4.整式的加减(题目+答案)
《整式的加减》专项练习100题(有答案)

整式的加减专项练习100题(有答案)1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a+9b)+3(-5a-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x-[7x-(4x-3)-2x]6、(2xy-y)-(-y+yx)7、5(ab-3ab)-2(ab-7ab)8、(-2ab+3a)-2(2a-b)+2ab9、(7mn-5mn)-(4mn-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3xy+3xy+2xy-2xy;12、13、2(a-1)-(2a-3)+3.13、-2(ab-3a)-[2b-(5ab+a)+2ab]14、(x-xy+y )-3(x+xy-2y )15、3x-[7x-(4x-3)-2x]16、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )];17、17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3).18、2(2x-3y )-(3x+2y+1)19、-(3a-4ab )+[a-2(2a+2ab )].20、5m-7n-8p+5n-9m-p ;21、(5xy-7xy )-(xy-3xy );22、22、3(-3a-2a )-[a-2(5a-4a+1)-3a].23、3a-9a+5-(-7a+10a-5);24、-3ab-(2ab-ab )-(2ab+4ab ).25、(5a-3a+1)-(4a-3a );26、26、-2(ab-3a )-[2b-(5ab+a )+2ab]27、(8xy -x 2+y 2)+(-y 2+x 2-8xy );28、(2x 2-21+3x )-4(x -x 2+21);29、3x 2-[7x -(4x -3)-2x 2].30、5a+(4b-3a )-(-3a+b );31、(3a2-3ab+2b2)+(a2+2ab-2b2);32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a-1+2a )-3(a-1+a );34、2(x-xy )-3(2x-3xy )-2[x-(2x-xy+y )].35、 -32ab +43a 2b +ab +(-43a 2b )-136、(8xy -x 2+y 2)+(-y 2+x 2-8xy );37、2x -(3x -2y +3)-(5y -2);38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3)40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b )44、()[]{}y x x y x --+--3233245、(-x 2+5+4x 3)+(-x 3+5x -4)46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).48、4a 2+2(3ab-2a 2)-(7ab-1).49、 21xy+(-41xy )-2xy 2-(-3y 2x )50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p52、(5xy-7xy )-(xy-3xy )53、 3xy-[2xy-3(2xy-xy )-xy]5556、(a+4ab-4b )-3(a+b )-7(b-ab ).57、a+2a+(-2a )+(-3a )+3a ;58、5ab+(-4ab )+8ab-(-3ab )+(-ab )+4ab ;59、(7y-3z )-(8y-5z );60、-3(2x 2-xy )+4(x 2+xy-6). 61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)62、-3x 2y+2x 2y+3xy 2-2xy 2;63、3(a 2-2ab )-2(-3ab+b 2);64、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}.65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )].66、-[2m-3(m-n+1)-2]-1.67、31a-( 21a-4b-6c)+3(-2c+2b)68、 -5a-a-(-7a )+(-3a )69、69、xy-3xy+2yx-yx70、 41 21a 2b+ 52ab 2; 71、71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}72、-3(xy-2x )-[y-(5xy-4x )+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-13177、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3.79、化简,求值:5x-[3x-2(2x-3)+7x],其中x=-2.80、若两个多项式的和是2x+xy+3y ,一个加式是x-xy ,求另一个加式.81、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.82、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.83、 求3x 2+x -5与4-x +7x 2的差.84、计算 5y+3x+5z 2与12y+7x-3z 2的和85、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x-xy+y ,求多项式M87、当3(x-2xy )-[3x-2y+2(xy+y )]的值.88、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-4189、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ;(2)求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x-2x+7,若B=x+3x-2,你能否帮助小明同学求得正确答案91、已知:M=3x+2x-1,N=-x-2+3x ,求M-2N .92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B93、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .94、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.化简求值:5abc-2ab+[3abc-2(4ab-ab )],其中a 、b 、c 满足|a-1|+|b-2|+c=0.96、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)=0,(2)z 是最大的负整数,化简求值: 2(xy+xyz )-3(xy-xyz )-4xy .97、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值.98、已知m+3mn=5,求5m-[+5m-(2m-mn )-7mn-5]的值99、设A=2x-3xy+y+2x+2y ,B=4x-6xy+2y-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a的值.100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A 与B的大小.答案:1、3(a+5b)-2(b-a)=5a+13b2、3a-(2b-a)+b=4a-b.3、2(2a+9b)+3(-5a-4b)=—11a2+6b24、(x3-2y3-3x2y)-(3x3-3y3-7x2y)= -2x3+y3+4x2y5、3x-[7x-(4x-3)-2x] = 5x-3x-36、(2xy-y)-(-y+yx)= xy7、5(a2b-3ab2)-2(a2b-7ab) = -a2b+11ab8、(-2ab+3a)-2(2a-b)+2ab= -2a+b9、(7m2n-5mn)-(4m2n-5mn)= 3m2n10、(5a2+2a-1)-4(3-8a+2a2)= -3a2+34a-1311、-3x2y+3xy2+2x2y-2xy2= -x2y+xy212、2(a-1)-(2a-3)+3.=413、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]= 7a2+ab-2b214、(x2-xy+y)-3(x2+xy-2y)= -2x2-4xy+7y15、3x2-[7x-(4x-3)-2x2]=5x2-3x-316、a2b-[2(a2b-2a2c)-(2bc+a2c)]= -a2b+2bc+6a2c17、-2y3+(3xy2-x2y)-2(xy2-y3)= xy2-x2y18、2(2x-3y)-(3x+2y+1)=2x-8y-119、-(3a2-4ab)+[a2-2(2a+2ab)]=-2a2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p21、(5x2y-7xy2)-(xy2-3x2y)=4xy2-4x2y22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a]=-18a2 +7a+223、3a-9a+5-(-7a+10a-5)=10a-19a+1024、-3a2b-(2ab2-a2b)-(2a2b+4ab2)= -4a2b-64ab225、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+1 26、26、-2(ab-3a )-[2b-(5ab+a )+2ab]=7a 2+ab-2b 227、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=028、(2x 2-21+3x )-4(x -x 2+21) = 6x 2-x-25 29、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -330、5a+(4b-3a )-(-3a+b )= 5a+3b31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2)= 4a 2-ab 32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x-xy )-3(2x-3xy )-2[x-(2x-xy+y )]=-2x+5xy-2y 35、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=037、2x -(3x -2y +3)-(5y -2)=-x-3y-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+439、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+441、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a42、 3x -[5x +(3x -2)]=-5x+243、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 244、()[]{}y x x y x --+--32332 = 5x+y45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+146、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-147、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab49、 21xy+(-41xy )-2xy 2-(-3y 2x )=41xy+xy 250、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a51、5m-7n-8p+5n-9m+8p=-4m-2n52、(5xy-7xy )-(xy-3xy )=8xy-6xy57、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2 = -3a 3+4a 2 58、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2=8ab+8ab 2-a 2b 59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x 2+7xy-24 61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=062、-3x 2y+2x 2y+3xy 2-2xy 2= -x 2y+xy 2 63、3(a 2-2ab )-2(-3ab+b 2)=3a 2-2b 264、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 265、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m66、-[2m-3(m-n+1)-2]-1=m-3n+4 67、31a-( 21a-4b-6c)+3(-2c+2b)= -61a+10b 68、 -5a n -a n -(-7a n )+(-3a n )= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 272、 41 21a 2b+ 52ab 2 = -41a 2b 73、 71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x )-[y-(5xy-4x )+2xy]= 2x 2-y 273、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34 原式=2x 2+21y 2-2 =698 74、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32. 原式=-3x+y 2=694 75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121; 原式=x 3+x 2-x+6=68376、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-131 原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=-2ab 3+3ab 2=1278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3. 原式=-2xyz=679、化简,求值:5x-[3x-2(2x-3)+7x],其中x=-2. 原式=-2x 2+x-6=-1680、若两个多项式的和是2x+xy+3y ,一个加式是x-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 281、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -9 84、计算 5y+3x+5z 2与12y+7x-3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 285、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差 (8xy 2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x 2y+3xy 2+1 86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x-xy+y ,求多项式M M=-1x+4xy —23y87、当3(x-2xy )-[3x-2y+2(xy+y )]的值. 原式=-8xy+y= —1588、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-41 原式=83abc-a 2b-2ab 2=3689、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ;(2)求41(B-A); A+B=2a 2+2b 2 41(B-A)=ab 90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得 9x-2x+7,若B=x+3x-2,你能否帮助小明同学求得正确答案A=10x+x+5 A+B=11x+4x+391、已知:M=3x+2x-1,N=-x-2+3x ,求M-2N .M-2N=5x -4x+392、已知222244,5A x xy y B x xy y =-+=+-,求3A -B3A -B=11x 2-13xy+8y 293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .2A -3B= 5x 2+11xy +2y 294、已知2 a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值. 原式=9ab 2-4a 2b=34化简求值:5abc-2ab+[3abc-2(4ab-ab )],其中a 、b 、c 满足|a-1|+|b-2|+c=0. 原式=8abc-8ab=-3296、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值: 2(xy+xyz )-3(xy-xyz )-4xy .原式=-5xy+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值. 原式=10a+10b-2ab=5098、已知m+3mn=5,求5m-[+5m-(2m-mn )-7mn-5]的值原式=2m+6mn+5=1599、设A=2x-3xy+y+2x+2y ,B=4x-6xy+2y-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a 的值.B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A与B 的大小.A=2a 2-4a +1 B =2a 2-4a +3 所以A<B。
