直线参数t的几何意义_图文共27页

合集下载

引领学生解读直线参数方程中t的几何意义

引领学生解读直线参数方程中t的几何意义

引领学生解读直线参数方程中t的几何意义作者:张丽娜来源:《中学生理科应试》2021年第11期教师在教学过程中不仅要给予学生知识点的灌输,还要及时了解学情,分析学生易错点,引导学生学会分析失误点,明确是知识点掌握的不清楚还是运算上的失误.直线的参数方程是高考选修题常考的知识点,利用直线参数方程中参数的几何意义求有关的弦长、面积、最值等问题是考查的重点.而学生在用直线参数方程中参数的几何意义解决有关问题时,由于对参数方程中参数的几何意义理解不透彻,出现一些常见错误.本文以直线的参数方程知识点为例,归纳学生常出错的题目,进而明确问题考查的本质.知识点重现经过点P(x0,y0)、倾斜角是α的直线的参数方程为x=x0+tcosαy=y0+tsinα(t为参数)其中点M(x,y)为直线上的任意一点,参数t的几何意义是从点P到点M的位移,可以用有向线段PM的数量来表示.一、理解参数t的几何意义教师引导学生回顾知识点的同时,要告诉学生这个知识点是怎么推导出来的,帮助学生理解与记忆知识点,让学生知其一更要知其二.对知识点的复习不能仅仅停留在知识点的本身,更要通过例题习题的练习进行巩固与思考.例1 已知直线l过点P(1,2),且它的倾斜角θ=135°.(1)写出直线l的参数方程;(2)求直线l与直线y=x的交点坐标.解(1)由直线l过点P(1,2),且它的倾斜角θ=135°,所以它的参数方程可以写成x=1+tcos135°y=2+tsin135°(t为参数),即x=1-22ty=2+22t(t为参数);(2)把x=1-22ty=2+22t代入y=x,得1-22t=2+22t,即t=-22,把t=-22代入x=1-22ty=2+22t得到两条直线的交点为(32,32)(如图1所示).图1学生反思第(2)问中由直线的参数方程求两条直线的交点坐标,t=-22表明P到M的位移是-22,P到M的距离为PM=22.变式如果将本题过点P(1,2)的直线l的参数方程写成如下形式x=1-ty=2+t(t为参数),直线l与直线y=x交点为M,求PM.错解把x=1-ty=2+t代入y=x,得1-t=2+t,即t=-12,所以t=PM=12.错因对于直线参数方程中t的几何意义理解不透彻,仔细观察直线l的参数方程x=x0+tcosαy=y0+tsinα(t为参数),关于x的式子中t的系数为直线倾斜角的余弦值,关于y 的式子中t的系数为直线倾斜角的正弦值(由直线倾斜角的范围可知,sinα≥0),也就是说,当直线的参数方程表示成满足此种形式的式子时,参数t表示从P(x0,y0)到直线上任一点M(x,y)的位移,也即是有向线段PM的数量,此时t=PM.即若直线l的参数方程为如下形式:x=x0+nty=y0+mt(t为参数;n,m为常数)当n,m满足n2+m2=1且m≥0时,该参数方程中的t才具备上述几何意义.正解将直线l的参数方程x=1-ty=2+t变换为x=1-22ty=2+22t,代入y=x,得1-22t=2+22t,即t=-22,t=PM=22.二、有关知识点教师应引领学生对所学的知识点做进一步力所能及的推广,培养学生应用知识分析问题的能力.解题后,教师应引导学生从题目中总结出来新的方法、技巧和结论性的东西.例2 设直线x=2+ty=4-t,与抛物线y2=4x交于相异两点M,N,A(2,4).