《一元一次方程》同步练习

合集下载

人教版数学七年级上学期: 解一元一次方程(二)同步练习

人教版数学七年级上学期: 解一元一次方程(二)同步练习

3.3 解一元一次方程 水平检测试题一、精心选一选(每小题5分,共30分)1.解方程时,移项法则的依据是( ).(A )加法交换律 (B )加法结合律 (C )等式性质1 (D )等式性质22. 解方程2(3)5(1)3(1)x x x +--=-,去括号正确的是( ).(A )265533x x x +-+=- (B )23533x x x +-+=-(C )265533x x x +--=- (D )23531x x x +-+=-3.解方程371123x x -+-=的步骤中,去分母一项正确的是( ). (A )3(37)226x x --+= (B )37(1)1x x --+=(C )3(37)2(1)1x x ---= (D )3(37)2(1)6x x --+=4.若312x +的值比223x -的值小1,则x 的值为( ). (A )135 (B )-135 (C )513 (D )-5135.解方程14(1)2()2x x x --=+步骤下: ①去括号,得4421x x x --=+②移项,得4214x x x +-=+③合并同类项,得35x =④系数化为1,得53x =检验知:53x =不是原方程的根,说明解题的四个步骤有错,其中做错的一步是( ).(A )① (B )② (C )③ (D )④6. 某项工作由甲单独做3小时完成,由乙独做4小时完成,乙独做了1小时后,甲乙合做完成剩下的工作,这项工作共用( )小时完成.(A )79 (B )67 (C )167 (D )157二、耐心填一填(每小题5分,共30分) 7.当x =_____时,28x +的值等于-14的倒数. 8.已知236(3)0x y -++=,则32x y +的值是________.9.当x =_____时,式子1(12)3x -与式子2(31)7x +的值相等. 10. 在公式y=kx+b 中,b=-3,x=2,y=3,则k=_______.11.一列火车匀速驶入长300米的隧道,从它开始进入到完全通过历时25秒钟,隧道顶部一盏固定灯在火车上垂直照射的时间为10秒钟,则火车的长为________.12. 一艘轮船航行在A 、B 两码头之间,已知水流速度是3千米/小时,轮船顺水航行需要5小时,逆水航行需要7小时,则A 、B 两码头之间的航程是_________千米.三、用心想一想(40分)13.(10分)解下列方程:(1)5(2)3(27)x x -=-;(2)123123x x +--=; 14.(8分)已知关于x 的方程132233x m m x x x -+=+=-与 的解互为倒数,求m 的值. 15. (12分)有一个只允许单向通过的窄道口,通常,每分钟可通过9人,一天,王老师到达通道口时,发现由于拥挤,每分钟只能3人通过道口,此时, 自己前面还有36人等待通过(假定先到先过,王老师过道口的时间忽略不计),通过道口后, 还需7分钟到学校.(1)此时,若绕道而行,要15分钟到达学校,以节省时间考虑, 王老师应选择绕道去学校还是选择通过拥挤的道口去学校?(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维护秩序期间, 每分钟仍有3 人通过道口),结果王老师比拥挤的情况提前了6分钟通过道口, 向维持秩序的时间是多少?16.(10分)我校初中一年级120名同学,在植树节那天要栽50棵树, 其中有30 棵小树,20棵大树,两位同学一起可以完成一棵小树的栽植,3位同学一起可以完成一棵大树的栽植,结果当天顺利地完成了全部任务.阅读上面的材料,编制适当的题目,利用数学知识求解.参考答案:一、题号1 2 3 4 5 6 答案C AD B B C二、7.-6;8.0;9.132; 10. k=3; 11. 200;12.105;三、13.(1)11x =;(2)79x =; 14. 解: 2323x x +=-,得x=1,与1互为倒数的仍为1. 即1123m m -=+,得m=-35. 15. 解:(1)王老师过道口去学校要3673+(分钟), 而绕道只需15分钟,因19>15, 故从节省时间考虑他应该绕道去学校.(2)设维持秩序时间为x 分,则维持时间内过道口有3x 人,则王老师维持好时间内地道 口有(36-3x)人,由题意,得36363639x x -=++, 解得x=3.因此,维持秩序时间是3分钟.16.略.备选题:某园林的门票规定如下:40人以下每人10元,40人以上享受团体优惠,其中40~80人九折优惠,80人以上八折优惠,初一甲、乙两班共101人去该园林春游,且甲班人数多于乙班人数,但小于总数的32,若两班都以班为单位购票,则共付948元.①若两班联合起来作为一个团体购票,则可省多少钱?②两班各有多少学生?解:①省140元②甲班62人,乙班39人.3.3解一元一次方程(二)——去括号与去分母一、选择题1.化简(x -1)-(1-x)+(x +1)的结果等于( )A .3x -3B .x -1C .3x -1D .x -32.当m =1时,-2m 2-[-4m 2+(-m)2]等于( )A .-7B .3C .1D .23.下列四组变形中,属于去括号的是( )A .5x +4=0,则5x =-4B .3x =2,则x =6C .3x -(2-4x)=5,则3x +4x -2=5D .5x =2+1,则5x =34.将方程(3+m -1)x =6-(2m +3)中,x =2时,m 的值是( )A .m =-14 B .m =14 C .m =-4 D .m =45.当x >3时,化简3423x x ---为( )A .x -5B .x -1C .7x -1D .5-7x6.解方程:4(x -1)-x =2(x +12),步骤如下:(1)去括号,得4x -4-x =2x +1 (2)移项,得4x -x +2x =1+4(3)合并,得3x =5 (4)系数化1,得x =53经检验知x =53不是原方程的解,证明解题的四个步骤中有错,其中做错的一步是 ( )A .(1)B (2)C .(3)D .(4)7.不改变式子a -(2b -3c)的值,把它括号前面的符号变成相反的符号应为 ( )A .a +(-2b +3c)B .a +(-2b)-3cC .a +(2b +3c)D .a +[-(2b +3c) ]二、填空题1.已知关于x 的多项式ax -bx 合并后结果为0,则a 与b 的关系是________。

