抗体阻断IL- 17A的功能,结果显示阻断IL-17A的功能可以显著改善实验性自身免疫性疾病 的发生,而无咖啡因高糖可乐饮料对于疾病恶化的促进作用也消失了。 总的来说,无咖啡因高糖可乐饮料在加重实验性自身免疫性脑脊髓炎发病的过 程中,Th17细胞发挥了关键作用。 高糖可乐饮料改变肠道菌群的组成

肠道菌群与免疫

肠道菌群与免疫 丁文京,北美医学教育基金会 哺乳动物胃肠道有大量和多样化的共生细菌。近些年来的研究逐渐证明我们的健康高度依赖于肠道共生菌对免疫的贡献。宿主和肠道共生菌的和谐关系以及肠道菌群对免疫的作用是数百万年的共同进化的结果。胃肠道是一个由一个有组织的由宿主真核细胞组成的动态生态系统。这个系统包括一个全功能的免疫系统和无数的栖息在胃肠道,主要是肠道,特别是大肠,各种各样的微生物。使用分子学方法对胃肠道菌群的分析表明细菌种群之间有很大差异性,而在菌群个体则表现为出现的相对稳定性。哺乳动物的免疫系统和肠道菌群的动态平衡对健康至关重要。二者之间需要保持稳定的共生和互惠关系。了解适应性免疫和定植在肠道大量各种菌群的相互关系,以及原始的先天免疫和肠道菌群的整合对胃肠免疫稳态,预防和治疗疾病有重要的意义。 肠道的免疫细胞可能需要微生物来源对其分化。我们已经知道肠道内免疫细胞对某些特殊的菌群存在选择性反应,肠道内哪些细菌参与和影响了免疫系统的发育和功能,以及这些细菌的免疫特点是当前研究的一个焦点。随着研究的广泛开展和逐渐深入,这一神秘面纱正在逐渐被披露出来。 2010年8月发表在《科学(Science)》一篇报道指出正常情况下,树突状细胞(Dendritic cells (DCs))在防止T细胞对肠粘膜不起反应,因此在保持肠道的免疫耐受方面起重要作用。但是,当环境发生变化时,树突状细胞可以激活T细胞,其细胞上的β-链蛋白对树突状细胞起重要的调节作用。当从小鼠的肠道清除β-链蛋白后,调节T细胞的活性和抗炎细胞因子的作用明显降低,而亲炎症的辅助T细胞1和17以及其细胞因子上升。树状细胞缺少β-链蛋白的小鼠表现出对肠炎的敏感性增加。 Daehee Han等人2013年在《免疫(Immunity)》发表文章“树突状细胞信号分子TRAF6的表达是肠道菌群相关的免疫耐受的关键”报道了题目的研究成果。题目指出细胞内信号分子TRAF6是Toll样受体(TLR)在激活树突状细胞过程中起关键作用。当特异性去除树突状细胞信号分子TRAF6后导致丧失粘膜免疫耐受。与此同时,小肠粘膜固有层的T辅助细胞2(Th2细胞)发育和出现嗜酸性粒细胞性肠炎和小肠细胞纤维化。免疫耐受消失需要肠道共生菌存在,但是依赖树状细胞表达MyD88。TRAF6小鼠显示小肠调节性T细胞(Treg)数量减少和诱导iTreg细胞对新型抗原的反应消失。这些结果显示免疫缺陷和树状细胞表达白细胞介素2(IL-2)减少有关。他们还发现在traf6ddc 小鼠Th2细胞相关的反应表现异常。这种免疫缺陷可以通过调节性T细胞活性的恢复。由此他们认为TRAF6在指导树状细胞通过Treg 和Th2细胞免疫保持肠道免疫耐受中起作用。 S Mashoof等人研究切除了胸腺和没有切除胸腺的幼体非洲爪蟾肠道菌群与T淋巴细胞的影响。他们用焦磷酸测序的16S核糖体RNA基因评估胃,小肠和大肠细菌群体中的相对丰度。他们发现整个胃肠道里梭菌科和黄杆菌是所有菌群中含量最丰富的细菌。切除了胸腺和没有切除胸腺的幼体非洲爪蟾,通过UniFrac分析显示两种胃肠道菌群分布无显着差异。他们的研究结果与以前切除胸腺后对肠粘膜免疫球蛋白水平没有显著改变的研究结果一致。这个发表的《自然》的研究结果揭示胸腺对胃肠免疫没有影响。 虽然科学研究证明微生物诱导的细胞因子反应参与肠道内环境稳定,但在稳定状态下的细胞因子平衡和单个细菌物种在建立这种稳态平衡中所起的作用仍然不清楚。Routhiau等人2009年在《免疫(Immunity)》发表了题目为“分段丝状菌在肠道内的辅助性T细胞的反应协调成熟的关键作用”的文章。他们在无菌小鼠做的研究系统性分析表明,无论是菌群还是单个菌种的促炎反应T辅助细胞1(Th1细胞),Th17细胞和调节性T细胞的反应,都不能有效地刺激肠道T 细胞的反应。他们发现分段丝状菌,一种非培养的梭状芽胞杆菌相关的物种,可以在很大程度上