(1)求M,N到点A的距离之和;(2)求MN;(3)求M,N的中点K,KA.解首先将直线参数方程x=2+ty=4-t变换为x=2-22ty=4+22t,代入y2=4x得t2+122t+16=0,设M,N对应的参数为t1,t2,则有t1+t2=-122t1·t2=16,可知t1<0,t2<0.MA+NA=t1+t2=t1+t2=122MN=t1-t2=(t1-t2)2=(t1+t2)2-4t1t2=414(3)設K对应的参数为t0,则t0=t1+t22=-62,x=2-22·(-62)=8,y=4+22·(-62)=-2,所以K(8,-2),KA=t0=62.学生反思已知条件中直线的参数方程t与标准形式下的直线的参数t的含义是不一样的,需要进行转化标准形式下的直线的参数方程,注意直线的两个参数方程中参数的不同.提升经过点P(x0,y0)、倾斜角是α的直线的参数方程为x=x0+tcosαy=y0+tsinα(t为参数),若点M,N在直线上,对应的参数为t1,t2,则(1)线段MN长度MN=t1-t2.设M,N的中点为K,则K对应的参数t0=t1+t22,KP=t0.(3)若定点P(x0,y0)恰是弦MN的中点,则有t1+t2=0.三、变式巩固课堂上获得的知识是有限的,需要在多次做题中进行自我“揭短”,从新的层次、新的角度看到自己的不足,这体现了学生进行自我剖析、自我批判的勇气.我国著名心理学家林崇德教授认为,一个学习好的学生,应该是善于反思的学生.例3 (2021全国高考仿真模拟卷)在平面直角坐标系xOy中,已知曲线C:x24+y2=1,直线l的参数方程为x=2+ty=2-t,(t为参数),以坐标原点为极点、x轴的非负半轴为极轴且取相同的单位长度建立极坐标系.(1)写出曲线C的参数方程及直线l的极坐标方程;(2)若直线l上的点A、B对应的参数分别为t,t+22,点Q在曲线C上,求△QAB面积的取值范围.解(1)略.(2)法一直线l的参数方程变形为x=2-22(-2t)y=2+22(-2t)(t为参数),令t′=-2t,直线l的参数方程为x=2-22t′y=2+22t′(t′为参数),A、B对应的参数分别为t′A=-2t,t′B=-2(t+22),AB=t′A-t′B=(-2t)-(-2(t+22))=4.法二 A(2+t,2-t),B(2+t+22,2-t-22),AB=(22)2+(-22)2=4.设Q(2cosθ,sinθ),直线l的直角坐标方程为x+y-4=0,点Q到直线l的距离d=2cosθ+sinθ-42=|4-5sin(θ+)|2,4-52≤d≤4+52,故△QAB面积的取值范围是42-10,42+10.学生反思第一问容易解决,第二问的求解中要先计算AB的长度,大部分学生是这样计算的AB=t-(t+22)=22,这是没有彻底理解t的几何意义,此时需要对参数方程进行转化.求曲线上的点到直线的距离,可将曲线方程转化为参数方程,借助三角函数求距离的最值问题.本文主要讲述直线参数方程中参数t的几何意义,通过对知识点的再现及常见误区的展示,让学生深刻理解直线参数方程中参数的几何意义.本文中的题后反思不仅是教师教学过程中对学生学习行为的反思,更要体现到学生解题后的反思,找到错误的根源,从根源上解决问题,不断对知识点本身或从数学思想方法的角度进行提升,是十分有利于学生核心素养的发展的.基金项目:本文系阜阳市教育科学规划课题“核心素养下高中数学教学中学生反思能力有效性实践的研究”(编号:FJK043的阶段性研究成果.(收稿日期:2021-09-14)。