一元一次方程同步练习题

一元一次方程同步练习题

一元一次方程同步练习题一、填空题1. 已知方程3x 7 = 11,求解x的值:x = ______。

2. 方程5x + 8 = 2x 3,移项合并得:x = ______。

3. 若方程2(x 3) = 4x + 10,则x的解为:x = ______。

4. 方程7 3(x + 2) = 8 2x,化简得:x = ______。

5. 已知方程4x 5 = 3(x + 1),求解x的值:x = ______。

二、选择题1. 方程2x 5 = 15的解是()。

A. x = 5B. x = 10C. x = 7.5D. x = 12.52. 方程3(x 2) + 4 = 2x的解是()。

A. x = 2B. x = 4C. x = 6D. x = 83. 下列方程中,x的解为负数的是()。

A. 4x + 9 = 7x + 3B. 5x 8 = 2x + 7C. 3x + 12 = 2x 4D. 6x 5 = 9x 104. 方程5 2(x 1) = 3x的解是()。

A. x = 1B. x = 2C. x = 3D. x = 45. 方程4x + 7 = 2(x + 5)的解是()。

A. x = 1B. x = 2C. x = 3D. x = 4三、解答题1. 解方程:3x 4 = 7 2x。

2. 解方程:5(x 2) + 3 = 2(x + 4)。

3. 解方程:4 3(x + 1) = 2x 7。

4. 解方程:6x 9 = 3(x + 2)。

5. 解方程:7 2(x 3) = 5x 1。

6. 解方程:4(x 1) + 3 = 2x + 7。

7. 解方程:9 5(x 2) = 2(x + 3)。

8. 解方程:8x 3 = 5(x + 2) 7。

9. 解方程:6(x 4) + 2 = 4x 10。

10. 解方程:5x 12 = 3(x + 4) 2x。

四、应用题1. 小华的年龄比小明大3岁,两人的年龄之和为39岁,求小华和小明的年龄。

冀教版七年级数学上册《5.1一元一次方程》同步练习-有参考答案

冀教版七年级数学上册《5.1一元一次方程》同步练习-有参考答案

冀教版七年级数学上册《5.1一元一次方程》同步练习-有参考答案一、选择题1.下列选项中不是方程的是( )A.2x+3y=1B.﹣x+y=4C.3+4=7D. x=82.下列方程中,一元一次方程的有( )个。

①2x-3y=6 ②x2-5x+6=0 ③3(x-2)=1-2x ④3x-2(6-x)A.1B.2C.3D.43.方程(a﹣2)x|a|﹣1+3=0是关于x的一元一次方程,则a=( )A.2B.﹣2C.±1D.±24.下列方程中是一元一次方程的是( )A.x2﹣4x=3B.x+2y=1C.x﹣1=0D.x﹣1=1 x5.下列方程中,是一元一次方程的是( )A.x2﹣4x=3B.x=0C.x+2y=1D.2(x﹣3)﹣3=2x+56.下列说法正确的是( )A.长方形的长是a米,宽比长短25米,则它的周长可表示为(2a﹣25)米B.6h表示底为6,高为h的三角形的面积C.10a+b表示一个两位数,它的个位数字是a,十位数字是bD.甲、乙两人分别从相距40千米的两地相向出发,其行走的速度分别为3千米/小时和5千米/小时,经过x小时相遇,则可列方程为3x+5x=407.已知下列方程:①x+1=3x;②5x=8;③x3=4x+1;④x2+2x-3=0;⑤x=1;⑥3x+y=6.其中是一元一次方程的个数是( )A.2个B.3个C.4个D.5个8.某水果店贩卖西瓜、梨子及苹果,已知一个西瓜的价钱比6个梨子多6元,一个苹果的价钱比2个梨子少2元.判断下列叙述何者正确( )A.一个西瓜的价钱是一个苹果的3倍B.若一个西瓜降价4元,则其价钱是一个苹果的3倍C.若一个西瓜降价8元,则其价钱是一个苹果的3倍D.若一个西瓜降价12元,则其价钱是一个苹果的3倍9.已知3是关于x的方程2x﹣a=1的解,则a的值为( )A.﹣5B.5C.7D.﹣710.已知方程x2k﹣1+k=0是关于x的一元一次方程,则方程的解等于( )A.﹣1B.1C.0.5D.﹣0.5二、填空题11.若关于x的方程2x m+1+3=5是一元一次方程,则m=________.12.如果方程(m﹣1)x|m|+2=0是关于x的一元一次方程,那么m的值是________.13.一块长方形草坪的长比宽多10米,它的周长是132米.若设宽为x米,则根据题意,可列出方程__________________.14.写出一个解为x=1的一元一次方程:________.15.若x=3是关于x的一元一次方程mx﹣n=3的解,则代数式10﹣3m+n的值是___.16.先列方程,再估算出方程的解.甲型圆珠笔每支3元,乙型圆珠笔每支5元,用40元钱买了两种圆珠笔共10支,还剩2元,则两种圆珠笔各买了多少支?解:设买了甲型圆珠笔x支,则买了乙型圆珠笔______支,依题意得方程:_________________________________________________________________.这里x>0,列表计算:x (支) 1 2 3 4 5 6 7 8[3x+5(10﹣x)]元48 46 44 42 40 38 36 34从表中看出x=______是原方程的解.三、解答题17.已知(︱k︱-1)x2+(k-1)x+3=0是关于x的一元一次方程,求k的值.18.设某数为x,根据下列条件列方程.①某数的5倍比这个数大3;②某数的相反数比这个数大6.19.列出方程,不必求解.①一旅客携带了30kg的行李从杭州乘飞机去天津,按民航规定,旅客最多可免费携带20kg的行李,超重部分每千克按飞机票价格的1.5%购买行李票.该旅客购买了150元的行李票,则他的飞机票价格是多少?②某次考试出了25道选择题,答对一题给4分,不答或答错一题扣5分,如果小李得了82分,那么他答对了多少道题?③为支持亚太地区国家基础设施建设由中国倡议设立亚投行,截止2015年4月15日,亚投行意向创始成员国确定为57个,其中意向创始成员国数亚洲是欧洲的2倍少2个,其余洲共5个,求欧洲的意向创始成员国有多少个.20.根据欢欢与乐乐的对话,解决下面的问题:欢欢:我手中有四张卡片,它们上边分别写有8,3x+2,12x﹣3和1x.乐乐:我用等号将这四张卡片的任意两张卡片上的数或式子连接起来,就会得到等式或一元一次方程.(1)乐乐一共能写出几个等式?(2)在乐乐写的这些等式中,有几个一元一次方程?请写出这几个一元一次方程.21.请填写下表,然后写出方程2x﹣1=x的解.x ﹣1 0 1 2 3 42x﹣122.检验x=5是不是方程7x=21+3x的解.下面的方法对不对?如果对,请说明理由;若不对,请指出错在哪里.解:把x=5代入方程的左右两边得:7×5=21+3×5=35=21+15,35≠36所以,x=5不是方程7x=21+3x的解.23.爸爸与儿子下象棋,爸爸赢1局记1分,儿子赢一局记3分,下了8局后,两人得分相等.如果没有平局,那么他们各赢了多少局?对于这个问题,请你设未知数,列出方程,并求出问题的解.答案1.C2.A3.B.4.C5.B6.D.7.B8.D9.B 10.A 11.答案为:0 12.答案为:﹣1.13.答案为:2(2x +10)=132. 14.答案为:x +3=4(答案不唯一) 15.答案为:7.16.答案为:(10﹣x);3x +5(10﹣x)=40﹣2;6. 17.解:因为原方程是关于x 的一元一次方程所以原方程中关于x 的2次项系数必须等于0,一次项系数不等于0. 即⎩⎨⎧︱k ︱-1=0k -1≠0 ,解得k =-1. 18.解:①5x-x=3; ②-x-x=6. 19.解:①5x=x +3 ②-x=x +6(2)解:①设飞机票的价格为x 元/张,则1.5%×(30-20)x=150. ②设小李答对了x 道题,则4x -5(25-x)=82.③设欧洲的意向创始成员国有x 个,则亚洲的意向创始成员国有(2x -2)个. 根据题意,得(2x -2)+x +5=57. 20.解:(1)6个.(2)有3个一元一次方程,它们分别是3x +2=8,12x ﹣3=8,3x +2=12x ﹣3.21.解:表格中依次填:﹣3 ﹣1 1 3 5 7;方程2x﹣1=x的解是x=1.22.解:不对,因为先并不知道x=5是不是方程的解因此7×5与21+3×5不能用等号连接而应分别求出方程左边与右边的值,然后再作判断.23.解:设爸爸赢了x局,那么儿子赢了(8﹣x)局. 根据题意,得x=3(8﹣x).如果x=1,那么3(8﹣x)的值是3×(8﹣1)=21;如果x=2,那么3(8﹣x)的值是3×(8﹣2)=18……由此我们可以得到下面的表格:x 1 2 3 4 5 6 7 8 3(8﹣x) 21 18 15 12 9 6 3 0 可以发现,当x=6时,3(8﹣x)的值是6所以x=6是方程x=3(8﹣x)的解此时8﹣6=2,即爸爸赢了6局,儿子赢了2局.。