《整式的加减》练习题4(有答案)

《整式的加减》练习题4学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上1、根据以下运算程序,当输入x=﹣2时,输出的结果为()A. -2B. -5C. 6D. -1参考答案: B【思路分析】因为x=﹣2<0,所以在运算程序中将x=﹣2代入x﹣3的代数式即可求解.【解题过程】解:∵x=﹣2<0,∴x﹣3=﹣2﹣3=﹣5,故选:B.2、下列关于“代数式3x+2y”的意义叙述不正确的有()个①x的3倍加上y的2倍的和;②小明跑步速度为x千米/小时,步行的速度为y千米/时,则小明跑步3小时后步行2小时,走了(3x+2y)千米;③某小商品以每个3元卖了x个,又以每个2元卖了y个,则共卖了(3x+2y)元.A. 3B. 2C. 1D. 0参考答案: D【思路分析】这道题是考查代数式的意义,按照代数式的意义和运算顺序,结合实际,根据代数式的特点逐项判断.【解题过程】解:“代数式3x+2y”的意义是x的3倍加上y的2倍的和,故①正确;将“代数式3x+2y”赋予实际意义,可以是小明跑步速度为x千米/小时,步行的速度为y 千米/时,则小明跑步3小时后步行2小时,走了(3x+2y)千米,故②正确;还可以是某小商品以每个3元卖了x 个,又以每个2元卖了y 个,则共卖了(3x+2y )元,故③正确.故不正确的有0个.故选:D.3、在代数式①b a+b ②a+b 3③ -2x 3y 4④-2x 3+y 4⑤−5a 2b 2⑥ x 4-1中多项式的个数有( ) A. 4B. 3C. 2D. 1参考答案: B【思路分析】本题主要考查多项式的判断,判断一个式子是不是多项式的根据是多项式的定义,多项式是由几个单项式的和组成的,看式子中是否含有运算符号“+”或“-”,注意分母中不能含有字母。
整式的加减练习题及答案

整式的加减练习题及答案在代数学中,整式是由系数与变量的乘积和常数项相加减构成的代数表达式。
整式的加减是我们学习代数的基础,通过练习加减整式,我们可以提高我们的代数运算能力。
在本文中,我们将提供一些整式的加减练习题及答案,以帮助读者巩固这一重要的数学概念。
1. 加减同类项的整式练习题请计算以下整式的和或差,并将结果化简:题目1:2x^2 + 5x - 3 + 3x^2 - 2x + 7题目2:4y^3 - 2y^2 + 6y - 3 - y^3 + 4y^2 - 5y + 2题目3:-3a^2b + 5ab^2 + 7a^2b^2 - a^2b^2 - 2ab^2 - a^2b2. 加减含有分数系数的整式练习题请计算以下整式的和或差,并将结果化简:题目1:(2/3)x - (1/4)y + (5/6)x + (1/8)y题目2:(3/5)a^2 - (2/3)b^2 - (4/5)a^2 + (5/6)b^23. 加减含有多个变量的整式练习题请计算以下整式的和或差,并将结果化简:题目1:2x^2y - xy^2 + x^2y + 3xy^2题目2:(x/2)y^2 - 3xy^2 + (2/5)x^2y - (1/3)xy^24. 加减多项式的整式练习题请计算以下整式的和或差,并将结果化简:题目1:(3x^2 - 2xy + 4y^2) + (2xy - 5y^2 + x^2)题目2:(7a^3b - 4ab^3 - 3a^2b^2) - (5a^3b - 2ab^3 + 2a^2b^2)以上是一些整式的加减练习题,下面是对应的答案:1. 加减同类项的整式练习题答案:答案1:5x^2 + 3x^2 + 5x - 2x - 3 + 7 = 8x^2 + 3x + 4答案2:4y^3 - y^3 - 2y^2 + 4y^2 + 6y - 5y - 3 + 2 = 3y^3 + 2y^2 + y - 1答案3:-3a^2b - 2ab^2 + 7a^2b^2 - a^2b^2 - 2ab^2 - a^2b = 7a^2b^2 - a^2b^2 - 3a^2b - 2ab^2 - 2ab^2 - a^2b = 6a^2b^2 - 5a^2b - 4ab^22. 加减含有分数系数的整式练习题答案:答案1:(2/3)x + (5/6)x - (1/4)y + (1/8)y = (4/6)x + (5/6)x - (1/8)y - (1/4)y = (9/6)x - (5/8)y = (3/2)x - (5/8)y答案2:(3/5)a^2 - (4/5)a^2 - (2/3)b^2 + (5/6)b^2 = (3/5)a^2 - (4/5)a^2 + (5/6)b^2 - (2/3)b^2 = - (1/5)a^2 + (1/6)b^23. 加减含有多个变量的整式练习题答案:答案1:2x^2y + x^2y - xy^2 + 3xy^2 = 3x^2y + 2xy^2 - xy^2 = 3x^2y + xy^2答案2:(x/2)y^2 + (2/5)x^2y - 3xy^2 - (1/3)xy^2 = (1/2)xy^2 +(2/5)x^2y - (10/15)xy^2 - (5/15)xy^2 = (1/2)xy^2 + (2/5)x^2y - (15/15)xy^2 = (2/5)x^2y - (19/30)xy^24. 加减多项式的整式练习题答案:答案1:(3x^2 + x^2) + (-2xy + 2xy) + (4y^2 - 5y^2) = 4x^2 + 0 + -y^2 = 4x^2 - y^2答案2:(7a^3b - 5a^3b) + (-4ab^3 + 2ab^3) + (-3a^2b^2 - 2a^2b^2) = 2a^3b + -2ab^3 - 5a^2b^2 = 2a^3b - 2ab^3 - 5a^2b^2通过练习以上的加减整式题目,相信您对整式的加减运算有了更好的理解。
整式的加减(含答案)

整式的加减1.下列各题中合并同类项结果正确的是( )A .134=-xy xy B .222632a a a =+C .222532a a a =+D .02222=-mn n m2.下列计算正确的是A .ab b a 523=+B .235=-y yC .277a a a =+D .y x yx y x 22223=-3.计算223a a +的结果是( ) A.23a B.24a C.43a D.44a4.下列运算正确的是( ).A .2323a a a +=B .()2a a a -÷= C .()325a a a -=- D .()32628a a =5.下列运算正确的是( ).A .3x+3y= 6 xyB .-y 2-y 2=0C .3(x+8)=3x +8D .- (6 x +2 y)=-6 x -2 y6.下列运算正确的是( ).A .623x x x ÷=B .532x x x =⋅C .624x x x -=D .325()x x =7.下列各式的变形正确的是( )A.235257a a aB.2276t tC.4x+5y=9xyD.22330x y yx8.下列各式计算正确的是( ).A.266a a a =+B.ab b a 352=+-C.mn mn n m 22422=-D.222253ab a b ab -=-9.如果2592++kx x 是一个完全平方式,那么k 的值是:A .±30B .30C .15 D.±1510.下列各式可以分解因式的是 ( )A .()-22x y -B .+224x 2xy y + C. 22x 4y -+ D.-22x 2xy y -11.计算()()()+2x 1x 1x 1-+的结果是 ( )A.-2x 1B.-3x 1C.+4x 1D.-4x 112.分解因式:m 3-4m 2+4m=____.13.因式分解:3x x -= ;14.分解因式:a -2ax+a 2x = .15.计算(π﹣3)0=_________.16.分解因式:=-2282b a ___________________.17.因式分解:22273b a -= 。
整式的加减练习题(含答案)

1.下列去括号正确的是A.–(3x–1)=–3x–1B.–(3x–1)=3x–1C.–(3x–1)=–3x+1D.–(3x–1)–3x+12.–a+b–c的相反数是A.a–b–c B.a–b+c C.a+b–c D.a+b+c3.计算–(a–1)–(–a+2)+3的结果是A.6B.2C.0D.–2a+24.化简2a–[3b–5a–(2a–7b)]的值为A.9a–10b B.5a+4bC.–a–4b D.–7a+10b5.去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号________.6.将下列各式去括号:(1)(a–b)–(c–d)=________;(2)–(a+b)+(c–d)=________;(3)–(a–b)–(c–d)=________;(4)(a+b)–3(c–d)=________.7.多项式–8ab2+3a2b与多项式–2ab2+5a2b的差为________.8.若m、n互为相反数,则(3m–2n)–(2m–3n)的值为________.9.化简:(1)2xy+3(4xy–2x)–2(xy–2x);(2)3x2–2(x+x2–3)+3(–2x–4+3x2).10.化简:(1)–(9x3–4x2+5)–(–3–8x3+3x2);(2)2(a2b+ab2)–2(a2b–1)–3(ab2+1).11.观察下列各式:(1)–a+b=–(a–b);(2)2–3x=–(3x–2);(3)5x+30=5(x+6);(4)–x–6=–(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1–b=–2,求–1+a2+b+b2的值.12.在修某县人民路的BRT(快速公交)时,需要对部分建筑进行拆迁,该县政府成立了拆迁工作组,他们步行去做拆迁产生的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km):出发点,–0.7,+2.7,–1.3,+0.3,–1.4,+2.6,拆迁点;(1)工作组最后到达的地方在出发点的哪个方向?距出发点多远?(2)在一天的工作中,最远处距离出发点有多远?(3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他们的步行速度为2km/h,工作组早上九点出发,做完工作时是下午几点?13.不改变3a 2–2b 2–b +a +ab 的值,把二次项放在前面有“+”的括号内,一次项放在前面有“–”的括号内,下列各式正确的是 A .+(3a 2+2b 2+ab )–(b +a ) B .+(–3a 2–2b 2–ab )–(b –a ) C .+(3a 2–2b 2+ab )–(b –a )D .+(–3a 2+2b 2+ab )–(b –a )14.下列各式中,去括号错误的是A .3x 2–(2x –y )=3x 2–2x +yB .()22332244x x x x -+=-- C .5a +(–2a 2–b 2)=5a –2a 2–b 2D .(–a +3b )–(a 2+b 2)=–a +3b –a 2–b 215.数学课上老师讲了合并同类项,小玉回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现了一道题目:(2a 2+3ab –b 2)–(–3a 2+ab +5b 2)=5a 2–6b 2,横线上的一项被墨水弄脏了,则被墨水弄脏的一项是________. 16.先化简,再求值:22113124323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中x 、y 满足3202x y -++=.17.(2018•武汉)计算3x 2–x 2的结果是A .2B .2x 2C .2xD .4x 2A.3 B.6 C.8 D.919.(2017•柳州)化简:2x–x=A.2 B.1 C.2x D.x20.(2017•绥化)下列运算正确的是A.3a+2a=5a2B.3a+3b=3abC.2a2bc–a2bc=a2bc D.a5–a2=a321.(2017•六盘水)下列式子正确的是A.7m+8n=8m+7n B.7m+8n=15mnC.7m+8n=8n+7m D.7m+8n=56mn35.【答案】相同;相反【解析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,故答案为:相同,相反. 6.【答案】a–b–c+d;–a–b+c–d;–a+b–c+d;a+b–3c+3d7.【答案】–6ab2–2a2b【解析】(–8ab2+3a2b)–(–2ab2+5a2b)=–8ab2+3a2b+2ab2–5a2b=(–8+2)ab2+(3–5)a2b=–6ab2–2a2b.8.【答案】0【解析】由题意m+n=0,所以(3m–2n)–(2m–3n)=3m–2n–2m+3n=m+n=0.9.【解析】(1)2xy+3(4xy–2x)–2(xy–2x)=2xy+12xy–6x–2xy+4x=12xy–2x;(2)3x2–2(x+x2–3)+3(–2x–4+3x2)=3x2–2x–2x2+6–6x–12+9x2=10x2–8x–6.10.【解析】(1)–(9x3–4x2+5)–(–3–8x3+3x2)=–9x3+4x2–5+3+8x3–3x2=–x3+x2–2;(2)2(a2b+ab2)–2(a2b–1)–3(ab2+1)=2a2b+2ab2–2a2b+2–3ab2–3=–ab2–1.11.【解析】添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.∵a2+b2=5,1–b=–2,∴–1+a2+b+b2=(a2+b2)–(1–b)=5–(–2)=7.12.【解析】(1)–0.7+2.7+(–1.3)+0.3+(–1.4)+2.6=2.2(km).答:工作组最后到达的地方在出发点的北方,距出发点2.2km;(2)第一次的距离是|–0.7|=0.7(km),第二次的距离是|–0.7+2.7|=2(km),第三次的距离是|2+(–1.3)|=0.7(km),第四次的距离是|0.7+0.3|=1(km),第五次的距离是|1+(–1.4)|=0.4,第六次的距离是|–0.4+2.6|=2.2(km),∵2.2>2>1>0.7>0.4.答:在一天的工作中,最远处离出发点有2.2km ; (3)(|–0.7|+2.7+|–1.3|+0.3+|–1.4|+2.6)÷2=4.5(h ), 9+4.5+6=19.5(点), 即下午7点半.答:工作组早上九点出发,做完工作时是下午7点半. 13.【答案】C14.【答案】B【解析】A .3x 2–(2x –y )=3x 2–2x +y ,正确;B .()2233244x x x x -+=-–32,故错误;C .5a +(–2a 2–b 2)=5a –2a 2–b 2,正确;D .(–a +3b )–(a 2+b 2)=–a +3b –a 2–b 2,正确,所以错误的是B 选项,故选B . 15.【答案】+2ab【解析】(2a 2+3ab –b 2)–(–3a 2+ab +5b 2) =2a 2+3ab –b 2+3a 2–ab –5b 2 =5a 2+2ab –6b 2,所以被墨水弄脏的一项是+2ab , 故答案为:+2ab . 16.【解析】原式=22212312323x x y x y x y -+-+=-+, 因为3202x y -++=, 所以302x -=,20y +=, 解得:32x =,2y =-,所以原式=()235222-+-=. 17.【答案】B【解析】3x 2–x 2=2x 2,故选B .19.【答案】D【解析】2x –x =(2–1)x =x .故选D .。
整式的加减练习100题(有答案)