直线的参数方程的几何意义

直线的参数方程的几何意义

直线的参数方程的几何意义1.直线的位置和方向:参数方程可以通过调整参数的取值范围,描述直线在坐标系中的位置和方向。

例如,对于二维平面上的直线,参数方程可以表示直线在坐标系中的位置,以及直线与坐标轴的夹角。

对于三维空间中的直线,参数方程则可以表示直线在空间中的位置和方向。

2.直线的长度和斜率:参数方程可以通过参数的取值范围的选择,可以表示直线的长度和斜率。

例如,在二维平面上的直线的参数方程中,当参数的取值范围是0到1时,直线的长度就是参数方程中点的坐标与起点坐标的距离。

斜率则可以通过参数方程中的斜率函数导出来。

3.直线上的点的坐标:直线的参数方程可以通过给定参数值来求得直线上任意一点的坐标。

这使得我们可以通过参数方程计算直线上的点的坐标,进而研究直线上的点的性质和行为。

例如,通过参数方程可以计算直线上的点的坐标,并进一步研究这些点的集合的几何性质。

4.直线的切线和法线:参数方程可以通过求导数来计算直线上每一点的切线和法线。

这使得我们可以通过参数方程推导出直线上每一点的切线和法线的方程式,并进一步研究它们的性质和关系。

例如,通过参数方程可以推导出直线上每一点的切线的斜率和法线的斜率,从而进一步研究直线的曲率和切线与法线的关系。

在实际应用中,直线的参数方程在几何学、物理学、工程学等领域中具有广泛的应用。

例如,在计算机图形学中,参数方程可以用来表示直线、曲线和曲面,从而用来模拟和绘制各种图形。

在物理学中,参数方程可以用来描述粒子的运动轨迹,从而用来研究粒子的位置、速度和加速度等动力学性质。

在工程学中,参数方程可以用来描述机械系统的运动路径和轨迹,从而用来优化设计和控制系统。

总之,直线的参数方程是一种描述直线位置和形状的方式,它可以通过给定参数的取值范围,将直线上的每一个点都用一个参数表示出来。

直线的参数方程不仅可以描述直线的位置和方向,还可以计算直线上每一点的坐标、切线和法线等几何性质,应用广泛,具有重要的几何意义。

直线的参数方程怎么求直线的参数方程及其推导过程直线的参数方程t的意义

直线的参数方程怎么求直线的参数方程及其推导过程直线的参数方程t的意义

直线的参数方程:过定点倾斜角为α的直线的参数方程为(t为参数)。

过定点倾斜角为α的直线的参数方程为(t为参数)。

直线的参数方程及其推导过程:设e是与直线l平行且方向向上(l的倾斜角不为0)或向右(l的倾斜角为0)的单位方向向量(单位长度与坐标轴的单位长度相同).直线l的倾斜角为α,定点M0、动点M的坐标分别为直线的参数方程中参数t的几何意义是:表示参数t对应的点M 到定点Mo的距离,当同向时,t取正数;当异向时,t取负数;当点M与Mo重合时,t=0.直线参数方程何时必须化为标准形式在求解直线与圆相交得到的弦的长度问题时,可以采用的思路很多:①利用几何方法,即利用弦心距、半弦长、半径组成的Rt△Rt△来求解决;②弦长公式,即|AB|=1+k2−−−−−√⋅|x1−x2||AB|=1+k2⋅|x1−x2|来求解;③利用直线的参数方程的参数的几何意义来求解;从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。

求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。

常用直线向上方向与 X 轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。

可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。

直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。

直线在平面上的位置,由它的斜率和一个截距完全确定。

在空间,两个平面相交时,交线为一条直线。

因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

直线参数方程中参数t的几何意义及简单应用

直线参数方程中参数t的几何意义及简单应用

直线参数方程中参数t的几何意义及简单应用直线参数方程中的参数t表示直线上任意一点的位置。

具体地,如果直线参数方程为:
x = x1 + at
y = y1 + bt
其中x1、y1、a、b都是已知常数,那么对于任意一个实数t,都可以通过代入上述方程得到直线上的一个点(x,y)。