一元一次方程同步练习题及答案

一元一次方程同步练习题及答案

一元一次方程同步练习题及答案篇1:一元一次方程同步练习题及答案一元一次方程同步练习题及答案一、选择题1、方程3x+6=2x-8移项后,正确的是( )A.3x+2x=6-8B.3x-2x=-8+6C.3x-2x=-6-8D.3x-2x=8-62、方程7(2x-1)-3(4x-1)=11去括号后,正确的.是A.14x-7-12x+1=11B.14x-1-12x-3=11C.14x-7-12x+3=11D.14x-1-12x+3=113、如果代数式与的值互为相反数,则的值等于()A.B.C.D.4、如果与是同类项,则是()A.2B.1C.D.05、已知矩形周长为20cm,设长为cm,则宽为()A.B.C.D.二、填空题1、方程2x-0.3=1.2+3x移项得.2、方程12-(2x-4)=-(x-7)去括号得.3、若︱a﹣1︱+(b+2)2=0,则ab=.4、若3x+2与﹣2x+1互为相反数,则x-2的值是.5、若2(4a﹣2)﹣6=3(4a﹣2),则代数式a2﹣3a+4=.三、解答题1、解下列方程(1)3(2x+5)=2(4x+3)-3(2)4y﹣3(20﹣y)=6y﹣7(9﹣y)(3)7(2x-1)-3(4x-1)=4(3x+2)-11、观察方程[(x-4)-6]=2x+1的特点,你有好的解法吗?写出你的解法.【知能升级】1、已知a是整数,且a比0大,比10小.请你设法找出a的一些数值,使关于x的方程1―ax=―5的解是偶数,看看你能找出几个.2、解方程(1)|4x-1|=7(2)2|x-3|+5=13答案一、选择题1、C2、C3、D4、A5、B二、填空题1、2x-3x=1.2+0.32、12-2x+4=-x+73、14、-55、8三、解答题1、(1)x=6(2)y=(3)x=2、x=-9【知能升级】1、a=1,2,3,4,62、(1)x=2,(2)x=7,-1篇2:一元一次方程同步练习题一、选择题(每小题3分,共24分)1、下列四个式子中,是一元一次方程的是()A、2x-6B、x-1=0C、2x+y=5D、2、下列方程中,解为x=4的方程是()A.B.C.D.3、解方程3x-2=3-2x时,正确且合理的移项是()A、-2+3x=-2x+3B、-2+2x=3-3xC、3x-2x=3-2D、3x+2x=3+24.已知x=-3是方程k(x+4)-2k-x=5的解,则k的值是( )A.-2B.2C.3D.55.如果与是同类项,则是()A.2B.1C.D.06.某试卷由26道题组成,答对一题得8分,答错一题倒扣5分。