整式的加减练习100题(有答案)不好意思,由于篇幅较长,无法在此处完整呈现100道整式加减的练习题。
以下是30道以及相关答案。
建议在做题之前充分掌握整式的基础知识。
1. (2x+3)+(4x-2)=答案:6x+12. (3x²+5x+7)-(x²+2x+3)=答案:2x²+3x+43. (2x⁴-3x²+5)+(4x²-2)=答案:2x⁴+x²+34. (5x³-2x²+3x)+(3x⁴-4x²+2)=答案:3x⁴+5x³-6x²+3x+25. (3x²+4x-2)-(x²-2x+5)=答案:2x²+6x-76. (2x⁵+3x³-7x)+(4x³-2x)=答案:2x⁵+7x³-9x7. (x⁴+x²+2)+(2x⁴+3x²-1)=答案:3x⁴+4x²+18. (3x⁴-2x²+5)+(2x⁴+3x²-1)=答案:5x⁴+x²+49. (5y⁴-3y²+2)+(2y²+1)=答案:5y⁴-1y²+310. (7x³-5x²+8x)+(2x⁴-7x³+5x²-8x+1)=答案:2x⁴+2x²+111. (4x⁴-2x³+6)+(2x³-3x²+1)+(3x⁴-4x³+2x²-3x+5)=答案:7x⁴-x²+412. (6y⁵-5y³+7)+(5y³-3y²+1)+(2y⁴-4y³+3y²-2y+1)=答案:6y⁵+2y⁴-2y²-2y+913. (2x⁴-3x²+1)-(3x³-5x²+2)+(5x³-2x²+1)=答案:2x⁴-8x³+6x²+214. (3y⁴+2y³+5)-(2y²-3y+1)+(4y²-2y+3)+(5y³-3y^2+y-4)=答案:3y⁴+7y³+4y²-415. (2x³+4x²-5x+7)-(5x³+3x²-2x+1)+(3x⁴-2x²+1)=答案:3x⁴-3x³+3x²-6x+716. (4y³-3y²+6y)+(5y⁴-2y³+4y²-6y+1)-(2y⁴+3y³-2y²+3y-1)= 答案:3y⁴-3y³+8y²-3y+217. (2a³-5a²+7a)+(3a²-2a+1)+(5a³-2a²+4a-1)-(4a³+a²-3a+5)= 答案:3a³-3a²+12a-418. (3x⁴-2x³+5)-(4x³-2x²+3)+(2x²-3x+1)+(6x⁴-3x³+2x-1)= 答案:9x⁴-6x²19. (5y⁴-3y²+2)+(2y²+1)-(6y³-2y²+3)+(-3y^3+2y^2-y+4)= 答案:5y⁴-9y³+3y²-y+420. (2x³-x+3)-(3x²+x-2)+(5x⁴-2x³+1)-(4x²-3x+7)=答案:5x⁴-x²+421. (6x³-2x²+1)+(2x⁴-5x³+3x²-5x+1)-(3x⁴+4x³-3x²+2x-3)=答案:-x⁴-x³+6x²-6x+322. (2y³-4y²+6y)+(5y⁴-3y³+2y²-1)-(3y⁴+y²+5y-1)+(y⁴-2y³+3y²-2y+7)=答案:4y⁴-y³-2y²+12y+623. (3x²-2x+1)-(x⁴-2x³+3x²-2x+1)+(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)=答案:-x⁴+6x³-2x²-x+424. (2y²-3y+5)+(5y³-2y²+7)+(3y⁴-4y³+2y²-1)-(4y³+y²+3y-5)=答案:3y⁴+y³-4y²+4y+1225. (4x³-2x²+5x-1)-(5x⁴-3x²+1)+(2x⁴+x³+3x²-5x+1)+(3x³-2x²+x-4)=答案:-3x⁴+2x³+6x²-2x-326. (3a³-2a²+1)+(2a²-3a+5)-(5a³-3a²+2a-1)+(6a⁴-2a³+1)=答案:6a⁴-2a³-6a²+6a+727. (2y⁴-3y³+2y)+(3y⁴-2y³+y²-1)-(4y³+2y²-3y+1)+(y⁴-y³+3y²-4y+7)=答案:1y⁴+4y³-y²+4y+628. (5x²-2x+1)-(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)+(3x³-4x²+3x-2)= 答案:5x⁴-5x²+529. (2a²-3a+5)-(5a³-2a²+7)+(3a⁴-4a³+2a²-1)+(4a³+a²-3a+5)=答案:3a⁴-2a³+2a²+130. (3x³-2x²+1)+(2x²-x+3)-(3x³+4x²-3x+2)+(5x⁴-2x³+1)=答案:5x⁴-3x²+2整式加减是初中数学中的重点内容之一。
整式的加减(含答案)
整数的加减一、以考查知识为主试题【容易题】1.若两个单项式-4x2y与nx3+m y的和是0,求代数式m2-2n的值.2.若两个单项式x5y n与-3x2m+1y3n-2的和是一个单项式,求(-n)3m的值.3.下列两项中,属于同类项的是()A.62与x2 B.4ab与4abc C.0.2x2y与0.2xy2 D.nm和-mn4.已知-5.2x m+1y3与-100x4y n+1是同类项,求:m n+n m.5.化简下列各式:(1) 8a+2b+(5a-b);(2)(5a-3b)-3(2a-2b);6.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时(1)2小时后两船相距多远?(2)2小时后甲船比乙船多航行多少千米?7.下列各式从左到右正确是( )A .-(3x+2)=-3x+2B .-(-2x-7)=-2x+7C .-(3x-2)=-3x+2D .-(-2x-7)=2x-78. -[x-(2y-3z )]去括号应得( )A .-x+2y-3zB .-x-2y+3zC .-x-2y-3zD .-x+2y+3z9.计算:(1) (2x-3y )+(5x+4y ); (2) (8a-7b )-(4a-5b )10.笔记本的单价是x 元,圆珠笔的单价是y 元,小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支.买这种笔记本和圆珠笔,小红和小明一共花费多少元?11.某村小麦种植面积是a 公顷,水稻面积是小麦面积的3倍,玉米种植面积比小麦种植面积少5公顷,求小麦,水稻和玉米的种植面积和.12.求21x -2(x -31y 2)+( -23x +31y 2)的值,其中x =-2,y =32.【中等题】13.合并下列各式的同类项(1)2251xy xy -(2)22222323xy xy y x y x -++- (3)222244234b a ab b a --++14. 合并同类项:3x 2y -4x 2y =__________.15. 合并同类项:3a 2b -5a 2b+9a 2b.16. 化简:xy -13x 2y 2-35xy-12x 2y 2.17. 已知4am -3b 5与3a 2b 2n+3的和仍是一个单项式,则m 和n 的值分别是多少?18. 先化简,再求值.5x 2-(3y 2+5x 2)+(4y 2+7xy),其中x =-1,y =1.19. 去括号,合并同类项:-2(a 3-3b )+(-b 2+a 3).20. A 和B 两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:A 公司年薪10 000元,从第二年开始每年加工龄工资200元,B 公司半年薪5 000元,每半年加工龄工资50元,从经济收入的角度考虑的话,选择哪家公司有利?思路分析:计算出第一年、第二年及第n 年在A 公司或在B 公司工作的收入并不困难:不过逐年计算每家公司的收入过于麻烦,所以应借助于字母n ,计算第n 年在每个公司的收入,并进行比较,才能使对问题的讨论具有一般性,才能保证结论是正确的.21. 计算:(1)2(2a -3b )+3(2b -3a ); (2)2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy +y 2)].22. 先化简,再求值.(1)-2x 3+4x -213x -(x +3x 2-2x 3),其中x =3;(2)12x-2(x-213y)+231()23x y-+,其中x=-2,y=-3.23. 七年级(1)班分成三个小组,利用星期日参加公益活动.第一组有学生m名;第二组的学生数比第一组学生人数的2倍少10人;第三组的学生数是第二组学生人数的一半.七年级(1)班共有多少名学生?24.有这样一道题:“当a=2 012,b=-2 013时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2 013的值.”小明说:本题中a=2 012,b=-2 013是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.25.已知A=1,B=x+4x-3,C=5x2+4,求多项式A-2[A-B-2(B-C)]的值,其中x=1.26. 五个连续偶数中,中间一个是n,这五个数的和是_______.27. 若m为常数,多项式mxy+2x-3y-1-4xy为三项式,则12m2-m+2的值是______.28. 先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-12;(2)5ab-92a2b+12a2b-114ab-a2b-5,其中a=1,b=-2;(3)2a2-3ab+b2-a2+ab-2b2,其中a2-b2=2,ab=-3.29. 关于x,y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求6m-2n+2的值.30. 商店出售茶壶每只定价20元,茶杯每只定价5元,该店制定了两种优惠办法:(1)买一只茶壶赠送一只茶杯;(2)按总价的92%付款.某顾客需购茶壶4只,茶杯x•只(x ≥4),付款数为y(元),试对两种优惠办法分别写出y与x之间的关系,并研究该顾客买同样多的茶杯时,两种方法哪一种更省钱?二、以考查技能为主试题【中等题】 31.已知-5.1×10m x 2y n 与3n x m+1y n是同类项,求当合并同类项后,单项式的系数是正数时,n 的最小值是几?当n 取最小值时,合并同类项后的单项式的系数和次数是几?32.将右边两个椭圆框中的同类项用直线段连接起来,其中对应正确的连接线有( )A .1条B .2条C .3条D .4条33.(1)求多项式2222x -5x+x +4x-3x -2的值,其中1x=2;(2)求多项式22113a 333abcc a c 的值,其中1,2,36a b c ;34.(1)水库中水位第一天连续下降了a 小时,每小时平均下降2cm ,第二天连续上升了a 小时,每小时平均上升0.5cm ,这两天水位的总变化量为多少?(2)某商店原有5袋大米,每袋大米为x千克,上午卖出3袋,下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?35.合并同类项:2x2+xy+3y2-x2+xy-2y2,并求当x=2,y=1时,代数式的值.36.如果单项式2mx a y与-5nx2a-3y是关于x,y的单项式,且它们是同类项.(1)(7a-22)2004的值.(2)若2mx a y+5nx2a-3y=0,求(2m+5n)2005的值.37.有理数a,b,c满足:(1)8(a-5)2+10|c|=0;(2)-2x2y b+1与4x2y3是同类项,求:代数式2(2a2-3ab+6b2)-(3a2-2009abc+9b2-4c68)的值.38. 在下列( )里填上适当的项:(1)a+b+c-d=a+( );(2)a-b+c-d=a-( );(3)x+2y-3z=2y-( )(4)(a+b-c)(a-b+c)=[a+( )][a-( )];(5)-(a3-a2)+(a-1)=-a3-( )39. 已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为()A.1 B.5 C.-5 D.-140. 将多项式3x3-2x2+4x-5添括号后正确的是()A.3x3-(2x2+4x-5) B.(3x3+4x)-(2x2+5)C.(3x3-5)+(-2x2-4x) D.2x2+(3x3+4x-5)41. 在-()=-x2+3x-2的括号里应填上的代数式是()A.x2-3x-2 B.x2+3x-2 C.x2-3x+2 D.x2+3x+243. 老师出了这样一道题“当a=56,b=-28时,计算(2a3-3a2b-2ab2)-(a3-2ab2+b3)+(3a2b-a3-b3)的值”.但在计算过程中,有一位同学错把“a=56”写成“a=-56”,而另一位同学错把“b=-28”写成“b=-2.8”,可他俩的运算结果却都是正确的,请你找出其中的原因.44. 计算:(1)(112x2-20x+10y)-(52x2-13x+24y); (2)(xy-32y+12)-(xy-32x+12);(3)2(x2-2x+4)-3(-5+x2); (4)-2a+4(-3a+2b)-3(a-2b+3c).45.做大小两个长方体纸盒,尺寸如下(单位:c m)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?46.把多项式x5-3x3y2+3x2-y5写成两个整式的和,并使其中一个只含5次项.47.某同学做一道数学题,误将求“A-B”看成求“A+B”,结果求出的答案是x2-x+2,已知A=2x2-x-5,请求出正确答案.48.关于x、y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求多项式2m2n+10m-4n+2-2m2n-4m+2n的值.49.化简求值:(-3x2-4y)-(2x2-5y+6)+(x2-5y-1),其中x、y满足|x-y+1|+(x-5)2=0.【较难题】50.下列代数式中哪些互为同类项3x2y,-5xy2,2x3,-7x2y,6,-4x3,10,3a2b,4ab2,0,-a2b,xy2,-ab2.51.合并同类项,结果按字母a作降幂排列:3(2a3-3a4+a-4)-2(6-2a2+3a3-4a4)52.若关于x、y的多项式x m-1y3+x3-m y|n-2|+x m-1y+x2m-3y|n|+m+n-1 合并同类项后得到一个四次三项式,求m、n的值(所有指数均为正整数)53.下列去括号错误的是()A.3a2-(2a-b+5c)=3a2-2a+b-5c B.5x2+(-2x+y)-(3z-u)=5x2-2x+y-3z+u C.-(2x-y)-(-x2+y2)=-2x+y+x2-y2 D.2m2-3(m-1)=2m2-3m-154. 不改变3a2-2b2-b+a+ab的值,把二次项放在前面有“+”号的括号里,一次项放在前面有“-”号的括号里,下列各式正确的是()A.+(3a2+2b2+ab)-(b+a) B.+(-3a2-2b2-ab)-(b-a)C.+(3a2-2b2+ab)-(b-a) D.+(3a2+2b2+ab)-(b-a)55. 下列各组代数式中,互为相反数的有()①a-b与-a-b;②a+b与-a-b;③a+1与1-a;④-a+b与a-b.A.①②④ B.②④ C.①③ D.③④56.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a-3b B.4a-8b C.2a-4b D.4a-10b57.有理数a、b、c在数轴上的位置如图所示,化简|a|+|b|+|a+b|+|b-c|.58.若-3<x<2,化简:|x-2|+|x+3|-|3x+9|-|4-2x|.59.已知m-n=4,mn=-1,求:(-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)的值.60.已知3x a-2y2z3和-4x3y b-1z3是同类项,求3a2b-[2ab2-2(a2b+2ab2)]的值.整数的加减答案一、以考查知识为主试题【容易题】1.若两个单项式-4x2y与nx3+m y的和是0,求代数式m2-2n的值.答案:因为-4x2y与nx3+m y的和为0,所以n=4;3+m=2,所以m=-1,当m=-1,n=4时,m2-2n=-7.2.若两个单项式x5y n与-3x2m+1y3n-2的和是一个单项式,求(-n)3m的值.答案:∵两个单项式x5y n与-3x2m+1y3n-2的和是一个单项式,∴2m+1=5,3n-2=n,解得:m=2,n=1.∴(-n)3m=1.3.下列两项中,属于同类项的是()A.62与x2 B.4ab与4abcC.0.2x2y与0.2xy2 D.nm和-mn答案:D.4.已知-5.2x m+1y3与-100x4y n+1是同类项,求:m n+n m.答案:∵-5.2x m+1y3与-100x4y n+1是同类项,∴m+1=4,n+1=3,∴m=3,n=2,∴m n+n m=9+8=17.5.化简下列各式:(1) 8a+2b+(5a-b);(2)(5a-3b)-3(2a-2b);答案:(1)8a+2b+(5a-b)=8a+2b+5a-b=13a+b(2)(5a-3b)-3(2a-2b)=5a-3b-(32a-6b)=5a-3b-32a+6b=-32a+5a+3b6.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时(1)2小时后两船相距多远?(2)2小时后甲船比乙船多航行多少千米?答案:(1)(50+a)×2+(50-a)×2=200千米;(2)(50+a)×2-(50-a)×2=4a千米.