也就是说,t
代表了直线上的点与起始点(x1,y1)之间的相对位置。

在实际应用中,我们可以根据直线参数方程来求解直线上的点之间的距离、直线的斜率、直线与平面的交点等问题。

例如,若要求直线上点A(x1+at1, y1+bt1)与点B(x1+at2, y1+bt2)之间的距离,可以利用两点间距离公式:
AB = √[(x2-x1) + (y2-y1)]
其中x1 = x1+at1, y1 = y1+bt1, x2 = x1+at2, y2 = y1+bt2。

- 1 -。

专题:直线参数方程中t的意义理解(高中数学精华)

专题:直线参数方程中t的意义理解(高中数学精华)

专题:直线参数方程中的几何意义几点分析与解析一. 知识点概述:★若倾斜角为α的直线过点)(00y x M ,,t 为参数,则该直线的参数方程可写为★若直线过点M ,直线与圆锥曲线交于两点P 、Q ,则|MP|、|MQ|的几何意义就是:||||||||21t MQ t MP ==,; |MP|+|MQ|的几何意义就是:=+||||MQ MP |t ||t |21+;|MP|·|MQ|的几何意义就是:||||||21t t MQ MP ⋅=⋅;|PQ|的几何意义就是:2122121214)(|||PQ ||||PQ |t t t t t t t t ⋅-+=-=-=,即.★若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,则弦的中点坐标公式为:⎪⎪⎩⎪⎪⎨⎧+++=+=+++=+=2)sin ()sin (22)cos ()cos (2201021'201021'ααααt y t y y y y t x t x x x x 或⎪⎪⎩⎪⎪⎨⎧++=+++=+=++=+++=+=)(22)()(2)(22)()(2212022012021'211021011021't t p y t p y t p y y y y t t p x t p x t p x x x x ,21p p ,为常数,均不为零 (其中中点M 的相应参数为t ,而221t t t +=,所以中点坐标也为:⎩⎨⎧+=+=t p y y t p x x 2010) ★若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,且M 恰为弦AB 中点,则中点M 的相应参数:221t t t +==0 (因为⎩⎨⎧+=+=tp y y t p x x 200100,而21p p ,均不为0,所以t=0) 体会一:教学中一定要讲清楚直线参数方程的推导过程,并且一定要强调其中参数T 的由来。

直线的参数方程中t的几何意义总结

直线的参数方程中t的几何意义总结

直线的参数方程中t的几何意义总结直线的参数方程中t的几何意义总结直线是平面几何中的基本图形之一,其参数方程是直线研究中常用的一种表达方式。

在直线的参数方程中,t代表着自变量,其具有较为重要的几何意义。

下面将从不同角度出发,对直线参数方程中t的几何意义进行总结。

一、t表示直线上某一点到起点距离所占总距离的比例在平面直角坐标系中,设直线L过点A(x1,y1)和B(x2,y2),则L的参数方程为:x = x1 + t(x2 - x1)y = y1 + t(y2 - y1)其中0≤t≤1。

这时,我们可以将t理解为从A到B这条线段上任意一点P到A点距离与AB长度之比。

例如当t=0.5时,P点距离A点和B点的长度相等,即P点处于AB 中点M处;当t=0时,P点位于A点处;当t=1时,P点位于B点处。

因此,在L的参数方程中,t表示了从起始端点到任意一点所需走过路程与整条直线长度之比。

二、t表示向量AB与向量AP夹角余弦值在向量学中,向量的夹角是指两个向量之间的夹角,其余弦值可以用点积公式来表示。

在直线参数方程中,我们可以将t理解为从起点A到任意一点P所对应的向量AP与直线L上已知向量AB之间的夹角余弦值。

设向量AB=(x2-x1,y2-y1),向量AP=(x-x1,y-y1),则有:cosθ = (AB·AP) / (|AB|×|AP|)= [(x2-x1)(x-x1)+(y2-y1)(y-y1)] / [(x2-x1)²+(y2-y1)²]^(1/2) × [(x-x1)²+(y-y1)²]^(1/2)其中θ为向量AB与向量AP之间的夹角。

