七年级数学下册 第六章 实数 6.3 实数教案 (新版)新人教版
6.3实数(第1课时)教学设计-2021-2022学年人教版数学七年级下册

人教版七年级数学下册第六章第三节《实数》教学设计(第1课时)一、教学目标知识技能1.了解无理数及实数的概念,并会对实数进行分类.2.会对实数按照一定标准进行分类,培养分类能力.3.知道实数和数轴上的点一一对应.数学思考1.经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的.2.经历对实数进行分类,发展学生的分类意识.解决问题1.通过无理数的引入,使学生对数的认识由有理数扩充到实数.2在交流中学会与人合作,并能与他人交流自己思维的过程和结果.情感态度1.通过无理数的引入,激发学生的求知欲,使学生感受数学活动充满了探索性与创造性,体验发现的快乐,获取成功的体验.2.通过了解数系扩充体会数系扩充对人类发展的作用.3.敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.二、教学重点和难点教学重点:使学生了解无理数和实数的意义,熟练掌握实数的分类教学难点:无理数意义的理解.三、教学方法讲练结合启发教学学生为主四、教学手段多媒体五、课时安排一课时六、教学设计(一).数学故事——无理数的发现:通过俗语“有理走遍天下,无理寸步难行”引入数学故事,古希腊著名的数学家,哲学家毕达哥拉斯有一句名言“万物皆为数。
”他认为宇宙间的一切事物都归为整数或整数的比。
问:整数的比是什么数?答:分数。
问:整数和分数统称为什么数?答:有理数。
〖设计说明〗让学生了解无理数是怎么发现的,经历从有理数逐步扩充到实数,了解到人类对数的认识是不断发展的,从而对数学充满兴趣(二)、回顾旧知,检查预习:1.有理数怎样分类?有理数分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 或 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负整数负整数负有理数零正分数正整数正有理数有理数 〖设计说明〗让学生进行简单的练习,帮助学生回顾旧知识:有理数,为本节课的迁移伏笔. (三)、创设情境,导入新课:1.展示问题,引导学生探究。
人教版七年级数学下册6.3实数实数的运算优秀教学案例

(三)情感态度与价值观
1.培养学生对数学学科的兴趣,使他们愿意学习数学,主动学习数学。
2.培养学生克服困难的意志,使他们面对困难时不轻易放弃,勇于尝试。
3.培养学生团队协作的精神,使他们学会与人合作,共同完成任务。
4.培养学生的自主学习能力,使他们学会独立思考,主动探究问题。
在情感态度与价值观目标的设计上,我注重培养学生对数学学科的兴趣和积极性,使他们愿意学习数学,主动学习数学。通过实际案例的引入和练习题的设置,培养学生克服困难的意志,使他们面对困难时不轻易放弃,勇于尝试。采用小组合作学习的方式,培养学生团队协作的精神,使他们学会与人合作,共同完成任务。在教学过程中,关注学生的个体差异,给予他们个性化的指导,培养他们的自主学习能力,使他们学会独立思考,主动探究问题。
三、教学策略
(一)情景创设
1.利用多媒体课件展示实际生活中的运算案例,让学生感知实数运算的实际意义。
2.设计具有情境性的数学问题,激发学生的学习兴趣,引发他们的思考。
3.创设轻松愉快的学习氛围,使学生在愉悦的情感状态下学习实数运算。
在情景创设方面,我注重将实数运算与实际生活相结合,让学生在熟悉的情境中感受运算的重要性。通过多媒体课件展示实际生活中的运算案例,让学生感知实数运算的实际意义,激发他们的学习兴趣。同时,设计具有情境性的数学问题,引发学生的思考,使他们能够主动参与到实数运算的学习中来。此外,我还注重创设轻松愉快的学习氛围,通过幽默的语言、鼓励性的评价等方式,使学生在愉悦的情感状态下学习实数运算。
(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在掌握了有理数的相关知识后,进一步扩大知识面,认识实数的概念。
本节内容主要包括实数的定义、实数的分类和实数的性质。
通过本节课的学习,学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的相关知识,具备了一定的数学基础。
但是,对于实数的定义和性质,可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握实数的概念和性质。
三. 教学目标1.理解实数的概念,掌握实数的分类和性质。
2.能够运用实数的概念和性质解决一些简单的实际问题。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.实数的定义和性质。
2.实数的分类。
五. 教学方法采用讲授法、引导法、讨论法等教学方法。
通过教师的讲解和引导,学生的思考和讨论,使学生理解和掌握实数的概念和性质。
六. 教学准备1.教师准备教案、PPT等教学资料。
2.学生准备笔记本、文具等学习用品。
七. 教学过程1.导入(5分钟)教师通过复习有理数的相关知识,引导学生思考有理数的局限性,引出实数的概念。
2.呈现(15分钟)教师通过PPT或者黑板,呈现实数的定义、性质和分类。
引导学生理解和记忆实数的概念和性质,掌握实数的分类。