答:2小时后两船相距200千米;甲船比乙船多航行4a千米.7.下列各式从左到右正确是()A.-(3x+2)=-3x+2 B.-(-2x-7)=-2x+7C.-(3x-2)=-3x+2 D.-(-2x-7)=2x-7答案:C.8. -[x-(2y-3z)]去括号应得()A.-x+2y-3z B.-x-2y+3z C.-x-2y-3z D.-x+2y+3z 答案:3a-2b+c=+(3a-2b+c)=-(-3a+2b-c)按要求,将多项式3a-2b+c添上括号;A.9.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b)答案:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y=7x+y(2)(8a-7b)-(4a-5b)=8a-7b-4a+5b=4a-2b10.笔记本的单价是x元,圆珠笔的单价是y元,小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支.买这种笔记本和圆珠笔,小红和小明一共花费多少元?答案:解法1:小红买笔记本和圆珠笔共花费(3x+2y)元,小明买笔记本和圆珠笔共花费(4x+3y)元,小红和小明一共花费(3x+2y)+(4x+3y)=7x+5y;解法2:小红和小明买笔记本共花费(3x+4x)元,买圆珠笔共花费(2y+3y)元,则小红和小明一共花费(3x+4x)+(2y+3y)=7x+5y;11.某村小麦种植面积是a公顷,水稻面积是小麦面积的3倍,玉米种植面积比小麦种植面积少5公顷,求小麦,水稻和玉米的种植面积和.答案:a+3a+(a-5)=4a+a-5=5a-5(公顷).答:小麦,水稻和玉米的种植面积和为(5a-5)公顷.12.求21x -2(x -31y 2)+( -23x +31y 2)的值,其中x =-2,y =32. 答案:21x -2(x -31y 2)+( -23x +31y 2)=21x -2x +32 y 2-23x +31y 2 =-3x +y 2. 当x =-2,y =32时,原式=(-3)×(-2)+(32)2=6+94=658.【中等题】13.合并下列各式的同类项 (1)2251xy xy -(2)22222323xy xy y x y x -++- (3)222244234b a ab b a --++ 214=1-xy =xy 55(3)4a 2+3b 2+2ab-4a 2-4b 2=(4-4)a 2+(3-4)b 2+2ab=-b 2+2ab . 14. 合并同类项:3x 2y -4x 2y =__________. 答案:-x 2y15. 合并同类项:3a 2b -5a 2b+9a 2b. 答案:3a 2b -5a 2b+9a 2b=(3-5+9)a 2b =7a 2b. 16. 化简:xy -13x 2y 2-35xy-12x 2y 2. 答案:一般在合并前,先画出同类项: xy -13x 2y 2-35xy-12x 2y 2=(1-35)xy+(-13-12)x 2y 2=25xy -56x 2y 2. 17. 已知4a m -3b 5与3a 2b2n+3的和仍是一个单项式,则m 和n 的值分别是多少?答案:本题考查的是单项式和合并同类项的概念,要想两个单项式的和仍是单项式,这两个单项式一定是同类项才行,否则不能合并,因此根据同类项的概念可得到一个关于m 、n 的简单方程,由此解出m 、n. 由m -3=2,知m =5; 由5=2n+3,知n =1. 18. 先化简,再求值.5x 2-(3y 2+5x 2)+(4y 2+7xy),其中x =-1,y =1.答案:本题考查的是整式的加减运算,应先去括号再合并同类项,最后代入求值. 5x 2-(3y 2+5x 2)+(4y 2+7xy) =5x 2-3y 2-5x 2+4y 2+7xy =y 2+7xy.当x =-1,y =1时,y 2+7xy =-6.19. 去括号,合并同类项:-2(a 3-3b )+(-b 2+a 3).答案:原式=-2(a 3-3b )+(-b 2+a 3)=-2a 3+6b-b 2+a 3=-a 3+6b-b 2.20. A 和B 两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:A 公司年薪10 000元,从第二年开始每年加工龄工资200元,B 公司半年薪5 000元,每半年加工龄工资50元,从经济收入的角度考虑的话,选择哪家公司有利? 思路分析:计算出第一年、第二年及第n 年在A 公司或在B 公司工作的收入并不困难:A 公司B 公司第一年 10 000 5 000+5 050=10 050 第二年10 2005 100+5 150=10 250不过逐年计算每家公司的收入过于麻烦,所以应借助于字母n ,计算第n 年在每个公司的收入,并进行比较,才能使对问题的讨论具有一般性,才能保证结论是正确的. 答案:第n 年在A 公司收入为10 000+200×(n -1);第n 年在B 公司收入为[5 000+100(n -1)]+[5 000+100(n -1)+50]=10 050+200(n -1). 因为10 000+200(n -1)-[10 050+200(n -1)]=-50,所以选择B 公司有利. 21. 计算:(1)2(2a -3b )+3(2b -3a );(2)2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy +y 2)].答案:(1)2(2a -3b )+3(2b -3a )=4a -6b +6b -9a =4a -9a -6b +6b =-5a ; (2)2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy +y 2)]=2x 2-2xy -6x 2+9xy -2(x 2-2x 2+xy -y 2) =-4x 2+7xy -2(-x 2+xy -y 2) =-4x 2+7xy +2x 2-2xy +2y 2=-2x 2+5xy +2y 2. 22. 先化简,再求值.(1)-2x 3+4x -213x -(x +3x 2-2x 3),其中x =3;(2)12x -2(x -213y )+231()23x y -+,其中x =-2,y =-3. 答案:(1)原式=-2x 3+4x -213x -x -3x 2+2x 3 =-2x 3+2x 3+4x -x -213x -3x 2 =3x -2103x . 当x =3时,原式=3×3-103×32=9-30=-21. (2)原式=22123122323x x y x y -+-+ =-3x +y 2.当x =-2,y =-3时,原式=-3×(-2)+(-3)2=6+9=15.点拨:对于整式加减的求值问题,如果能化简,要先化简,再求值,这样可以简化计算.必须注意:在代入求值时,如果字母的取值为负数,要添加括号.23. 七年级(1)班分成三个小组,利用星期日参加公益活动.第一组有学生m 名;第二组的学生数比第一组学生人数的2倍少10人;第三组的学生数是第二组学生人数的一半.七年级(1)班共有多少名学生? 答案:根据题意,得m +(2m -10)+1(210)2m - =3m -10+m -5=(4m -15)(人). 答:七年级(1)班共有学生(4m -15)人.24. 有这样一道题:“当a =2 012,b =-2 013时,求多项式7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3+2 013的值.”小明说:本题中a =2 012,b =-2 013是多余的条件;小强马上反对说:这不可能,多项式中含有a 和b ,不给出a ,b 的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.答案:7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3+2 013 =(7+3-10)a 3+(-6+6)a 3b +(3-3)a 2b +2 013=2 013. ∵化简后式子的值是一个常数,式子的值不变,∴a =2 012,b =-2 013是多余的条件,故小明的观点正确. 点拨:需要通过计算说明,数学说理要严谨.25.已知A=1,B=x+4x-3,C=5x 2+4,求多项式A-2[A-B-2(B-C )]的值,其中x=1.答案:∵A=1,B=x+4x-3,C=5x2+4,∴A-2[A-B-2(B-C)]=A-2A+2B+4B-4C=-A+6B-4C=-1+6x+24x-18-20x2-16=-20x2+30x-35,当x=1时,原式=-20+30-35=-25.26. 五个连续偶数中,中间一个是n,这五个数的和是_______.答案:5n27. 若m为常数,多项式mxy+2x-3y-1-4xy为三项式,则12m2-m+2的值是______.答案:628. 先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-12;(2)5ab-92a2b+12a2b-114ab-a2b-5,其中a=1,b=-2;(3)2a2-3ab+b2-a2+ab-2b2,其中a2-b2=2,ab=-3.答案:(1)原式=-2a2-5a,值为2 (2)•原式=94ab-5a2b-5,值为12(3)原式=a2-b2-2ab,值为829. 关于x,y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求6m-2n+2的值.答案:m=16,n=-12.值为430. 商店出售茶壶每只定价20元,茶杯每只定价5元,该店制定了两种优惠办法:(1)买一只茶壶赠送一只茶杯;(2)按总价的92%付款.某顾客需购茶壶4只,茶杯x•只(x≥4),付款数为y(元),试对两种优惠办法分别写出y与x之间的关系,并研究该顾客买同样多的茶杯时,两种方法哪一种更省钱?答案:y1=20×4+5(x-4)=5x+60,y2=(20×4+5x)×92%=4.6x+73.6,由y1=y2,即5x+60=4.6x+73.6,得x=34.故当4≤x<34时,按优惠办法(1)更省钱;当x=34时,•两种办法付款相同;当x>34时,按优惠办法(2)更省钱二、以考查技能为主试题【中等题】31.已知-5.1×10m x 2y n 与3n x m+1y n是同类项,求当合并同类项后,单项式的系数是正数时,n 的最小值是几?当n 取最小值时,合并同类项后的单项式的系数和次数是几? 答案:由-5.1×10m x 2y n与3n x m+1y n是同类项, 得m=1,-5.1×10x 2y n+3n x 2y n=(-51+3n)x 2y n, 由-51+3n>0得n 最小是4, 即(-51+34)x 2y 4=30x 2y 4,合并同类项后,单项式的系数是30,次数是6.32.将右边两个椭圆框中的同类项用直线段连接起来,其中对应正确的连接线有( ) A .1条 B .2条 C .3条 D .4条答案:B .、33.(1)求多项式2222x -5x+x +4x-3x -2的值,其中1x=2; (2)求多项式22113a 333abc c a c 的值,其中1,2,36a b c ;答案:(1)2x -5x+x +4x-3x -2=2135422x x x当12x时,原式=15--2=-22(2)22113a 333abcc a c =2113-3a+abc+-+c =abc 33当1a=-b=2c=-36,,时,原式=1-2-3=1634.(1)水库中水位第一天连续下降了a 小时,每小时平均下降2cm ,第二天连续上升了a 小时,每小时平均上升0.5cm ,这两天水位的总变化量为多少?(2)某商店原有5袋大米,每袋大米为x 千克,上午卖出3袋,下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?答案:(1)∵水库中水位第一天连续下降了a 小时,每小时平均下降2cm , ∴第一天水位的变化量是:-2acm ,∵第二天连续上升了a小时,每小时平均上升0.5cm,∴第二天水位的变化量是:0.5acm,∴这两天水位的总变化量为:-2acm+0.5acm=-1.5acm.(2)根据题意得:5x-3x+4x=6x故进货后这个商店有大米6x千克.35.合并同类项:2x2+xy+3y2-x2+xy-2y2,并求当x=2,y=1时,代数式的值.答案:原式=x2+2xy+y2,当x=2,y=1时代入,原式=22+2×2×1+12=4+4+1=9.36.如果单项式2mx a y与-5nx2a-3y是关于x,y的单项式,且它们是同类项.(1)(7a-22)2004的值.(2)若2mx a y+5nx2a-3y=0,求(2m+5n)2005的值.答案:(1)∵单项式是同类项,∴2a-3=a,∴a=3,∴(7a-22)2004=1;(2)∵2mx a y+5nx2a-3y=0,2mx a y与-5nx2a-3y是关于x,y的单项式,且它们是同类项,∴2m+5n=0,∴(2m+5n)2005=0.37.有理数a,b,c满足:(1)8(a-5)2+10|c|=0;(2)-2x2y b+1与4x2y3是同类项,求:代数式2(2a2-3ab+6b2)-(3a2-2009abc+9b2-4c68)的值.答案:由8(a-5)2+10|c|=0,得a=5,c=0;因为-2x2y b+1与4x2y3是同类项,所以b+1=3,即b=2.所以2(2a2-3ab+6b2)-(3a2-2009abc+9b2-4c68)=4a2-6ab+12b2-3a2+2009abc-9b2+4c68=a2-6ab+3b2+2009abc+4c68当a=5,c=0,b=2时,原式=25-60+12=-23.38. 在下列( )里填上适当的项:(1)a+b+c-d=a+( );(2)a-b+c-d=a-( );(3)x+2y-3z=2y-( )(4)(a+b-c)(a-b+c)=[a+( )][a-( )];(5)-(a3-a2)+(a-1)=-a3-( )答案:(1)原式=a+(b+c-d);(2)原式=a-(b-c+d);(3)原式=2y-(3z-x);(4)原式=[a+(b-c)][a-(b-c)];(5)原式=-a3-(-a2-a+1)39. 已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为()A.1 B.5 C.-5 D.-1答案:B.40. 将多项式3x3-2x2+4x-5添括号后正确的是()A.3x3-(2x2+4x-5) B.(3x3+4x)-(2x2+5)C.(3x3-5)+(-2x2-4x) D.2x2+(3x3+4x-5)答案:B.41. 在-()=-x2+3x-2的括号里应填上的代数式是()A.x2-3x-2 B.x2+3x-2 C.x2-3x+2 D.x2+3x+2 答案:C.42. 化简下列各数的符号:(1)-(-173);(2)-(+233);(3)+(+3);(4)-[-(+9)].答案:(1)-(-173)=173;(2)-(+233)=-233;(3)+(+3)=3;(4)-[-(+9)]=-(-9)=9.43. 老师出了这样一道题“当a=56,b=-28时,计算(2a3-3a2b-2ab2)-(a3-2ab2+b3)+(3a2b-a3-b3)的值”.但在计算过程中,有一位同学错把“a=56”写成“a=-56”,而另一位同学错把“b=-28”写成“b=-2.8”,可他俩的运算结果却都是正确的,请你找出其中的原因.答案:类似整式计算求值问题一般先化简,有时化简的结果为一个常数,则式子的值与字母的取值无关.因为(2a3-3a2b-2ab2)-(a3-2ab2+b3)+(3a2b-a3-b3)的化简结果等于0,和a、b的值无关.所以不管a、b取什么样的值,都不会产生影响.44. 计算:(1)(112x2-20x+10y)-(52x2-13x+24y);(2)(xy-32y+12)-(xy-32x+12);(3)2(x2-2x+4)-3(-5+x2);(4)-2a+4(-3a+2b)-3(a-2b+3c).答案:熟练掌握去括号法则与合并同类项法则.(1)3x2-7x-14y;(2)32x-32y;(3)-x2-4x+23;(4)-17a+14b-9c.45.做大小两个长方体纸盒,尺寸如下(单位:c m)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?答案:小纸盒的表面积是(2ab+2bc+2ca)c m2;大纸盒的表面积是(6ab+8bc+6ca)c m2(1)做这两个纸盒共用料(2ab+2bc+2ca)+(6ab+8bc+6ca) =2ab+2bc+2ca+6ab+8bc+6ca =8ab+10bc+8ca(c m2) (2)做大纸盒比做小纸盒多用料(6ab+8bc+6ca)-(2ab+2bc+2ca)=6ab+8bc+6ca-2ab-2bc-2ca =4ab+6bc+4ca(c m2) 46.把多项式x5-3x3y2+3x2-y5写成两个整式的和,并使其中一个只含5次项.答案:可以写成x5-y5和-3x3y2+3x2.47.某同学做一道数学题,误将求“A-B”看成求“A+B”,结果求出的答案是x2-x+2,已知A=2x2-x-5,请求出正确答案.答案:根据题意得:(2x2-x-5)-[(x2-x+2)-(2x2-x-5)]=2x2-x-5-x2+x-2+2x2-x-5=4x2-x-12.48.