第4章一元一次方程练习题2021-2022学年鲁教版(五四制)六年级数学上册

第4章一元一次方程练习题2021-2022学年鲁教版(五四制)六年级数学上册

2021-2022学年鲁教版六年级数学上册《第4章一元一次方程》同步综合练习题(附答案)1.在①2x+1;②1+7=15﹣8+1;③;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个2.下列所给条件,不能列出方程的是()A.某数比它的平方小6B.某数加上3,再乘以2等于14C.某数与它的的差D.某数的3倍与7的和等于293.下列各判断句中,错误的是()A.方程是等式,但等式不一定是方程B.由ax=ay这个条件不能得到x=y一定成立的结论C.在整数范围内,方程6x=3无解D.x5=0不是方程4.若x=1是ax+2x=3方程的解,则a的值是()A.﹣1B.1C.﹣3D.35.下列方程变形正确的是()A.2x﹣5=5x+4变形为2x﹣5=5x+4﹣5x﹣4B.x=2变形为x=2×=1C.4x﹣8=0变形为(4x﹣8+8)=8×D.﹣=1变形为3(x﹣1)﹣2=16.下列方程的变形,符合等式性质的是()A.由x=0,得x=2B.由x﹣3=5,得x=5﹣3C.﹣3x=,得x=﹣D.由x+2=4,得x=4﹣27.若x=0是方程的解,则k值为()A.0B.2C.3D.48.已知k=,则满足k为整数的所有整数x的和是()A.﹣1B.0C.1D.29.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.12(x+10)=13x+60C.D.10.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3B.5x+45=7x+3C.=D.=11.已知关于x的一元一次方程mx﹣1=2(x+)的解是正整数,则整数m的值为.12.已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,则m的值为.13.方程|x|=ax+2有且仅有一个负数根,则a的取值范围是.14.已知方程的解也是方程|3x﹣2|=b的解,则b=.15.一艘船在水中航行,已知该船在静水中的速度为m(千米/小时),水流速度为n(千米/小时),如果该船从码头A出发,先顺流航行5小时,然后又调头逆流航行了5小时,那么最后船离A码头千米.16.小颖按如图所示的程序输入一个正数x,最后从输出端得到的数为16,求小颖输入的数x的值.17.解下列方程:(1)﹣3x﹣6=9 (2)5﹣4x=﹣6x+7(3)2(x﹣1)+2=4x﹣6 (4)=1.18.解下列方程(1)10x+7=12x﹣5 (2)1﹣=.19.若关于x的方程|x﹣2|+|x+1|=a有四个整数解,求a的取值范围.20.已知关于x的方程4x+2m=3x+1与方程3x+2m=6x+1的解相同;(1)求m的值;(2)求代数式(﹣2m)3﹣(m﹣)4的值.21.某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知2个大齿轮和3个小齿轮配套,问应安排多少个工人生产大齿轮使生产的产品刚好成套?22.如图,在数轴上,点A在原点O的左侧,点B在原点O的右侧,点A所对应的数a满足|a+1|=0,且AB=12,点D从A出发以1个单位长度/秒的速度沿数轴向右运动,点E从B出发以2个单位长度/秒的速度沿数轴向左运动,当D、E两点相遇时停止运动.(1)直接写出点A表示的数为,点B表示的数为;(2)点P为线段DE的中点,D、E两点同时开始运动,设运动时间为t秒,线段OP的长为d个单位长度,求用含t的整式表示d;(3)在(2)条件下,点C在线段AB上,且AC=2BC,当t为何值时,满足2OP+3CE =CD.23.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?24.据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见表:若2015年5月份,该市居民甲用电100度,交电费60元.一户居民一个月用电量的范围电费价格(单位:元/度)不超过150度a超过150度但不超过300度的部分0.65超过300度的部分0.9(1)表中,a=;若居民乙用电200度,则应交电费元;(2)若某用户某月用电量超过300度,设用电量为x度,请你用含x的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少度时,其当月的平均电价每度0.62元?25.某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.探究:设行驶时间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2,游客甲在BC上的一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策:已知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA 上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由:(2)设P A=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中.他该如何选择?参考答案1.解:(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15﹣8+1,是等式但不含未知数,所以不是方程.(3),是含有未知数的等式,所以是方程.(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.2.解:设某数为x,A、x2﹣x=6,是方程,故本选项错误;B、2(x+3)=14,是方程,故本选项错误;C、x﹣x,不是方程,故本选项正确;D、3x+7=29,是方程,故本选项错误.故选:C.3.解:A、方程是含有未知数的等式,而等式中不一定含有未知数,所以“方程是等式,但等式不一定是方程”这种说法正确.故本选项不符合题意;B、当a=0时,等式ax=ay恒成立,但是x不一定与y相等,所以“由ax=ay这个条件不能得到x=y一定成立的结论”这种说法正确.故本选项不符合题意;C、方程6x=3的解是x=,不是整数,所以“在整数范围内,方程6x=3无解”这种说法正确.故本选项不符合题意;D、x5=0是含有未知数的等式,所以它是方程.故本选项符合题意.故选:D.4.