3.操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。
通过练习,巩固学生对实数的理解和掌握。
4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生巩固对实数的理解和掌握。
5.拓展(10分钟)教师引导学生思考实数在实际生活中的应用,让学生举例说明实数在生活中的作用。
6.小结(5分钟)教师对本节课的内容进行小结,强调实数的概念、性质和分类,提醒学生注意实数的应用。
7.家庭作业(5分钟)教师布置一些有关实数的家庭作业,让学生进一步巩固和理解实数的概念和性质。
2024年人教版七年数学下册教案(全册)第6章 实数

一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“实数”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,学生将了解无理数和实数,知道实数是由有理数和无理数组成的,感悟数的扩充;初步认识实数与数轴上的点具有一一对应的关系,能用数轴上的点表示一些具体的实数,能比较实数的大小;能借助数轴理解相反数和绝对值的意义,会求实数的相反数、绝对值;知道平方根、算术平方根、立方根的概念,会用根号表示平方根、算术平方根、立方根;知道乘方与开方互为逆运算,会用乘方运算求百以内完全平方数的平方根和千以内完全立方数的立方根(及对应的负整数),会用计算器计算平方根和立方根;能用有理数估计一个无理数的大致范围;初步认识近似数,在解决实际问题中,能用计算器进行近似计算,会按要求进行简单的近似计算,会对结果取近似值;会用二次根式(根号下仅限于数)的加、减、乘、除运算法则进行简单的四则运算.在中学阶段,实数的知识贯穿于中学数学学习的始终,多数数学问题是在实数范围内研究的.实数不仅是初中阶段学习二次根式、一元二次方程以及解三角形等知识的基础,也是学习高中数学内容的基础.2.本单元教学内容分析人教版教材七年级下册第六章“实数”,本章包括三个小节:6.1平方根;6.2 立方根;6.3实数.本单元内容属于“数与代数”领域,很多内容是有理数相关内容的延续和推广.类比有理数,引入实数的绝对值和相反数的概念,实数的运算法则和运算性质,实数与数轴上的点的一一对应关系,平方与开平方、立方与开立方互为逆运算的关系等都是在有理数的基础上展开的.为了使学生更好地体会到数的扩充过程中表现出的概念、运算等的一致性和发展变化.本章前两节“平方根”“立方根”在内容和展开方式上是基本平行的,因此充分利用类比的方法,通过类比“平方根”展开“立方根”的内容,这样有助于加强知识间的相互联系,通过类比已学的知识学习新知识,使学生的学习形成正迁移.通过学生合作探究,揭示出像√2这种无限不循环小数的存在,从而引入无理数的概念,使学生把数的概念从有理数扩展到实数.这不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且也是深入贯彻实施《标准2022》的素养理念的渠道,这样才能更好地促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量.三、单元学情分析本单元内容是人教版教材数学七年级下册第六章实数,是在有理数的基础上学习实数的初步知识.学生在前面已经系统地学习了有理数,对有理数的概念和运算等有了较深刻的认识,初步积累了一定的“数学化”的活动经验.运用类比的数学思想,使学生更好地体会数的扩充过程中表现出来的概念、运算等的一致性和发展变化,会降低学生学习的难度.根据学生的最近发展区创设典型的问题情境,会使学生更加主动地去探索用根号形式表示的无理数的相关知识,培养学生良好的数学探究意识.而让学生了解算术平方根、平方根的概念和求法以及实数的概念、运算和实数在数轴上的表示是学习本章内容的主要目标,平方根和实数的概念对学生来说是一个难点.学生虽然积累了一定的有理数的数学活动经验,但对于实数理论知识的理解还不够深刻,所以学生在正数开平方时往往会忽略一个结果,容易将算术平方根和平方根混淆.对于负数没有平方根,学生接受起来也有一定的难度.实数的概念是一个构造性的定义,比较抽象,学生真正理解这个概念也有一定的困难.四、单元学习目标1.体验从具体情境中抽象出数学符号的过程,了解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根、立方根.发展学生的抽象能力.2.了解开方与乘方互为逆运算,会用平方运算求百以内完全平方数的平方根,会用立方运算求千以内完全立方数(及对应的负整数)的立方根,会用计算器求平方根和立方根.综合利用各种途径培养学生的运算能力.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值,并初步认识“数形结合”思想方法的作用.4.能用有理数估计一个无理数的大致范围.培养学生估算的能力.五、单元学习内容及学习方法概览续表六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获的思想.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《实数》一. 教材分析人教版数学七年级下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统认识的一节内容。