关于x、y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求多项式2m2n+10m-4n+2-2m2n-4m+2n的值.49.化简求值:(-3x2-4y)-(2x2-5y+6)+(x2-5y-1),其中x、y满足|x-y+1|+(x-5)2=0.答案:∵|x-y+1|+(x-5)2=0,则x-y+1=0,x-5=0,解得x=5,y=6.(-3x2-4y)-(2x2-5y+6)+(x2-5y-1)=-3x2-4y-2x2+5y-6+x2-5y-1=-4x2-4y-7=-100-24-7=-131.【较难题】50.下列代数式中哪些互为同类项3x2y,-5xy2,2x3,-7x2y,6,-4x3,10,3a2b,4ab2,0,-a2b,xy2,-ab2.答案:3x2y,-7x2y互为同类项;-5xy2,xy2互为同类项;2x3,-4x3互为同类项;6,10,0互为同类项;3a2b,-a2b互为同类项;4ab2,-ab2互为同类项.51.合并同类项,结果按字母a作降幂排列:3(2a3-3a4+a-4)-2(6-2a2+3a3-4a4)答案:原式=6a3-9a4+3a-12-12+4a2-6a3+8a4=-a4+4a2+3a-24.52.若关于x、y的多项式x m-1y3+x3-m y|n-2|+x m-1y+x2m-3y|n|+m+n-1 合并同类项后得到一个四次三项式,求m、n的值(所有指数均为正整数)答案:∵关于x、y的多项式x m-1y3+x3-m y|n-2|+x m-1y+x2m-3y|n|+m+n-1 合并同类项后得到一个四次三项式,∴m-1=1,解得:m=2,多项式变为:xy3+xy|n-2|+xy+xy|n|+n+1,①当|n|=1,n=1时,xy3+xy|n-2|+xy+xy|n|+n+1=xy3+3xy+2,符合题意;n=-1时,xy3+xy|n-2|+xy+xy|n|+n+1=xy3+xy3+xy+xy=2xy3+2xy,不符合题意;②当|n|=3,n=3时,xy3+xy|n-2|+xy+xy|n|+n+1=xy3+xy+xy+xy3+3+1=2xy3+2xy+4,符合题意;n=-3时,xy3+xy|n-2|+xy+xy|n|+n+1=2xy3+xy5+xy-2,不符合题意.故m=1,n=1或3.53.下列去括号错误的是()A.3a2-(2a-b+5c)=3a2-2a+b-5cB.5x2+(-2x+y)-(3z-u)=5x2-2x+y-3z+uC.-(2x-y)-(-x2+y2)=-2x+y+x2-y2D.2m2-3(m-1)=2m2-3m-1答案:D.54. 不改变3a2-2b2-b+a+ab的值,把二次项放在前面有“+”号的括号里,一次项放在前面有“-”号的括号里,下列各式正确的是()A.+(3a2+2b2+ab)-(b+a) B.+(-3a2-2b2-ab)-(b-a)C.+(3a2-2b2+ab)-(b-a) D.+(3a2+2b2+ab)-(b-a)答案:C.55. 下列各组代数式中,互为相反数的有()①a-b与-a-b;②a+b与-a-b;③a+1与1-a;④-a+b与a-b.A.①②④ B.②④ C.①③ D.③④答案:B.56.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a-3b B.4a-8b C.2a-4b D.4a-10b 答案:B57.有理数a、b、c在数轴上的位置如图所示,化简|a|+|b|+|a+b|+|b-c|.答案:根据数轴上点的位置得:c<a<0<b,且|a|<|b|<|c|,可得a+b<0,b-c>0,则原式=-a+b-a-b+b-c=b-c.58.若-3<x<2,化简:|x-2|+|x+3|-|3x+9|-|4-2x|.答案:∵-3<x<2,∴x-2<0,x+3>0,3x+9=3(x+3)>0,4-2x=-2(x-2)>0,则原式=2-x+x+3-3x-9-4+2x=-x-859.已知m-n=4,mn=-1,求:(-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)的值.答案:(-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)=-2mn+2m+3n-3mn-2n+2m-m-4n-mn=-6mn+3m-3n=-6mn+3(m-n),又因为m-n=4,mn=-1,所以-6mn+3(m-n)=(-6)×(-1)+3×4=6+12=18.60.已知3x a-2y2z3和-4x3y b-1z3是同类项,求3a2b-[2ab2-2(a2b+2ab2)]的值.答案:∵3x a-2y2z3和-4x3y b-1z3是同类项∴a-2=3,b-1=2∴a=5,b=3.3a2b-[2ab2-2(a2b+2ab2)]=3a2b-[2ab2-2a2b-4ab2]=3a2b-2ab2+2a2b+4ab2=5a2b+2ab2当a=5,b=3时,原式=5×52×3+2×5×32=465.。
《整式的加减》专项练习100题(有答案)
整式的加减专项练习100题(有答案)1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x2y-7xy2)-(xy2-3x2y);22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a].23、3a2-9a+5-(-7a2+10a-5);24、-3a2b-(2ab2-a2b)-(2a2b+4ab2).25、(5a-3a2+1)-(4a3-3a2);26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]27、(8xy-x2+y2)+(-y2+x2-8xy);28、(2x2-21+3x)-4(x-x2+21);29、3x2-[7x-(4x-3)-2x2].30、5a+(4b-3a)-(-3a+b);31、(3a2-3ab+2b2)+(a2+2ab-2b2);32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a2-1+2a)-3(a-1+a2);34、2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)].1235、 -32ab +43a 2b +ab +(-43a 2b )-136、(8xy -x 2+y 2)+(-y 2+x 2-8xy );37、2x -(3x -2y +3)-(5y -2);38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3)40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b )44、()[]{}y x x y x --+--3233245、(-x 2+5+4x 3)+(-x 3+5x -4)46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).48、4a 2+2(3ab-2a 2)-(7ab-1).49、 21xy+(-41xy )-2xy 2-(-3y 2x )50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]54、 3x 2-[5x-4(21x 2-1)]+5x 255、2a 3b- 21a 3b-a 2b+21a 2b-ab 2;56、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab ).57、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2;58、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2;59、(7y-3z )-(8y-5z );60、-3(2x 2-xy )+4(x 2+xy-6).61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)62、-3x 2y+2x 2y+3xy 2-2xy 2;63、3(a 2-2ab )-2(-3ab+b 2);64、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}.65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )].66、-[2m-3(m-n+1)-2]-1. 67、31a-( 21a-4b-6c)+3(-2c+2b) 68, -5a n -a n -(-7a n )+(-3a n )69、x 2y-3xy 2+2yx 2-y 2x 70,41a 2b-0.4ab 2-21a 2b+52ab 2;371、3a-{2c-[6a-(c-b )+c+(a+8b-6)]} 72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x=-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52n=-13177、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =78、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3.79、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.80、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.81、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.82、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和. 83、 求3x 2+x -5与4-x +7x 2的差.84、计算 5y+3x+5z2与12y+7x-3z2的和 85、计算8xy 2+3x2y-2与-2x 2y+5xy2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M87、当x=- 21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88,化简再求值5abc-{2a 2b-[3abc-(4ab2-a2b )]-2ab2},其中a=-2,b=3,c=-4189、已知A=a2-2ab+b2,B=a2+2ab+b2(1)求A+B ;(2)求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N . 92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B93、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .94、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.95、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0.96、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .97、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.98、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值99、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小.答案:1、3(a+5b)-2(b-a)=5a+13b2、3a-(2b-a)+b=4a-b.3、2(2a2+9b)+3(-5a2-4b)=—11a 2+6b24、(x3-2y3-3x2y)-(3x3-3y3-7x2y)= -2x3+y3+4x2y5、3x2-[7x-(4x-3)-2x2] = 5x2 -3x-36、(2xy-y)-(-y+yx)= xy7、5(a 22b-3ab2)-2(a2b-7ab)= -a2b+11ab8、(-2ab+3a)-2(2a-b)+2ab= -2a+b9、(7m 2n-5mn)-(4m2n-5mn)= 3m2n10、(5a2+2a-1)-4(3-8a+2a2)= -3a2+34a-1311、-3x2y+3xy2+2x2y-2xy2= -x2y+xy212、2(a-1)-(2a-3)+3.=413、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]= 7a2+ab-2b214、(x2-xy+y)-3(x2+xy-2y)= -2x2-4xy+7y15、3x2-[7x-(4x-3)-2x2]=5x2-3x-316、a2b-[2(a2b-2a2c)-(2bc+a2c)]= -a2b+2bc+6a2c17、-2y3+(3xy2-x2y)-2(xy2-y3)= xy2-x2y18、2(2x-3y)-(3x+2y+1)=2x-8y-119、-(3a2-4ab)+[a2-2(2a+2ab)]=-2a2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p21、(5x2y-7xy2)-(xy2-3x2y)=4xy2-4x2y22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a]=-18a2 +7a+223、3a2-9a+5-(-7a2+10a-5)=10a2-19a+1024、-3a2b-(2ab2-a2b)-(2a2b+4ab2)= -4a2b-64ab225、(5a-3a2+1)-(4a3-3a2)=5a-4a2+126、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]=7a2+ab-2b227、(8xy-x2+y2)+(-y2+x2-8xy)=028、(2x2-21+3x)-4(x-x2+21) = 6x2-x-2529、3x2-[7x-(4x-3)-2x2]= 5x2-3x-330、5a+(4b-3a)-(-3a+b)= 5a+3b31、(3a2-3ab+2b2)+(a2+2ab-2b2)= 4a2-ab32、2a2b+2ab2-[2(a2b-1)+2ab2+2].= -133、(2a2-1+2a)-3(a-1+a2)= -a2-a+234、2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)]=-2x2+5xy-2y235、-32ab+43a2b+ab+(-43a2b)-1 =31ab-136、(8xy-x2+y2)+(-y2+x2-8xy)=037、2x-(3x-2y+3)-(5y-2)=-x-3y-138、-(3a+2b)+(4a-3b+1)-(2a-b-3)= -a-4b+439、4x3-(-6x3)+(-9x3)=x340、3-2xy+2yx2+6xy-4x2y = -2 x2y+441、1-3(2ab+a)十[1-2(2a-3ab)]=2-7a42、3x-[5x+(3x-2)]=-5x+243、(3a2b-ab2)-(ab2+3a2b)= -2ab244、()[]{}yxxyx--+--32332= 5x+y45、(-x2+5+4x3)+(-x3+5x-4)= 3x3-x2+5x+146、(5a2-2a+3)-(1-2a+a2)+3(-1+3a-a2)=a2+9a-147、5(3a2b-ab2)-4(-ab2+3a2b).=3a2b-ab248、4a2+2(3ab-2a2)-(7ab-1)=1-ab49、21xy+(-41xy)-2xy2-(-3y2x)=41xy+xy250、5a2-[a2-(5a2-2a)-2(a2-3a)]=11a2-8a51、5m-7n-8p+5n-9m+8p=-4m-2n52、(5x2y-7xy2)-(xy2-3x2y)=8x2y-6xy253、3x2y-[2x2y-3(2xy-x2y)-xy]=-2x2y+7xy54、3x2-[5x-4(21x2-1)]+5x2 =10x2-5x-455、2a3b-21a3b-a2b+21a2b-ab2 =23a3b-21a2b-ab256、(a2+4ab-4b2)-3(a2+b2)-7(b2-ab)=-2a2+11ab-14b257、a2+2a3+(-2a3)+(-3a3)+3a2 =-3a3+4a258、5ab+(-4a2b2)+8ab2-(-3ab)+(-a2b)+4a2b2=8ab+8ab2-a2b59、(7y-3z)-(8y-5z)=-y+2z60、-3(2x2-xy)+4(x2+xy-6)=-2x2+7xy-2461、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)=062、-3x2y+2x2y+3xy2-2xy2 =-x2y+xy263、3(a2-2ab)-2(-3ab+b2)=3a2-2b264、5abc-{2a2b-[3abc-(4a2b-ab2]}=8abc-6a2b+ab265、5m2-[m2+(5m2-2m)-2(m2-3m)]=m2-4m66、-[2m-3(m-n+1)-2]-1=m-3n+467、31a-(21a-4b-6c)+3(-2c+2b)= -61a+10b68、-5a n-a n-(-7a n)+(-3a n)= -2a n69、x2y-3xy2+2yx2-y2x=3x2y-4xy270、41a2b-0.4ab2-21a2b+52ab2 = -41a2b71、3a-{2c-[6a-(c-b)+c+(a+8b-6)]}= 10a+9b-2c-64572、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x 2-y273、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x=-2, y =-34原式=2x 2+21y 2-2 =69874、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.