解:根据题意,将x=1代入方程ax+2x=3,得:a+2=3,得:a=1.故选:B.5.解:A.2x﹣5=5x+4变形为2x﹣5﹣5x﹣4=5x+4﹣5x﹣4,即A项错误,B.变形为x=2=4,即B项错误,C.4x﹣8=0变形为(4x﹣8+8)=8×,即C项正确,D.﹣=1变形为3(x﹣1)﹣2=6,即D项错误,故选:C.6.解:A、等式的两边都乘以2,得x=0,故A不符合题意;B、左边加3,右边减3,故B不符合题意;C、左边除以﹣3,右边乘以﹣3,故C不符合题意;D、左边减去2,右边减去2,故D符合题意;故选:D.7.解:把x=0代入方程,得1﹣=解得k=3.故选:C.8.解:∵k====2+,∴当2x﹣1=1或2x﹣1=﹣1或2x﹣1=5或2x﹣1=﹣5时,k为整数,解得:x=1或x=0或x=3或x=﹣2,则满足k为整数的所有整数x的和为1+0+3﹣2=2,故选:D.9.解:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选:B.10.解:设合伙人数为x人,依题意,得:5x+45=7x+3.故选:B.二.填空题(共6小题)11.解:由mx﹣1=2(x+),得x=,因为关于x的方程mx﹣1=2(x+)的解是正整数,得m﹣2=1,m﹣2=2,或m﹣2=4.解得m=3,m=4,或m=6.故答案为:3或4或6.12.解:由题意可知:|m+4|=1,∴m=﹣3或﹣5,∵m+3≠0,∴m≠﹣3,∴m=﹣5,故答案为:﹣513.解:令y1=|x|,y2=ax+2,观察图象可知,要使方程有且仅有一个负数根,a≥1,故答案为:a≥1.14.解:2(x﹣2)=20﹣5(x+3),2x﹣4=20﹣5x﹣15,7x=9,解得:x=.把x=代入方程|3x﹣2|=b得:|3×﹣2|=b,解得:b=.故答案为:.15.解:由题意,得船离A码头为:5(m+n)﹣5(m﹣n)=10n.故答案是:10n.16.解:若x=1,根据题意得:2x+4=2+4=6,将x=6输入得:2x+4=16,符合题意;根据题意得:2x+4=16,移项合并得:2x=12,解得:x=6,综上,x的值为1或6.故答案为:1或6.17.解:(1)移项得:﹣3x=9+6,合并同类项得:﹣3x=15,系数化为1得:x=﹣5,(2)移项得:﹣4x+6x=7﹣5,合并同类项得:2x=2,系数化为1得:x=1,(3)去括号得:2x﹣2+2=4x﹣6,移项得:2x﹣4x=﹣6﹣2+2,合并同类项得:﹣2x=﹣6,系数化为1得:x=3,(4)去分母得:3(x﹣2)﹣2(2﹣3x)=6,去括号得:3x﹣6﹣4+6x=6,移项得:3x+6x=6+6+4,合并同类项得:9x=16,系数化为1得:x=.18.解:(1)移项,可得:12x﹣10x=7+5,合并同类项,可得:2x=12,解得:x=6.(2)去分母得:12﹣12+9x=10x+6﹣12x,移项,合并同类项,可得:11x=6,解得:x=.19.解:如图:关于x的方程|x﹣2|+|x+1|=a的解可以看成是函数y=|x﹣2|+|x+1|与函数y=a的交点的横坐标,则由方程有四个整数解可得函数y=a的图象必与直线y=3重合,即当a=3时满足题意,所以a的取值范围为a=3.20.解:(1)解第一个方程4x+2m=3x+1,得x=1﹣2m,解第二个方程3x+2m=6x+1,得x=,1﹣2m=解得m=;(2)当m=时,(﹣2m)3﹣(m﹣)4=(﹣2×)3﹣(﹣)4=﹣2.21.解:设安排x人生产大齿轮,根据题意可得:,解得:x=25答:25人生产大齿轮.22.解:(1)∵点A所对应的数a满足|a+1|=0,∴a=﹣4.∵AB=12,且点B在原点O的右侧,∴点B表示的数为8.故答案为:﹣4;8.(2)当运动时间为t秒时(0≤t≤4),点D表示的数为t﹣4,点E表示的数为8﹣2t,∴点P表示的数为t﹣4+=2﹣t,∴d=﹣t+2(0≤t≤4).(3)∵点C在线段AB上,且AC=2BC,∴点C表示的数为4,∴CE=|8﹣2t﹣4|=|4﹣2t|,CD=4﹣(t﹣4)=8﹣t.∵2OP+3CE=CD,即2×(﹣t+2)+3×|4﹣2t|=8﹣t,∴t=或,∴当t为秒或秒时,2OP+3CE=CD.23.解:方案一:最多生产4吨奶片,其余的鲜奶直接销售,则其利润为:4×2000+(8﹣4)×500=10000(元);方案二:设生产x天奶片,则生产(4﹣x)天酸奶,根据题意得:x+3(4﹣x)=8,解得:x=2,2天生产酸奶加工的鲜奶是2×3=6吨,则利润为:2×2000+2×3×1200=4000+7200=11200(元),得到第二种方案可以多得1200元的利润.24.解:(1)a=60÷100=0.6(元/度),居民乙用电200度,则应交电费:150×0.6+50×0.65=122.5(元),故答案是:0.6;122.5;(2)用电超过300度时.设该户居民月用电x度时,则应交的电费=0.6×150+0.65×150+0.9(x﹣300)=0.9x﹣147.5,(3)设该户居民月用电y千瓦时,分三种情况:①若y不超过150,平均电价为0.6<0.62,故不合题意;②若y超过150,但不超过300,则0.62y=0.6×150+0.65(y﹣150),解得y=250;③若y大于300,则0.62y=0.6×150+0.65×150+0.9(y﹣300),解得y=294.此时y<300,不合题意,应舍去.综上所述,y=250.答:该户居民月用电250度.25.解:探究:(1)由题意,得y1=200t,y2=﹣200t+1600当相遇前相距400米时,﹣200t+1600﹣200t=400,t=3,当相遇后相距400米时,200t﹣(﹣200t+1600)=400,t=5.答:当两车相距的路程是400米时t的值为3分钟或5分钟;(2)由题意,得1号车第三次恰好经过景点C行驶的路程为:800×2+800×4×2=8000,∴1号车第三次经过景点C需要的时间为:8000÷200=40分钟,两车第一次相遇的时间为:1600÷400=4.第一次相遇后两车每相遇一次需要的时间为:800×4÷400=8,∴两车相遇的次数为:(40﹣4)÷8+1=5次.∴这一段时间内它与2号车相遇的次数为:5次;发现:由题意,得情况一需要时间为:=16﹣,情况二需要的时间为:=16+∵16﹣<16+∴情况二用时较多.决策:(1)∵游客乙在AD边上与2号车相遇,∴此时1号车在CD边上,∴乘1号车到达A的路程小于2个边长,乘2号车的路程大于3个边长,∴乘1号车的用时比2号车少.(2)若步行比乘1号车的用时少,,∴s<320.∴当0<s<320时,选择步行.同理可得当320<s<800时,选择乘1号车,当s=320时,选择步行或乘1号车一样.。