本节内容主要包括实数的定义、实数与数轴的关系以及实数的分类。
通过本节课的学习,使学生了解实数的丰富性和广泛性,培养学生对实数的认识和理解。
二. 学情分析七年级的学生已经掌握了有理数和无理数的基本概念,对数轴也有了一定的认识。
但学生在实数的分类方面可能会存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生充分理解实数的内涵和外延。
三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。
2.能够对实数进行分类,了解实数的丰富性和广泛性。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.实数的定义和实数与数轴的关系。
2.实数的分类和各类实数的特征。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,激发学生的学习兴趣;通过案例分析,使学生直观地理解实数的概念;通过小组合作学习,培养学生的团队协作能力和表达能力。
六. 教学准备1.准备与实数相关的案例和图片,以便在教学中进行展示和分析。
2.准备实数的分类表格,方便学生理解和记忆。
3.准备数轴的道具或图片,帮助学生直观地理解实数与数轴的关系。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了有理数和无理数,那么你们能总结一下有理数和无理数的特征吗?”2.呈现(10分钟)教师通过PPT或板书,呈现实数的定义和实数与数轴的关系。
同时,结合案例和图片,使学生直观地理解实数的概念。
例如:“同学们,今天我们要学习的是实数。
实数包括有理数和无理数,它们都可以用数轴上的点来表示。
请大家观察这个数轴,找出一些特殊的点,并试着解释它们的含义。
”3.操练(10分钟)学生分组讨论,根据实数的定义和实数与数轴的关系,对给定的实数进行分类。
人教版七年级数学下册6.3实数(第1课时)一等奖优秀教学设计

人教版义务教育课程标准实验教科书七年级下册6.3.1实数(第1课时)教学设计一、教材分析1、地位作用:本章内容相当于旧教材《数的开方》一章,但编排顺序有所差别,旧教材先学习平方根,再将算术平方根作为其中的一种特例进行学习,而本套教材先联系实际学习认识算术平方根后,再进一步认识平方根。
这样可以引发学生的疑惑,激发学生学习兴趣,从而使学生积极主动地投入到数学活动中去。
本节篇幅不长,内容也不多,但知识比较抽象,而且与学生以前接触的数学知识差异较大,根据以前的教学经验,我感觉学生学习起来不会很顺手,而且它又是以后学习二次根式、一元二次方程的基础,需要老师在教学中精心构思,认真落实。
2、教学目标:(1)了解无理数和实数的概念.(2)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想。
3、教学重、难点:重点:了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系。
难点:理解实数的概念突破重难点的方法:观察与动手作图实践,让学生知道实数和数轴上的点是一一对应的,从而理解学习实数的必要性。
二、教学准备:多媒体课件、导学案三、教学过程.圆周率及一些含有3、下列结论正确的是( )A.无限小数是无理数B.实数不是正数就是负数合起来就是:数轴上的点。
C.无理数都是带根号的数D.无理数都是无限不循环小数 4、判断:(1).实数不是有理数就是无理数。
( ) (2).无理数都是无限不循环小数。
( ) (3).无理数都是无限小数。
( ) (4).带根号的数都是无理数。
( ) 2、下列说法中,正确的是()、都是无理数234、、A 、B 、无理数都是带根号的数C 、实数分为正实数和负实数D 、实数和数轴上的点是一一对应的D。
人教版数学七年级下册6.3《实数》优秀教学案例

3.采用小组合作学习法,让学生在讨论和交流中,共同完成实数性质的探究,培养学生的合作意识和团队精神。
4.设计丰富的教学活动,让学生在实践中感受实数的性质,提高学生的动手操作能力和实践能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,使学生树立自信心,相信自己能够掌握实数的知识。
4.引导学生总结实数的性质,培养学生的归纳总结能力,例如“实数的性质有哪些?如何描述有理数和无理数?”
(三)小组合作
1.让学生分组讨论实数的性质,鼓励学生发表自己的观点,培养学生的合作意识和团队精神。
2.设计小组活动,让学生共同探究实数的运算规则,例如“以小组为单位,总结实数的加法、减法、乘法、除法规则。”
在教学设计上,我遵循了由浅入深、循序渐进的原则,将知识点进行合理划分,使得学生能够逐步理解和掌握实数的概念和性质。在教学方法上,我采用了启发式教学法和小组合作学习法,鼓励学生主动发现问题、解决问题,培养学生的合作意识和团队精神。
在教学评价上,我注重过程性评价与终结性评价相结合,全面了解学生的学习情况,及时调整教学策略,提高教学效果。通过本节课的教学,希望学生能够熟练掌握实数的相关知识,提高他们的数学素养。
三、教学策略
(一)情景创设
1.利用生活实例引入实数的概念,例如身高、体重、温度等,让学生感受到实数与生活的紧密联系。
2.通过设计有趣的数学问题,激发学生的学习兴趣,例如“小明身高1.6米,小红身高1.5米,请问小明比小红高多少?”