一片看懂肠道菌群在人体中的作用

一片看懂肠道菌群在人体中的作用 日文名:腸フローラ解明!驚異の細菌パワー中文名:肠道细菌/ 肠道花园类型:医療健康时长:49min官网:.nhk.or.jp/special/detail/2015/0222/播出时间:2015年2月22日午後9時00分~9時49分腾讯视频https://v.qq./x/cover/qzrjwfp0aprbido/m0019tif46e.ht ml英语中字版,非会员只能看5分钟,后台回复“肠道细菌”下载1080p英语中字版收藏观看 https://v.qq./x/page/e0544y267th.html720p日语中字版,在线可看全片,后台回复“肠道细菌”下载720p日语中字mp4版收藏观看由于面向读者略有不同,两个版本画面也有15分钟许多不同。如日语还有几段综艺风格的段落。影片简介在我们的身体中,存在着各种各样的细菌。尤其在肠道,存在着一个肠道细菌生态系统,就是所谓的肠道floral(肠道菌群、肠道微生物组)。其中的细菌种类超过数百种,细菌总量超过了100兆,这是一个什么样的世界呢?随着现代科技和医疗技术的发展,科学家发现这个生态系统中的细菌居然跟我们的健康、美容、甚至性格都有着深不可测的关联。特别是在医疗方面,癌症、糖尿病、抑郁症等疾病都与之有关。现在在欧美国家正在掀起一场医疗革命,使用一种称为粪便微生物移植的特殊的治疗方法,就可以彻底治

愈很多之前无法治愈的顽疾。随着研究的进一步深入,将来会有更多的疑难杂症会被攻克。闲言少叙,让我们来了解一下隐藏在我们的身体中的这些不可思议的小伙伴们吧。图文解读在我们的身体中隐藏着不为人知的秘密,即美容和保持健康的机制。这里是吸收营养的肠道部,实际上存在着肉眼无法看到的微小生命。这是在我们的肠道中居住着的细菌们,它们的数量超过了100兆。它们被称为肠道生态系统。floral是花圃的意思。肠道中的花圃是各种细菌的家园。现在肠生态系统的研究使医疗产生了巨大的变化。全世界的国家接二连三地启动了国家级的项目,使用最先进的基因解析技术,陆续发现了新的细菌。研究发现这些肠细菌会影响到全身的健康。癌症、糖尿病、肥胖症、过敏,之前从未考虑过这些疾病跟肠细菌有关。我们已经发现了30多种疾病与肠生态系统的关系。虽然还无法预知研究会达到什么程度,但毋庸置疑,这使得医学发生了巨大的进步。肠生态系统已经被运用于临床医疗中。这位女性患有重度感染征,她被全身的倦怠感和眩晕所困扰。她接受了最新技术的治疗,替换了她的肠细菌之后,居然完全康复了。我现在感觉很棒。令人惊奇的肠道生态系统对美容也有效果。肠细菌分泌出的某种物质能够减少皮肤皱纹。另外肠细菌竟然也能对大脑产生影响。能够改变性格和情感等等。大脑与肠细菌的关系,将在以后的研究中有惊人的发现。肠细菌的世界正备受关注。

肠道菌群和免疫的关系

肠道菌群对动物免疫的影响及机理 在动物体内环境中通常有一层微生物或微生物层,在正常情况下即动物处于健康状态时,并未表现异常或致病现象,称这一层微生物为正常菌群或固有菌群和原籍菌群。这些菌群是动物机体内环境中不可缺少的组成部分,对动物宿主是有益无害的。肠道菌群形成一个庞大而复杂的微生态系统,有重要的生理意义。包括抵御病原体侵袭、刺激机体免疫器官的成熟、激活免疫系统及参与合 成多种维生素、调节物质代谢等作用。 1、菌群屏障作用 动物的先天性或非特异性免疫应答,亦即机体免疫系统识别和排除各种异物,主要依靠机体的屏障作用,包括正常菌群、机体的皮肤黏膜、补体等体液因子抑菌、杀菌、溶菌等作用、吞噬细胞的吞噬作用等。从现代的研究不难看出,正常菌群在机体的屏障作用中是极为重要的一个方面。 2、影响黏膜免疫 研究发现双歧杆菌抑制其他肠道菌的效果与诱生一种抗菌物质——分泌型球蛋白(SIgA)有关。有人研究证明乳酸杆菌粘附形成的空间占位,是防止其他菌对组织附着的一个重要的保护性机制。嗜酸性乳杆菌可以在肠黏膜免疫中发挥重要的免疫监视功能。口服干酪乳杆菌能增强宿主的黏膜的免疫反应,促进肠道分泌免疫球蛋白(SIgA),即使饲喂低剂量的干酪乳杆菌也能引起SIgA的分泌。 3、促进免疫器官的生长发育 益生菌能促进机体的免疫器官的生长发育、成熟,增加T、B淋巴细胞的数量,胸腺淋巴细胞免疫球蛋白含量增多,启动免疫应答。有关研究表明,实验组免疫器官内的淋巴密度密集,数量增多以及浆细胞的数量增多,中枢免疫器官的