人教版数学七年级上册第3章 《一元一次方程》单元同步练习题(含详细答案)

人教版数学七年级上册第3章 《一元一次方程》单元同步练习题(含详细答案)

《一元一次方程》单元练习题一.选择题1.下列是一元一次方程的是()A.x2﹣x=0 B.2x﹣y=0 C.2x=1 D.x2+y2=12.关于x的方程3(x+1)﹣6m=0的解是﹣2,则m的值是()A.B.C.﹣2 D.23.小明在某月的日历中圈出了三个数,算出它们的和是14,那么这三个数的位置可能是()A.B.C.D.4.小明同学在解方程5x﹣1=mx+3时,把数字m看错了,解得x=﹣,则该同学把m看成了()A.3 B.C.8 D.﹣85.某商品原价为m元,由于供不应求,先提价30%进行销售,后因供应逐步充足,价格又一次性降价30%,售价为n元,则m,n的大小关系为()A.m=n B.n=0.91m C.n=m﹣30% D.n=m+30%m6.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.﹣1,去分母,得4(x+1)=3x﹣1D.方程﹣x=4,未知数系数化为1,得x=﹣107.某超市华山牌水杯原价每个x元,国庆节期间搞促销活动,第一次降价每个减5元,售卖一天后销量不佳,第二天继续降价每个打“八折”出售,打折后的水杯每个售价是60元.根据以上信息,列出方程是()A.(x﹣5)=60 B.0.8(x﹣5)=60C.0.8x﹣5=60 D.(x﹣5)﹣0.8x=608.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是150元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不亏B.赚10元C.赔20元D.赚20元9.下面是一个被墨水污染过的方程:3x﹣2=x﹣,答案显示此方程的解是x=2,被墨水遮盖的是一个常数,则这个常数是()A.2 B.﹣2 C.D.10.代数式2ax+5b的值会随x的取值不同而不同,如表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=﹣4的解是()x﹣4 ﹣3 ﹣2 ﹣1 02ax+5b12 8 4 0 ﹣4 A.12 B.4 C.﹣2 D.0二.填空题11.若代数式1﹣8x与9x﹣4的值互为相反数,则x=.12.若关于x的方程3x﹣7=5x+2的解与关于y的方程4y+3a=7a﹣8的解互为倒数,则a 的值为.13.从一个内径为12cm的圆柱形茶壶向一个内径为6cm、内高为12cm的圆柱形茶杯中倒水,茶杯中的水满后,茶壶中的水下降了cm.14.当a=时,方程2x+a=x+10的解为x=4.15.甲、乙两人从长度为400m的环形运动场同一起点同向出发,甲跑步速度为200m/min,乙步行,当甲第三次超越乙时,乙正好走完第二圈,再过min,甲、乙之间相距100m.(在甲第四次超越乙前)16.关于x的方程2(x﹣a)=x﹣1的解为4a+b,则关于x的方程2(ax﹣b)﹣1978=﹣bx+4a+44的解为x=.三.解答题17.解方程(1)(x﹣4)﹣=3﹣(2)﹣=118.方程2﹣3(x+1)=0的解与关于x的方程﹣3k﹣2=2x 的解互为相反数,求k的值19.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a﹣b=ab+1成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,)都是“共生有理数对”(1)数对(﹣2,1),(3,)中是“共生有理数对”的是(2)若(a,3)是“共生有理数对”,则a的值为(3)若4是“共生有理数对”中的一个有理数,求这个“共生有理数对”20.某市初中组织文艺汇演,甲、乙两所学校共90人准备统一购买服装参加演出(其中乙校参加演出的人数大于50人),下面是某服装厂给出的演出服装的价格表:1~50 51~100 100以上购买服装的数量(套)100 90 80每套服装的价格(元)(1)如果两所学校分别以各自学校为单位单独购买服装一共应付8400元,求甲、乙两所学校有多少人准备参加演出;(2)由于演出效果的需要,甲校人数不变,乙校又增加若干人参加演出,并且两校联合起来作为一个团体购买服装,一共付款8640元,求乙校最终共有多少人参加演出?21.列一元一次方程,解应用题:一辆货车以每小时60千米的速度从甲地出发驶向乙地,经过25分钟,一辆客车以每小时比货车快10千米的速度从乙地出发驶向甲地,若两车刚好在甲、乙两地的中点相遇,求相遇时,客车行驶了多长时间?22.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度/秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD?参考答案一.选择题1.解:A、x2﹣x=0,未知数的最高次数是2,不是一元一次方程;B、2x﹣y=0,含有2个未知数,不是一元一次方程;C、2x=1,是一元一次方程;D、x2+y2=1,含有2个未知数,不是一元一次方程;故选:C.2.解:把x=﹣2代入方程3(x+1)﹣6m=0得:﹣3﹣6m=0,解得:m=﹣,故选:A.3.解:A、设左下角数字为x,其余为x﹣7,x+1,根据题意得:x+x﹣7+x+1=14,解得:x=,不符合题意;B、设左上角数字为x,其余为x+7,x+1,根据题意得:x+x+7+x+1=14,解得:x=2,符合题意;C、设右上角的数字为x,其余为x﹣1,x+7,根据题意得:x+x﹣1+x+7=14,解得:x=,不符合题意;D、设右下角的数字为x,其余为x﹣1,x﹣7,根据题意得:x+x﹣1+x﹣7=14,解得:x=,不符合题意,故选:B.4.解:把x=﹣代入方程得:﹣﹣1=﹣m+3,解得:m=8,故选:C.5.解:根据题意可得:(1+30%)×(1﹣30%)=130%×70%,=91%.即现价是原价的91%.故n=0.91m,故选:B.6.解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,不符合题意;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,不符合题意;C、=﹣1,去分母,得4(x+1)=3x﹣12,不符合题意;D、方程﹣x=4,未知数系数化为1,得x=﹣10,符合题意,故选:D.7.解:设华山牌水杯原价为每个x元,依题意,得:0.8(x﹣5)=60.故选:B.8.解:设在这次买卖中原价都是x元,则可列方程:(1+25%)x=150,解得:x=120,比较可知,第一件赚了30元第二件可列方程:(1﹣25%)x=150解得:x=200,比较可知亏了50元,两件相比则一共亏了20元.故选:C.9.解:设这个常数为a,即3x﹣2=x﹣a,把x=2代入方程得:2﹣a=4,解得:a=﹣2,故选:B.10.解:根据题意得:﹣2a+5b=0,5b=﹣4,解得:a=﹣2,b=﹣,代入方程得:﹣4x﹣4=﹣4,解得:x=0,故选:D.二.填空题(共6小题)11.解:根据题意得:1﹣8x+9x﹣4=0,移项合并得:x=3.故答案为:3.12.解:解方程3x﹣7=5x+2得x=﹣,根据题意得,方程4y+3a=7a﹣8的解为y=﹣,所以4×(﹣)+3a=7a﹣8,解得a=.故答案为.13.解:设茶壶中水的高度下降了xcm.9π×12=36π×x,解得x=3,∴茶壶中水的高度下降了3cm.故答案为:3.14.解:∵2x+a=x+10的解为x=4,∴8+a=4+10,则a=6.故答案为:6.15.解:乙步行的速度为400×2÷[400×(2+3)÷200]=80(m/min).设再经过xmin,甲、乙之间相距100m,依题意,得:200x﹣80x=100或200x﹣80x=300,解得:x=或x=.故答案为:或.16.解:把x=4a+b代入2(x﹣a)=x﹣1,可得:2(4a+b﹣a)=4a+b﹣1,可得:2a+b=﹣1,2(ax﹣b)﹣1978=﹣bx+4a+44化简为:(2a+b)x﹣2(2a+b)﹣2022=0,把2a+b=﹣1代入(2a+b)x﹣2(2a+b)﹣2022=0,可得:﹣x+2﹣2022=0,解得:x=﹣2020,故答案为:﹣2020.三.解答题(共6小题)17.解:(1)去分母得:6(x﹣4)﹣3(x﹣5)=18﹣2(x﹣2),去括号得:6x﹣24﹣3x+15=18﹣2x+4,移项合并得:5x=31,解得:x=6.2;(2)方程整理得:﹣=1,去分母得:50x﹣10﹣37x﹣100=20,移项合并得:13x=130,解得:x=10.18.解:∵2﹣3(x+1)=0,∴解得:x=﹣,∵方程2﹣3(x+1)=0的解与关于x的方程﹣3k﹣2=2x的解互为相反数,∴关于x的方程﹣3k﹣2=2x的解x=,∴﹣3k﹣2=,解得:k=﹣1.19.解:(1)∵﹣2﹣1=﹣3,﹣2×1+1=﹣1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”;∵3﹣=2.5,3×+1=2.5,∴3﹣=3×+1,∴(3,)是“共生有理数对”.故答案为:(3,);(2)∵(a,3)是“共生有理数对”,∴a﹣3=3a+1,解得a=﹣2,故答案为:﹣2;(3)∵4是“共生有理数对”中的一个有理数,∴①当“共生有理数对”是(x,4)时,则有:x﹣4=4x+1,解得:x=﹣,∴“共生有理数对”是(﹣,4);②当“共生有理数对”是(4,y)时,则有:4﹣y=4y+1,解得:y=,∴“共生有理数对”是(4,).20.解:(1)设甲校有x人参加演出,则乙校有(90﹣x)人参加演出,依题意,得:100x+90(90﹣x)=8400,解得:x=30,∴90﹣x=60.答:甲校有30人参加演出,乙校有60人参加演出.(2)设乙校又增加y人参加演出.当0<y≤10时,90(30+60+y)=8640,解得:y=6,∴60+y=66;当y>10时,80(30+60+y)=8640,解得:y=18,∴60+y=78.答:乙校最终共有66人或78人参加演出.21.解:设相遇时,客车行驶了x小时,根据题意,得解这个方程,得x=2.5.因此,相遇时,客车行驶了2.5小时.22.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.。