原式=-3x+y 2=69475、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;原式=x 3+x 2-x+6=68376、 化简,求值(4m+n )-[1-(m-4n )],m=52n=-131原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =原式=-2ab 3+3ab 2=1278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3.原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2. 原式=-2x2+x-6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式. (2x 2+xy+3y 2 )——( x 2-xy )= x 2+2xy+3y 281、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y 83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -9 84、计算 5y+3x+5z 2与12y+7x-3z2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z285、计算8xy 2+3x 2y-2与-2x2y+5xy 2-3的差(8xy2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x2y+3xy 2+186、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式MM=-21x 2+4xy —23y87、当x=- 21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.原式=-8xy+y= —15 88、化简再求值5abc-{2a2b-[3abc-(4ab2-a2b )]-2ab2},其中a=-2,b=3,c=-41原式=83abc-a 2b-2ab2=3689、已知A=a2-2ab+b 2,B=a 2+2ab+b2(1)求A+B ; (2)求41(B-A);A+B=2a 2+2b241(B-A)=ab90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案? A=10x 2+x+5 A+B=11x 2+4x+391、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N . M-2N=5x 2-4x+3 92、已知222244,5A x xy y B x xy y=-+=+-,求3A -B3A -B=11x2-13xy+8y293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B . 2A -3B= 5x 2+11xy +2y 294、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.原式=9ab 2-4a 2b=3495、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0.原式=8abc-8a 2b=-3296、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x 2y+xyz )-3(x 2y-xyz )-4x 2y . 原式=-5x 2y+5xyz=90 97、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值. 原式=10a+10b-2ab=50 98、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值 原式=2m 2+6mn+5=1599、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a的值.B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.A=2a 2-4a +1 B =2a 2-4a +3 所以A<B。
整式的加减练习100题有答案
整式的加减练习100题(有答案)整式的加减专项练习100题1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x2y-7xy2)-(xy2-3x2y);22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a].23、3a2-9a+5-(-7a2+10a-5);24、-3a2b-(2ab2-a2b)-(2a2b+4ab2).25、(5a-3a2+1)-(4a3-3a2);26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]27、(8xy-x2+y2)+(-y2+x2-8xy);28、(2x 2-21+3x )-4(x -x 2+29、3x 2-[7x -(4x -3)-2x 2].30、5a+(4b-3a )-(-3a+b );31、(3a2-3ab+2b2)++2ab-2b2);32、2a2b+2ab2-[2(a2b-1)+2ab2+2].33、(2a 2-1+2a )-3(a-1+a 2);34、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)].35、 -32ab +43a 2b +ab +(-43a 2b )-136、(8xy -x 2+y 2)+(-y 2+x2-8xy);37、2x-(3x-2y+3)-(5y ;38、-(3a+2b)+(4a-3b+2a-b-3)39、4x3-(-6x3)+(-9x3)40、3-2xy+2yx2+6xy-4x2y41、1-3(2ab+a)十[1-2(2a-3ab)].42、3x-[5x+(3x-2)];43、(3a2b-ab2)-(ab2+3a2b)44、()[]{}yxxyx--+--3233245、(-x2+5+4x3)+(-x3+5x-4)46、(5a2-2a+3)-(1-2a+a2)+3(-1+3a-a2).47、5(3a 2b-ab 2)-4b 2+3a 2b ).48、4a 2+2(3ab-2a 2)-b-1).49、 21xy+(-41xy )-2xy 2-y 2x )50、5a 2-[a 2-(5a 2-2a )-23a )]51、5m-7n-8p+5n-9m+8p52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]54、 3x 2-[5x-4( 21x 2-1)]+5x 255、2a3b- 21a 3b-a 2b+ 21a 2b-ab 2;56、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab ).57、a2+2a3+(-2a3)+(-3a3)58、5ab+(-4a2b2)+8ab2-ab)+(-a2b)+4a2b2;59、(7y-3z)-(8y-5z);60、-3(2x2-xy)+4(x2+xy-6).61、(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)x3-3xy2+7y3)62、-3x2y+2x2y+3xy2-2xy2;63、3(a2-2ab)-2(-3ab+b2);64、5abc-{2a2b-[3abc-(4a2b-ab2]}.65、5m2-[m2+(5m2-2m)-2(m2-3m)].66、-[2m-3(m-n+1)-2]-1.67、31a-(21a-4b-6c)+3(-2c+2b)68、-5a n-a n-(-7a n)+(-3a n)69、x2y-3xy2+2yx2-y2x70、41a 2b-0.4ab 2- 21a 2b+ 52ab 2;71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-13177、化简、求值2(a2b+2b3-ab3)+3a3-(2ba2-3ab2+3a3)-4b3,其中a=-3,b =278、化简,求值:(2x3-xyz)-2(x3-y3+xyz)+(xyz-2y3),其中x=1,y=2,z=-79、化简,求值:5x2-[3x-2(2x-3)+7x2],其中x=-2.80、若两个多项式的和是2x2+xy+3y2,一个加式是x2-xy,求另一个加式.81、若2a2-4ab+b2与一个多项式的差是-3a2+2ab-5b2,试求这个多项式.82、求5x2y-2x2y与-2xy2+4x2y的和.83、求3x2+x-5与4-x+7x2的差.84、计算5y+3x+5z2与12y+7x-3z2的和85、计算8xy2+3x2y-2与-2x2y+5xy2-3的差86、多项式-x2+3xy-21y与多项式M的差是-21x2-xy+y,求多项式M87、当x=-21,y=-3时,求代数式3(x2-2xy)-[3x2-2y+2(xy+y)]的值.88、化简再求值5abc-{2a2b-[3abc-(4ab2-a2b)]-2ab2},其中a=-2,b=3,c=-4189、已知A=a2-2ab+b2,B=a2+2ab+b2(1)求A+B;(2)求41(B-A);90、小明同学做一道题,已知两个多项式A,B,计算A+B,他误将A+B看作A-B,求得9x2-2x+7,若B=x2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x2+2x-1,N=-x2-2+3x,求M-2N.92、已知222244,5A x xy yB x xy y=-+=+-,求3A-B93、已知A=x2+xy+y2,B =-3xy-x2,求2A-3B.94、已知2-a+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值.95、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.96、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.97、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.98、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值99、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小.答案:1、3(a+5b)-2(b-a)=5a+13b2、3a-(2b-a)+b=4a-b.3、2(2a2+9b)+3(-5a2-4b)=—11a2+6b24、(x3-2y3-3x2y)-(3x3-3y3-7x2y)=-2x3+y3+4x2y5、3x2-[7x-(4x-3)-2x2] = 5x2-3x-36、(2xy-y)-(-y+yx)= xy7、5(a22b-3ab2)-2(a2b-7ab)= -a2b+11ab8、(-2ab+3a)-2(2a-b)+2ab=-2a+b9、(7m2n-5mn)-(4m2n-5mn)= 3m2n10、(5a2+2a-1)-4(3-8a+2a2)2+34a-1311、-3x2y+3xy2+2x2y-2xy2= -x2y+xy212、2(a-1)-(2a-3)+3.=4 13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]=7a2+ab-2b214、(x2-xy+y)-3(x2+xy-2y)= -2x2-4xy+7y15、3x2-[7x-(4x-3)-2x2]=5x2-3x-316、a2b-[2(a2b-2a2c)-(2bc+a2c)]= -a2b+2bc+6a2c17、-2y3+(3xy2-x2y)-2(xy2-y3)= xy2-x2y18、2(2x-3y)-(3x+2y+1)=2x-8y-119、-(3a2-4ab)+[a2-2(2a+2ab)]=-2a2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p21、(5x2y-7xy2)-(xy2-3x2y)=4xy2-4x2y22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a]=-18a2 +7a+223、3a2-9a+5-(-7a2+10a-5)=10a2-19a+1024、-3a2b-(2ab2-a2b)-(2a2b+4ab2)= -4a2b-64ab225、(5a-3a2+1)-(4a3-3a2)=5a-4a2+126、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]=7a 2+ab-2b 227、(8xy -x 2+y 2)+(-y 2+8xy )=028、(2x 2-21+3x )-4(x -x2= 6x 2-x-2529、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -330、5a+(4b-3a )-(-3a+b )+3b31、(3a 2-3ab+2b 2)++2ab-2b 2)= 4a 2-ab32、2a 2b+2ab 2-[2(a 2b-1)2+2].= -1 33、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )(2x 2-xy+y 2)]=-2x 2+5xy-2y 235、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab-136、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=037、2x -(3x -2y +3)-(5y=-x-3y-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+4 39、4x 3-(-6x 3)+(-9x 3)=x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+4 41、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a 42、 3x -[5x +(3x -2)]=-5x+2 43、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 244、()[]{}y x x y x --+--32332 = 5x+y 45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+146、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-147、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab 49、 21xy+(-41xy )-2xy 2-(-3y 2x )=41xy+xy 250、5a 2-[a 2-(5a 2-2a )-23a )]=11a 2-8a51、n-8p+5n-9m+8p=-4m-2n52、(5x 2y-7xy 2)-(xy 2-3x 2y )-6xy 253、 3x 2y-[2x 2y-3(2xy-x 2y )=-2x 2y+7xy54、3x 2-[5x-4(21x 2-1)]+5x 2 =10x 2-5x-455、2a 3b- 21a 3b-a 2b+ 21a 2b-ab 2 = 23a 3b-21a 2b-ab 256、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab )=-2a 2+11ab-14b 257、a 2+2a 3+(-2a 3)+(-3a 3)+3a2= -3a 3+4a 258、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2=8ab+8ab 2-a 2b 59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x 2+7xy-2461、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=0 62、-3x 2y+2x 2y+3xy 2-2xy 2=+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a 2-2b 264、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 2 65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m 66、-[2m-3(m-n+1)-2]-1=m-3n+4 67、31a-( 21a-4b-6c)+3(-2c+2b)= -61a+10b 68、 -5a n-a n-(-7a n)+(-3a n)= -2a n69、x 2y-3xy 2+2yx 2-y 2x=3x 2y-4xy 271、41a2b-0.4ab 2- 21a2b+ 52ab2 =-41a 2b71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-6 72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x 2-y 273、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34 原式=2x 2+21y 2-2 =69874、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.