因此,在直线参数方程中,t也可以表示从起始点A出发到任意一点P所对应的向量与已知向量之间的夹角余弦值。

三、t表示平面上一条射线上某个点到起点距离在平面几何中,射线是由一个端点和以该端点为原点的半直线组成的。

空间解析几何参数的几何意义

空间解析几何参数的几何意义

空间解析几何参数的几何意义
空间解析几何参数的作用在于沟通xy等变量和一些常数的关系,直线参数方程中的t并没有明确的数学意义。

如果将直线看成是一个做匀速直线运动的点的轨迹,那么t可以类比于时间这个概念。

这是通过物理模型人为赋予的意义,并不是几何上的意义。

解析几何学是几何学的一个分支,是一门阐述用代数方法,坐标法和向量运算,研究空间几何问题的课程。

参数方程中的参数t有时是有物理意义的,比如在描述物体运动轨迹的参数方程中,一般是把时间t作为参数。

但是一些抽象的数学归纳出的方程,仅仅是为了数学运算上的方便,就未必有具体的物理意义。

直线的参数方程,t可以看作表示某个点到定点m的有向线段。

它有正负值,当由负轴到定点时t<0,当由正轴到定点时,t>0.而这个m又正好在y=x²的开口内部,设x1=f(t1)。

x2=f(t2),所以用(t1-t2)(此时不管t1与t2谁正谁负了)再取绝对值,肯定是x1m+x2m=ab的距离。

参数方程中的t的几何意义

参数方程中的t的几何意义

参数方程中的t的几何意义1. 嘿,你知道吗,参数方程中的 t 那可太有意思啦!就像汽车在公路上行驶,t 就是那个记录行驶时间的家伙呀!比如在一个抛体运动的参数方程里,t 不就代表着时间,随着 t 的变化,物体的位置也在不断改变呢。

2. 哇塞,参数方程中的 t 啊,它就像是一场冒险中的计时器!想想看,在一个圆周运动的参数方程里,t 每前进一点,物体就在圆周上前进一段,这多神奇呀!3. 哎呀呀,参数方程里的 t 可不简单呢!它简直就是打开几何奥秘的钥匙啊!好比在一条曲线的参数方程中,t 让我们能清晰看到曲线是怎么一点点生成的,多有意思啊!4. 嘿哟,参数方程中的 t 呀,那可是有着大作用呢!不就像一场比赛中的秒表嘛,在一个螺旋线的参数方程里,t 控制着螺旋的进程,多厉害呀!5. 哇哦,参数方程中的 t 啊,不就是指引方向的灯塔嘛!你看在一个摆线的参数方程里,t 决定着摆线的形态,这不是很神奇吗?6. 哈哈,参数方程里的 t 啊,那可是超级重要的角色呢!就像一个魔法棒,在一个椭圆的参数方程里,t 让椭圆动起来了,多酷呀!7. 哎哟喂,参数方程中的 t ,这可是个神秘的玩意儿呀!就像一个导演,在一个双曲线的参数方程里指挥着一切,这不是很有趣吗?8. 呀,参数方程中的 t 呀,可不能小瞧它哦!它就像是一个时间旅行者,在一个特殊曲线的参数方程里带着我们穿梭,真的好神奇呢!9. 哇,参数方程中的 t 啊,那绝对是个关键人物呀!好比在一个复杂图形的参数方程里,t 决定着每一个细节,多牛呀!10. 哈哈,参数方程中的 t ,真的是太有魅力啦!它就像一个无声的指挥家,在各种参数方程中发挥着独特的作用,你难道不想深入了解一下吗?我的观点结论:参数方程中的 t 有着极其丰富和多样的几何意义,它在不同的情境中扮演着重要的角色,为我们揭示了各种奇妙的几何现象,真的是非常值得我们好好去探索和研究呀!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档