人教版七年级数学上册《第三章 一元一次方程》同步练习

人教版七年级数学上册《第三章 一元一次方程》同步练习

千米/时,逆流
行驶的速度为
千米/时,
根据
相等,得方程
去括号,得 移项,得 合并同类项,得 系数化为 1,得 答:船在静水中的平均速度为
千米/时。
6、解方程:A 组 (1)5(x+2)=2(5x-1)
(2)4x+3=2(x-1)+1
(3)(x+1)-2(x-1)=1-3x
(4)2(x-1)-(x+2)=3(4-x)
A.4,5,6 B.6,7,2 C.2,6,7 D.7,2,6
6.用等式的性质解下列方程:
(1)4x-7=13;
(2) 1 x-2=4+ 1 x.
2
3
7.只列方程,不求解. 某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产 20 套服装,
就比订货任务少 100 套,如果每天平均生产 32 套服装,就可以超过订货任务 20 套,问原计 划几天完成?
第四章 一元一次方程 3.2 解一元一次方程(一)——合并同类项与移项
第 1 课时 用合并同类项的方法解一元一次方程 1.当 x=_______时,式子 4x+8 与 3x-10 相等.
5
2.某个体户到农贸市场进一批黄瓜,•卖掉 1 后还剩 48kg,••则该个体户卖掉______kg 黄 3
瓜.
B. 1 x-2x=6 的解是 x=-4 2
C.3x-4= 5 (x-3)的解是 x=3 2
D.- 1 x=2 的解是 x=- 3
3
2
4.(探究过程题)先列方程,再估算出方程解.
HB 型铅笔每支 0.3 元,2B 型铅笔每支 0.5 元,用 4 元钱买了两种铅笔共 10 支,还多
0.2 元,问两种铅笔各买了多少支?