原式=-3x+y 2=69475、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121; 原式=x 3+x 2-x+6=68376、 化简,求值(4m+n )-[1-(m-4n )],m=52n=-131原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=-2ab 3+3ab 2=1278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3. 原式=-2xyz=6 79、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.原式=-2x 2+x-6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 281、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y 83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z 2与12y+7x-3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 285、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差(8xy 2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x 2y+3xy 2+186、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式MM=-21x 2+4xy —23y 87、当x=-21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.原式=-8xy+y= —15 88、化简再求值5abc-{2a2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-41 原式=83abc-a 2b-2ab 2=3689、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ; (2)求41(B-A); A+B=2a 2+2b 241(B-A)=ab 90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?A=10x 2+x+5A+B=11x 2+4x+391、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .M-2N=5x 2-4x+392、已知222244,5A x xy y B x xy y =-+=+-,求3A-B3A-B=11x2-13xy+8y293、已知A=x2+xy+y2,B=-3xy-x2,求2A-3B.2A-3B= 5x2+11xy +2y294、已知2 a+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值.原式=9ab2-4a2b=3495、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.原式=8abc-8a2b=-3296、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.原式=-5x2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.原式=10a+10b-2ab=5098、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值原式=2m2+6mn+5=15 99、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.B-2A=-7x-5y=-14a-15=aa=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小.A=2a2-4a+1 B=2a2-4a+3 所以A<B。
整式的加减计算题100题(含答案)
整式的加减计算题100题1、已知A =4x 2-4xy +y 2,B =x 2-xy -5y 2,求3A -B2、已知A=x 2+xy +y 2,B=-3xy -x 2,求2A-3B.3、已知1232+-=a a A ,2352+-=a a B ,求BA 32-4、已知325A x x =-,2116B x x =-+,求:⑴A+2B;⑵、当1x =-时,求A+5B 的值。
5、)(4)()(3222222y z z y y x ---+-6、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =27、-)32(3)32(2a b b a -+-8、21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.9、222213344a b ab ab a b ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭10、()()323712p p p p p +---+11、21x-3(2x-32y 2)+(-23x+y 2)12、5a-[6c-2a-(b-c)]-[9a-(7b+c)]13、2237(43)2x x x x ⎡⎤----⎣⎦14、-22225(3)2(7)a b ab a b ab ---15、2(-a 3+2a 2)-(4a 2-3a+1)16、(4a 2-3a+1)-3(1-a 3+2a 2).17、3(a 2-4a+3)-5(5a 2-a+2)18、3x 2-[5x-2(14x -32)+2x 2]19、7a +(a 2-2a )-5(a -2a 2)20、-3(2a +3b )-31(6a -12b )21、222226284526x y xy x y x xy y x x y+---+-22、3(2)(3)3ab a a b ab -+--+;23、22112()822a ab a ab ab ⎡⎤--+-⎢⎥⎣⎦;24、(a 3-2a 2+1)-2(3a 2-2a +21)25、x-2(1-2x+x 2)+3(-2+3x-x 2)26、)24()215(2222ab ba ab b a +-+-27、-4)142()346(22----+m m m m28、)5(3)8(2222xy y x y x xy ++--+-29、ba ab b a ab ab b a 222222]23)35(54[3--+--30、7xy+xy 3+4+6x-25xy 3-5xy-331、-2(3a 2-4)+(a 2-3a)-(2a 2-5a+5)32、-12a 2b-5ac-(-3a 2c-a 2b)+(3ac-4a 2c)33、2(-3x 2-xy)-3(-2x 2+3xy)-4[x 2-(2x 2-xy+y 2)]34、-2(4a-3b)+3(5b-3a)35、52a -[2a +(32a -2a)-2(52a -2a)]36、-5xy 2-4[3xy 2-(4xy 2-2x 2y)]+2x 2y-xy37、),23()2(342222c a ac b a c a ac b a +-+---38、(2)()xy y y yx ---+39、2237(43)2x x x x ⎡⎤----⎣⎦40、7-3x-4x 2+4x-8x 2-1541、2(2a 2-9b)-3(-4a 2+b)42、8x 2-[-3x-(2x 2-7x-5)+3]+4x43、)(2)(2b a b a a +-++;44、)32(2[)3(1yz x x xy +-+--]45、)32(3)23(4)(5b a b a b a -+--+;46、)377()5(322222a b ab b ab a a ---+--47、)45()54(3223--++-x x x x 48、)324(2)132(422+--+-x x x x49、)69()3(522x x x +--++-.50、)35()2143(3232a a a a a a ++--++-51、)(4)(2)(2n m n m n m -++-+52、]2)34(7[522x x x x ----53、(2)(3)x y y x ---54、()()()b a b a b a 4227523---+-55、()[]22222223ab b a ab b a ---56、2213[5(3)2]42a a a a ---++57、()()()xy y x xy y xy x -+---+-2222232258、-32ab +43a 2b +ab +(-43a 2b )-159、已知m+n =-3,mn=2,求116432n mn mn m ⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭的值;60、(2x 2-21+3x )-4(x -x 2+21);61、2x -(3x -2y +3)-(5y -2);62、已知()()()2222A=232B=231A 22x xy y x xy y B A B A -++-+--,,求;63、已知()()222222120522422a b a b a b ab a b ab ⎡⎤++-=-----⎣⎦,求;64、1-3(2ab +a )十[1-2(2a -3ab )].65、3x 2-[7x -(4x -3)-2x 2].66、已知323243253A a a a B a a a =--++=--,,当a =-2时,求A-2B 的值.67、已知xy=2,x+y=-3,求整式(4xy+10y)+[5x-(2xy+2y-3x)]的值.68、已知2222224132a ab b ab a b a ab b +=+=--++,,求及的值.69、221131222223233x y x y x y ⎛⎫⎛⎫--+-+=-= ⎪ ⎪⎝⎭⎝⎭,,70、()()232334821438361a a a a a a a -+---+-=-,其中71、已知()()()()23412043535712714m n m m n m n m n ++--=---+++-,求的值72、已知222232542A b a ab B ab b a =-+=--,,当a=1,b =-1,求3A-4B 的值.73、已知222A=23B=25C=1276x x x x x ----+,,,求A-(B-4C)的值.74、已知22A=23211x kx x B x kx +--=-+-,,且2A+4B 的值与x 无关,求k 的值.75、()()2221254322x x x x x x -----+=,其中.76、已知()()()222222120745223a a b a b a b ab a b ab -++=--+--,求的值.77、2222220A=3B=23A B C a b c a b c ++=+---+已知,且,,求C.78、()()22221532722a b ab a b ab a b ---==,且,79、(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y 80、若()0322=++-b a ,求3a 2b-[2ab 2-2(ab-1.5a 2b)+ab]+3ab 2的值;81、233(4333)(4),2;a a a a a a +----+=-其中82、22222222(22)[(33)(33)],1, 2.x y xy x y x y x y xy x y ---++-=-=其中83、()()()2222223224b ab a ab b a b ab a +-+-+----其中4.0,41=-=b a 84、3-2xy +2yx 2+6xy -4x 2y ,其中x =-1,y =-2.85、(-x 2+5+4x 3)+(-x 3+5x -4),其中x =-2;86、(3a 2b -ab 2)-(ab 2+3a 2b ),其中a =-3,b =-287、已知222244,5A x xy y B x xy y =-+=+-,其中1122x y ==-,,求3A -B88、已知A =x 2+xy +y 2,B =-3xy -x 2,其中,113x y =-=-,,求2A -3B .89、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.90、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;91、21x 2-2⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛-222231322331y x y x ,其中x =-2,y =-3492、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =293、()()233105223xy x y xy y x xy y x =-+=++-+-⎡⎤⎣⎦已知,,求的值94、已知()()22222322322A x xy y B x xy y A B B A =-+=+-+---⎡⎤⎣⎦,,求95、已知()222232232M a ab b N a ab b M N M M N =-+=+-----⎡⎤⎣⎦,,化简96、小美在计算某多项式减去2235a a +-的差时,误认为加上2235a a +-,得到答案是24a a +-,问正确答案是多少?97、已知2222113532A a b abB ab a b x y =-=+==-,,当,,求5A-3B 的值.98、已知2223226mx xy y x nxy y +--+-+的值与x 的取值无关,求22m n -的值99、已知231x x -=,求326752019x x x +-+的值100、()()11111111321014122m n n m m n x y y x x y m n +--++-⎛⎫+---- ⎪⎝⎭,其中为自然数,为大于的整数整式的加减计算100题答案1、2211118x xy y -+2、225112x xy y ++3、2954a a -+-4、()()3231322122553084x x x x x --+--+;,5、222325x y z +-6、322312ab ab -+,7、-13a+12b8、24369x y -+,9、22122a b ab -10、325797p p p +--11、273x y -+12、-2a+8b-6c13、2533x x --14、22729a b ab -+15、3231a a -+-16、323232a a a ---17、22271a a ---18、2932x x --19、211a 20、-8a-5b 21、2224382x xy x y y x ---+22、3a+b23、2592a ab -24、32524a a a --+25、25148x x -+-26、2232a b ab+27、2261213m m --+28、22272x xy y --29、2231532a b ab+30、332615y xy x +++31、2723a a -++32、22122a b ac a c --33、224154x xy y -+34、-17a+21b 35、2112a a -36、226xy x y xy ---37、22474a b ac a c--38、xy39、2533x x --40、2128x x -+-41、21621a b -42、2108x -43、a-b44、1-3x-3xy-6yz45、-a+4b 46、2266a ab b -+47、32341x x -+48、-8x-249、2534x x -++50、32941a a a --++51、4m+4n 52、2733x x --53、4x-3y 54、4a-b 55、22710a b ab -56、2912a a -+57、225x xy y -+58、113ab -59、2660、21622x x --61、-x-3y-162、2222424109x xy y x xy y ---+;63、221462a b ab -+;64、2-7a 65、2533x x --66、7967、-2068、5,269、24369x y -+;70、-5371、-1.7572、2221716a ab b --+;73、2473026x x -+74、2/575、-2.576、22710a b ab +-;77、222a c --78、221352a b ab -;79、-x-8y;1380、212ab ab +;81、327353a a a -++-;5582、222x y xy -+;83、22478150a ab b --;84、224315x y xy -++;--21---21-85、3235137x x x -++-;86、2224ab -;87、22111388x xy y -+;88、228511289x y y ++;89、A<B90、323668x x x +-+;91、2211226x y --;827-92、232223a b ab ab -+;4893、2294、224611x xy y +-95、2221614a ab b -+96、2356a a --+97、23-98、-899、2022100、118m n x y +--+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲:整式的加减单项式与多项式1.