淋巴细胞和上皮网状细胞数量增多,这标志免疫器官内部淋巴细胞的发育情况和免疫功能的成熟程度,从而向外周免疫器官脾脏、盲肠扁桃体以及全身各处免疫组织源源不断的输送T、B淋巴细胞。 4、激活免疫因子 益生菌能明显的激活巨噬细胞活性及细胞因子介导素的分泌,增强免疫功能,提高宿主的抗病能力。这些因子在某些情况下,可以代替免疫调节剂,因为它们不仅能刺激造血活性,而且也能增强成熟细胞的功能,细菌细胞表面结合的细胞因子对细菌调节机体一系列免疫反应是非常重要的。 5、干预细胞免疫 干酪乳杆菌和保加利亚乳杆菌可激活巨噬细胞功能,刺激产生免疫应答。还通过巨噬细胞和T细胞、NK细胞活性的增强来增强人体的免疫;巨噬细胞、NK细胞、T细胞的活化,有益于增强周围血管和局部淋巴结中淋巴细胞的免疫,T辅助细胞、NK细胞的增加,可使抑制性T细胞减少。乳酸菌能干预细胞免疫。乳酸菌、双歧杆菌能阻断许多微生物的入侵和粘附(位组抑制)。 6、和疫苗混合使用提高抗体水平 有研究表明,在ND疫苗接种前后饲用益生素,可提高鸡血清中抗NDV血凝抑制抗菌体,延长抗体的高峰期。 7、具有免疫佐剂活性 Himanen等(1993)研究枯草芽孢杆菌的脂磷壁酸(LTA)和肽聚糖磷壁酸复合物的生物活性时,发现两者均具有很强的免疫佐剂活性作用。地衣芽孢杆菌的免疫促进作用是机体经口服芽孢杆菌后,在肠道淋巴组织集合的抗原结合位点上直接作为免疫佐剂,或者通过调整宿主体内的微生物群,尤其是双歧杆菌菌群起主导作用,间接的发挥免疫佐剂的作用,提高机体的局部或全身防御功能。

肠道菌群在自身免疫性肝病中的治疗进展

Traditional Chinese Medicine 中医学, 2020, 9(4), 348-353 Published Online July 2020 in Hans. https://www.360docs.net/doc/36975820.html,/journal/tcm https://https://www.360docs.net/doc/36975820.html,/10.12677/tcm.2020.94052 Progress of Intestinal Flora in the Treatment of Autoimmune Liver Disease Lijie Shi1*, Xuewei Li2, Yanying Li2, Min Sha1, Huiyi Zhu1, Jin He1, Tiansheng Huang2# 1Shanghai University of Traditional Chinese Medicine, Shanghai 2Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai Received: Jun. 19th, 2020; accepted: Jul. 6th, 2020; published: Jul. 13th, 2020 Abstract Studies have shown that disorders of intestinal flora can lead to diseases of multiple organs and systems in the human body. Intestinal microorganisms maintain homeostasis and regulate physi-ological function and pathological state of human body with their diversity in composition and complexity in structure. Immune system is an important defense system of human body, and there are many influencing factors, among which intestinal flora plays an important role in maintaining the homeostasis of human immune system. Therefore, establishing and maintaining a harmonious relationship between the intestinal flora and the immune system is the key to ensure the health of the body. In recent years, many studies have suggested that intestinal flora plays an important role in the development of autoimmune liver disease, which has aroused the enthusiasm of many scholars, therefore, people began to explore the treatment of autoimmune liver disease by regu-lating intestinal flora and achieved a definite effect. This article reviews the progress of treating autoimmune liver disease by regulating intestinal flora. Keywords Autoimmune Liver Disease, Intestinal Flora, Traditional Chinese Medicine, Modern Medicine 肠道菌群在自身免疫性肝病中的治疗进展 石莉杰1*,李雪微2,李艳英2,沙敏1,诸慧怡1,何进1,黄天生2# 1上海中医药大学,上海 2上海市光华中西医结合医院,上海 *第一作者:石莉杰。 #通讯作者。