3.利用多媒体课件展示实数的应用场景,例如在平面直角坐标系中,展示实数表示的点的位置。
4.创设问题情境,引导学生思考实数的性质,例如“为什么实数可以分为有理数和无理数?”
人教版数学七年级下册6.3.2实数的运算教学设计

3.布置小组讨论作业,让学生在课后互相交流实数运算的解题方法,共同分析解题思路,提高团队协作能力和沟通能力。
4.鼓励学生利用数学软件或计算器辅助完成作业,培养他们运用现代技术工具解决问题的能力。
1.学生对实数概念的理解程度,尤其是无理数的过程中可能出现的错误,如运算符误用、计算顺序混乱等,教师需及时发现并纠正。
3.针对不同学生的学习能力,设计分层教学,使基础薄弱的学生能够扎实掌握实数运算,优秀生能够拓展思维,提高解题能力。
4.了解实数运算的优先级,掌握实数运算的顺序,提高运算速度和准确性。
(二)过程与方法
1.通过小组合作、讨论交流等形式,让学生在探究中发现实数的运算规律,提高学生的自主学习能力。
2.运用比较、归纳、总结等方法,使学生对实数运算有更深入的理解,培养学生良好的思维品质。
3.设计丰富的例题和练习题,让学生在解题过程中掌握实数运算的方法,提高解题能力。
人教版数学七年级下册6.3.2实数的运算教学设计
一、教学目标
(一)知识与技能
1.了解实数的定义,理解实数包括有理数和无理数,能够正确区分各种实数。
2.学会实数的四则运算,包括加减乘除,掌握实数运算的法则,能够熟练进行混合运算。
3.能够运用实数解决实际问题,如计算物体的面积、体积等,提高学生的实际应用能力。
(3)注重分层教学,针对不同学生的学习需求,设计难易适度的练习题,使每个学生都能在原有基础上得到提高。
(4)及时反馈评价,关注学生的个体差异,鼓励学生积极参与课堂活动,提高学生的自信心。
(5)课后作业设计注重趣味性和挑战性,激发学生的学习兴趣,让学生在完成作业的过程中巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3 实数(第1课时)
教学目标
1.了解无理数和实数的概念.
2.知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应.
3.了解数的范围由有理数扩大到实数后,一些概念、运算等的一致性及其发展变化. 教学重点
实数的运算.
教学难点
实数的运算
教学内容
一、导入新课
使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
3,-53,847,119,9
11,95. 二、新课教学
我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即
3=3.0;-53=-0.6;847=5.875;119=0.81;9
11=1.2;95=0.5. 归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.无限不循环小数又叫无理数,π=3.1415926…也是无理数;有理数和无理数统称为实数.
由于非0有理数和无理数都有正负之分,实数也有正负之分,所以实数还可以按大小分类如下:
探究:
如下图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′对应的数是多少?
从图中可以看出,OO′的长是这个圆的周长π,所以点O′的对应数是π.这样,无理数π可以用数轴上的点表示出来.
事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.
数a的相反数是-a,这里a表示任意一个实数.一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0.
三、课堂练习
四、课堂小结
1.什么叫做无理数?
2.什么叫做有理数?
3.有理数和数轴上的点一一对应吗?
4.无理数和数轴上的点一一对应吗?
5.实数和数轴上的点一一对应吗?
五、布置作业
教学反思:
6.3 实数(第2课时)
教学内容
实数的运算.
一、导入新课
1. 用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律.
2. 用字母表示有理数的加法交换律和结合律.
3. 平方差公式、完全平方公式.
4. 有理数的混合运算顺序.
复习以前知识,导入新课的教学.
二、实例探究
1. 思考:
(1)2的相反数是,-π的相反数是,0的相反数是 .
(2)2=,-π=,0= .
数A的相反数是-a,这里A表示任意一个实数.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设A表示一个实数,则
2. 例题
例1 (1)分别写出-6,π-3.14的相反数;
(2)指出-5,1-33各是什么数的相反数;
-的绝对值;
(3)求364
(4)已知一个数的绝对值是3,求这个数.
当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算. 在进行实数的运算时,
有理数的运算法则及运算性质等同样适用.
例2 计算下列各式的值:
(1);
3
+(2)33+23.
(-
2
)
2
在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似的有限小数去代替无理数,再进行计算.
三、课堂小结
1. 实数的运算法则及运算律;
2. 实数的相反数和绝对值的意义.
四、布置作业
教学反思:。