(2015秋•龙海市期末)下列式子:x2+2,+4,,,﹣5x,0中,整式的个数是()A.6B.5C.4D.32.(2014秋•鄄城县期末)下列说法中正确的是()A.x的系数是0B.24与42不是同类项C.y的次数是0D.23xyz是三次单项式3.(2015秋•郯城县期末)下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式4.(2014秋•无锡校级期中)下列代数式:(1)﹣mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+之中整式有()A.3个B.4个C.6个D.7个5.(2009春•临川区校级期末)在代数式a,π,ab,a﹣b,,x2+x+1,5,2a,中,整式有个;单项式有个,次数为2的单项式是;系数为1的单项式是.合并同类项1.(2018•东莞市校级一模)下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=02.(2018•东西湖区模拟)计算x2y﹣3x2y的结果是()A.﹣2B.﹣2x2y C.﹣x2y D.﹣2xy23.(2018•衢州一模)下面是小林做的4道作业题:(1)2ab+3ab=5ab;(2)2ab﹣3ab=﹣ab;(3)2ab﹣3ab=6ab;(4)2ab÷3ab=.做对一题得2分,则他共得到()A.2分B.4分C.6分D.8分4.(2016秋•宜春期末)(1)计算:﹣7+(20﹣3)(2)化简:3a﹣2b+4c﹣2a﹣6c+b.5.(2017秋•西城区校级期中)5x2+x+3+4x﹣8x2﹣2.去括号与添括号1.(2017秋•庆云县期末)下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣cB.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c2.(2017秋•柯桥区期末)﹣[a﹣(b﹣c)]去括号正确的是()A.﹣a﹣b+c B.﹣a+b﹣c C.﹣a﹣b﹣c D.﹣a+b+c3.(2017秋•惠民县期末)下列去括号的过程(1)a﹣(b﹣c)=a﹣b﹣c;(2)a﹣(b﹣c)=a+b+c;(3)a﹣(b+c)=a﹣b+c;(4)a﹣(b+c)=a﹣b﹣c.其中运算结果错误的个数为()A.1B.2C.3D.44.(2015秋•河南期中)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)5.(2013秋•孟津县期末)先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)整式的加减混合运算1.(2018•江阴市二模)已知a+b=4,c﹣d=3,则(b+c)﹣(d﹣a)的值等()A.1B.﹣1C.7D.﹣72.(2017秋•南充期末)下面计算正确的是()A.3x2﹣x2=3B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=03.(2017秋•武昌区校级期末)下列计算正确的是()A.8a+2b+(5a一b)=13a+3b B.(5a﹣3b)﹣3(a﹣2b)=2a+3bC.(2x﹣3y)+(5x+4y)=7x﹣y D.(3m﹣2n)﹣(4m﹣5n)=m+3n4.(2017秋•港闸区期末)化简:(1)(2a﹣b)﹣(2b﹣3a)﹣2(a﹣2b)(2)2x2﹣[7x﹣(4x﹣3)﹣x2]5.(2017秋•贵阳期末)一个整式A与x2﹣x﹣1的和是﹣3x2﹣6x+2(1)求整式A;(2)当x=2时,求整式A的值.单项式与多项式答案1.(2015秋•龙海市期末)下列式子:x2+2,+4,,,﹣5x,0中,整式的个数是()A.6B.5C.4D.3【分析】根据整式的定义分析判断各个式子,从而得到正确选项.【解答】解:式子x2+2,,﹣5x,0,符合整式的定义,都是整式;+4,这两个式子的分母中都含有字母,不是整式.故整式共有4个.故选:C.【点评】本题主要考查了整式的定义:单项式和多项式统称为整式.注意整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式是数字或字母的积,其中单独的一个数或字母也是单项式;多项式是几个单项式的和,多项式含有加减运算.2.(2014秋•鄄城县期末)下列说法中正确的是()A.x的系数是0B.24与42不是同类项C.y的次数是0D.23xyz是三次单项式【分析】根据单项式的概念及其次数分析判断.【解答】解:A、x的系数是1,故错;B、24与42是同类项,属于常数项,故错;C、y的次数是1,故错;D、23xyz是三次单项式,故D对.故选:D.【点评】主要考查了单项式的有关概念.单项式的系数是单项式中的常数,次数为各字母指数的和.3.(2015秋•郯城县期末)下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式【分析】解决本题关键是搞清整式、单项式、多项式的概念及次数、项次,紧扣概念作出判断.【解答】解:A、根据整式的概念可知,单项式和多项式统称为整式,故A错误;B、π是单项式,故B正确;C、x4+2x3是4次二项式,故C错误;D、是多项式,故D错误.故选:B.【点评】主要考查了整式的相关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.4.(2014秋•无锡校级期中)下列代数式:(1)﹣mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+之中整式有()A.3个B.4个C.6个D.7个【分析】根据分母中不含有字母的式子是整式,可得整式的个数.【解答】解::(1)﹣mn,(2)m,(3),(5)2m+1,(6),(8)x2+2x+,分母中不含有字母,是整式,故选:C.【点评】本题考查了整式,整式与分式是相对的,分母中不含有字母的式子是整式.5.(2009春•临川区校级期末)在代数式a,π,ab,a﹣b,,x2+x+1,5,2a,中,整式有8个;单项式有5个,次数为2的单项式是ab;系数为1的单项式是a.【分析】解决本题关键是搞清整式、单项式、多项式的概念,紧扣概念作出判断.【解答】解:整式有a,π,ab,a﹣b,,x2+x+1,5,2a,共8个;单项式有a,π,ab,5,2a共5个,次数为2的单项式是ab;系数为1的单项式是a.故答案为:8;5;ab;a.【点评】此题考查了整式、单项式的有关概念,注意单个字母与数字也是单项式,单项式的系数是其数字因数,单项式的次数是所有字母指数的和.合并同类项答案1.(2018•东莞市校级一模)下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=0【分析】根据合并同类项法则判断即可.【解答】解:A、5x﹣x=4x,错误;B、2x2与2x3不是同类项,不能合并,错误;C、﹣n2﹣n2=﹣2n2,正确;D、a2b与ab2不是同类项,不能合并,错误;故选:C.【点评】此题主要考查了合并同类项知识,正确掌握相关运算法则是解题关键.2.(2018•东西湖区模拟)计算x2y﹣3x2y的结果是()A.﹣2B.﹣2x2y C.﹣x2y D.﹣2xy2【分析】根据合并同类项解答即可.【解答】解:x2y﹣3x2y=﹣2x2y,故选:B.【点评】此题考查合并同类项问题,关键是根据法则解答.3.(2018•衢州一模)下面是小林做的4道作业题:(1)2ab+3ab=5ab;(2)2ab﹣3ab=﹣ab;(3)2ab﹣3ab=6ab;(4)2ab÷3ab=.做对一题得2分,则他共得到()A.2分B.4分C.6分D.8分【分析】这几个式子的运算是合并同类项的问题,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:(1)2ab+3ab=5ab,正确;(2)2ab﹣3ab=﹣ab,正确;(3)∵2ab﹣3ab=﹣ab,∴2ab﹣3ab=6ab错误;(4)2ab÷3ab=,正确.3道正确,得到6分,故选:C.【点评】本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.4.(2016秋•宜春期末)(1)计算:﹣7+(20﹣3)(2)化简:3a﹣2b+4c﹣2a﹣6c+b.【分析】(1)根据有理数的加减运算即可求出答案.(2)根据合并同类项的法则即可求出答案.【解答】解:(1)解:原式=﹣7+17=10(2)解:原式=(3a﹣2a)+(﹣2b+b)+(4c﹣6c)=a﹣b﹣2c【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则进行计算,本题属于基础题型.5.(2017秋•西城区校级期中)5x2+x+3+4x﹣8x2﹣2.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.【解答】解:原式=(5﹣8)x2+(1+4)x+3﹣2=﹣3x2+5x+1.【点评】此题主要考查了合并同类项,关键是掌握合并同类项计算法则.去括号与添括号答案1.(2017秋•庆云县期末)下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣cB.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c【分析】利用去括号添括号法则计算.【解答】解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.2.(2017秋•柯桥区期末)﹣[a﹣(b﹣c)]去括号正确的是()A.﹣a﹣b+c B.﹣a+b﹣c C.﹣a﹣b﹣c D.﹣a+b+c【分析】根据去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反进行计算即可.【解答】解:﹣[a﹣(b﹣c)]=﹣(a﹣b+c)=﹣a+b﹣c,故选:B.【点评】此题主要考查了去括号,关键是掌握去括号法则.3.(2017秋•惠民县期末)下列去括号的过程(1)a﹣(b﹣c)=a﹣b﹣c;(2)a﹣(b﹣c)=a+b+c;(3)a﹣(b+c)=a﹣b+c;(4)a﹣(b+c)=a﹣b﹣c.其中运算结果错误的个数为()A.1B.2C.3D.4【分析】直接利用去括号法则分别化简判断得出答案.【解答】解:(1)a﹣(b﹣c)=a﹣b+c,故此选项错误,符合题意;(2)a﹣(b﹣c)=a﹣b+c,故此选项错误,符合题意;(3)a﹣(b+c)=a﹣b﹣c,故此选项错误,符合题意;(4)a﹣(b+c)=a﹣b﹣c,正确,不合题意.故选:C.【点评】此题主要考查了去括号法则,正确去括号是解题关键.4.(2015秋•河南期中)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)【分析】(1)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;(2)根据括号前是正号去括号不变号,括号前是负号去掉括号要变号,可去掉括号,根据合并同类项,可得答案;【解答】解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.【点评】本题考查了去括号与添括号,合并同类项,括号前是正号去掉括号不变号,括号前是负号去掉括号要变号.5.(2013秋•孟津县期末)先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)【分析】根据括号前是正号,去掉括号及正号,各项都不变,括号前是负号,去掉括号及负号,各项都变号,可去括号,再根据系数相加字母部分不变,合并同类项.【解答】解:3(2x2﹣y2)﹣2(3y2﹣2x2)=6x2﹣3y2﹣6y2+4x2=(6x2+4x2)+(﹣3y2﹣6y2)=10x2﹣9y2.【点评】本题考查了去括号与添括号,根据法则去括号添括号是解题关键.整式的加减混合运算答案1.(2018•江阴市二模)已知a+b=4,c﹣d=3,则(b+c)﹣(d﹣a)的值等()A.1B.﹣1C.7D.﹣7【分析】原式去括号整理后,将已知的等式代入计算即可求出值.【解答】解:∵a+b=4,c﹣d=3,∴原式=b+c﹣d+a=(a+b)+(c﹣d)=3+4=7,故选:C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.2.(2017秋•南充期末)下面计算正确的是()A.3x2﹣x2=3B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=0【分析】先判断是否为同类项,若是同类项则按合并同类项的法则合并.【解答】解:A、3x2﹣x2=2x2≠3,故A错误;B、3a2与2a3不可相加,故B错误;C、3与x不可相加,故C错误;D、﹣0.25ab+ba=0,故D正确.故选:D.【点评】此题考查了合并同类项法则:系数相加减,字母与字母的指数不变.3.(2017秋•武昌区校级期末)下列计算正确的是()A.8a+2b+(5a一b)=13a+3b B.(5a﹣3b)﹣3(a﹣2b)=2a+3bC.(2x﹣3y)+(5x+4y)=7x﹣y D.(3m﹣2n)﹣(4m﹣5n)=m+3n【分析】根据先去括号,然后合并同类项的原则即可求解.【解答】解:A,去括号合并同类项得:8a+2b+5a﹣b=8a+5b+2b﹣b=13a+b≠13a+3b,故本选项错误;B,去括号合并同类项得;5a﹣3b﹣3a+6b=5a﹣3a﹣3b+6b=2a+3b,故本选项正确;C,去括号合并同类项得:2x﹣3y+5x+4y=2x+5x﹣3y+4y=7x+y≠7x﹣y,故本选项错误;D,去括号合并同类项得:3m﹣2n﹣4m+5n=3m﹣4m﹣2n+5n=﹣m+3n≠m+3n,故本选项错误;故选:B.【点评】本题考查了整式的加减,属于基础题,关键是掌握先去括号再合并同类项进行计算.4.(2017秋•港闸区期末)化简:(1)(2a﹣b)﹣(2b﹣3a)﹣2(a﹣2b)(2)2x2﹣[7x﹣(4x﹣3)﹣x2]【分析】根据整式的运算法则即可求出答案.【解答】解:(1)原式=2a﹣b﹣2b+3a﹣2a+4b=3a+b(2)原式=2x2﹣[7x﹣4x+3﹣x2]=2x2﹣[3x+3﹣x2]=2x2﹣3x﹣3+x2=3x2﹣3x﹣3【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.(2017秋•贵阳期末)一个整式A与x2﹣x﹣1的和是﹣3x2﹣6x+2(1)求整式A;(2)当x=2时,求整式A的值.【分析】(1)根据题意列出等式,然后再求出整式A;(2)把x=2代入(1),计算即可求出整式A的值.【解答】解:(1)由题意可知:A+(x2﹣x﹣1)=﹣3x2﹣6x+2,∴A=(﹣3x2﹣6x+2)﹣(x2﹣x﹣1)=﹣3x2﹣6x+2﹣x2+x+1=﹣4x2﹣5x+3;(2)把x=2代入得:A=﹣4x2﹣5x+3═﹣4×22﹣5×2+3=﹣16﹣10+3=﹣23.【点评】此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.。