肠道菌群小知识

1代谢作用 ? 提供热量 ? 生产短链脂肪酸 ? 合成维生素K 和叶酸 ? 胆汁酸的分泌 ? 参与药物代谢 2. 免疫效果:正常菌群能刺激宿主产生免疫及清除功能 ? 刺激免疫球蛋白A (IgA )的生产 ? 促进抗炎细胞因子的分泌和下调促炎细胞 因子 ? 诱导调节性T 细胞 3. 预防病原体入侵:正常菌群在人体某一特定位粘附,定植和繁殖,形成一层菌膜屏障。通过菌群间存在的生物拮抗作用,抑制并排斥病原体的入侵和群集,调整人体与微生物之间的平衡状态 人类肠道菌群 什么是肠道菌群? 人的肠道内寄居着种类繁多的微生物,这些微生物称为肠道菌群。肠道菌群按一定的比例组合,各种菌间互相制约,互相依存,它们与宿主存在着共生关系,共同维护着宿主的生理平衡。 肠道菌群并非是生来就有的,当胎儿还在母体子宫内时,胎儿所处的环境几乎是无菌的,因此胎儿肠道内是无菌的,婴儿出生时迅速暴露在母体阴道或皮肤的微生物下,随着从婴儿到老年的发展变化,我们的肠道菌群在出生后几个月迅速增多,多样性增加,到成年后达到稳定状态,之后老年时期多样性渐渐减少[1]。这些微 小的生物群体就这样不知不觉伴随着我们的一生。 肠道菌群的数量和分类 据推测,正常健康成人肠道菌群总数高达1×1014,种类超过1000种,而一个成年人自身的细胞数量约为 1×1013个,也就是说居住在我们肠道内的菌群数量是人体细胞总和的10倍。在胃和小肠中,细菌的种类相对较少。结肠中,每克肠道内容物存在1012个细菌细胞,细菌种类达300-1000种,而其中99%的细菌来自于其中30-40种[2]。 正常人肠道中包括四种主要的细菌门类:厚壁菌门Firmicutes (约50-75%,包括梭菌属),拟杆菌门Bacteroidetes (约10-50%,包括拟杆菌属、普氏菌属和卟啉单胞菌属),放线菌门Fusobacteria (约1-10%,包括双歧杆菌),变形菌门Proteobacteria (常常约少于1%,包括大肠杆菌),其中厚壁菌门和拟杆菌门是人类肠道菌群的主要组成部分。大多数细菌属于拟杆菌属、梭菌属、真杆菌属、瘤胃球菌属、消化球菌属、消化链球菌属、双歧杆菌属。其他属,如埃希氏菌属和乳杆菌属较少。拟杆菌属约占肠道中所有细菌的30%[2][3]。 我国科学家在健康年轻人体内观察到的9个属的细菌广泛存在,分别为厚壁菌门的考拉杆菌属、罗氏菌属、Blautia 、Faecalibacterium 、梭菌属、Subdoligranulum 、瘤胃球菌属和粪球菌属以及来自拟杆菌门的拟杆菌属。这9个属的细菌均具有在人体肠道内发酵产生短链脂肪酸的能力,而短链脂肪酸具有维持人体健康的多重作用,例如充当肠道上皮特殊营养和能量组分,保护肠道黏膜屏障,降低人体炎症水平和增强胃肠道运动机能等[4]。 Phylum Proportion (%) [3] 厚壁菌门Firmicutes 50-75% 拟杆菌门Bacteroidetes 10-50% 放线菌门Fusobacteria 1-10% 变形菌门Proteobacteria 少于1% 肠道菌群的作用 正常肠道菌群具有重要的自我平衡功能[5]。 肠型 未来某一天,当你走进医院的时候,医生可能不仅会询问你的过敏史、血型,还会问到你的肠型。 来自德国海德堡欧洲分子生物学实验室(EMBL )的科学家们提出了这个概念——肠型,他们通过全球性实验国际人体肠道元基因组研究计划,发现以肠道内的细菌种类和数量划分,人类拥有三种肠型,研究人员把这3种肠型命名为拟杆菌型(Bacteroides )(肠型Ⅰ)、普雷沃氏菌型(Prevotella )(肠型Ⅱ)和瘤胃球菌型(Ruminococcus )(肠型Ⅲ),以反映各生态系统中的优势菌。拟杆菌型系统中的细菌,主要从碳水化合物和蛋

相关文档
最新文档