人教版七年级数学上册第三章《一元一次方程》同步练习3.4 第2课时 实际问题与一元一次方程(2)

人教版七年级数学上册第三章《一元一次方程》同步练习3.4 第2课时 实际问题与一元一次方程(2)

第2课时实际问题与一元一次方程(2)1.某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元.设这件衣服的进价为x元,根据题意,下面所列方程正确的是()A.x·50%×80%=240B.x·(1+50%)×80%=240C.240×50%×80%=xD.x·(1+50%)=240×80%2.某商店将一件商品的进价提价20%后,又降价20%以96元出售,则该商店卖出这件商品的盈亏情况是() A.不亏不赚 B.亏了4元C.赚了6元D.亏了24元3.一种肥皂的零售价每块2元,凡购买2块以上(含2块),商场推出两种优惠销售方案,第一种:“1块按原价,其余按原价的七五折优惠”;第二种:“全部按原价的八折优惠”.在购买相同数量的情况下,要使第一种办法和第二种办法得到的优惠相同,需要购买肥皂()A.5块B.4块C.3块D.2块4.小华的妈妈为爸爸买了一件上衣和一条裤子,共用306元.其中上衣按标价打7折,裤子按标价打8折,上衣的标价为300元,则裤子的标价为元.5.某商品进价1 500元,提高50%后标价,若打折销售,使其获得的利润为300元,则此商品是按折销售的.6.某商品的标价为165元,若以9折售出(即优惠10%),仍可获利10%(相对于进货价),则该商品的进价是元.7.若某种货物进价便宜8%,而售价不变,则利润可以由目前的x%增加到(x+10)%,则x的值为.8.在五一期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了成人、学生各几人?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.9.某工厂出售一种产品,其成本价为每件28元.若直接由厂家门市部出售,每件产品的售价为35元,其他消耗费用为每月2 100元;若委托商店销售,出厂价为每件32元.(1)在这两种销售方式下,每月售出多少件时,所得利润相同?(2)当销售量达到每月1 000件时,采用哪种销售方式获利较多?★10.据了解,个体服装店的衣服售价只要高出进价的20%便可盈利,但老板们常以高出进价的50%~100%标价.假如你准备买一件标价为200元的服装,应在什么范围内还价?★11.在某商场“现金返还”活动期间,凡购买指定家用电器的购买者均可得到该商品售价13%的返还现金.小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到返还现金351元,又知B型洗衣机售价比A型洗衣机售价高500元.求:(1)A型洗衣机和B型洗衣机的售价各是多少元?(2)小李和小王购买洗衣机返还现金外实际各付款多少元?参考答案1.B这件衣服的标价为x·(1+50%)元,打8折后的售价为[x·(1+50%)×80%]元,可列方程为x·(1+50%)×80%=240.2.B设这件商品的进价为x,根据题意,得x(1+20%)(1-20%)=96,解得x=100,以96元出售,可见亏了4元.3.A4.120设裤子的标价为x元,则300×0.7+0.8x=306,解得x=120.故裤子的标价为120元.5.八设此商品打x折销售,根据题意,得1500(1+50%)×=1500+300,解得x=8.6.1357.15设货物的原进价为t,而售价不变,根据题目中的等量关系可列方程为t(1+x%)=t(1-8%)[1+(x+10%)],即1+x%=(1-8%)[1+(x+10)%],解得x=15.8.解(1)设成人有x人,则学生有(12-x)人.则35x+(12-x)=350,解得x=8,故学生有12-8=4(人),成人有8人.(2)如果买团体票,按16人计算,那么共需费用35×0.6×16=336(元),336<350,所以,购团体票更省钱.答:有成人8人,学生4人;购团体票更省钱.9.解(1)设每月售出x件时,所得利润相同,则(35-28)x-2100=(32-28)x,解得x=700.答:每月售出700件时,所得利润相同.(2)第一种销售方式获利为(35-28)×1000-2100=4900(元).第二种销售方式获利为(32-28)×1000=4000(元).答:第一种销售方式获利较多.10.解设这件服装的进价为x元,若老板以高出进价的50%标价,则(1+50%)x=200.解得x≈133.若老板以高出进价的100%标价,则(1+100%)x=200,x=100.所以进价在100~133元之间,加上利润20%后,故还价范围可定在120~160元.创新应用11.解(1)设A型洗衣机的售价是x元,则B型洗衣机的售价是(x+500)元.由题意,得13%x+13%(x+500)=351,解得x=1100.所以B型洗衣机的售价是x+500=1100+500=1600(元).(2)A型洗衣机实际付款:1100-1100×13%=957(元),B型洗衣机实际付款:1600-1600×13%=1392(元).答:A型洗衣机和B型洗衣机的售价各是1100元和1600元.小李购买洗衣机除返还现金外实际付款957元,小王购买洗衣机除返还现金外实际付款1392元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元一次方程》同步练习2
1.下列方程的解不是x=1
2
的是()
A.2x=1
B.-2x+2=3
C.x=1-x
D. 1
3
(x-1)=-
1
6
2.要使代数式2x+1和x+5的值相等,则x的值可以为()
A.2
B.3
C.4
D.5
3.(1)在列方程解决实际问题时,应注意所列方程两端代数式的单位要______;
(2)两边都放有物体的天平处于平衡状态.如图2-1-1,用等式表示天平两边所放物体的质量关系为_________.
图3-1-1
4.小学里我们学过列方程解应用题,你还知道它的解题步骤吗?
5.怎样检验一个数是不是方程的解?
6.检验下列方程后面大括号内所列各数是否为相应方程的解:3x=x+3,{2,3
2 }.
7.甲每小时走a千米,乙每小时走b千米(a>b),若两人同时同地出发.
(1)反向行走x小时后,两人相距_____________千米;
(2)同向行走y小时后,两人相距_____________千米;
(3)他们从A地出发到达相距x千米的B地.若甲比乙早到2小时,则题中的一个等量关系是___________.
8.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期储蓄的年利率为1.98%.今小芳取出一年到期的本金及利息时,交纳了利息税3.96元,若设小芳一年前存入银行的钱为x元,则列方程为___________.
9.甲车队有60辆汽车,乙车队有50辆汽车,如果要使乙车队车辆数比甲车队车辆数的2倍还多5辆,那么应从甲车队调多少辆到乙车队?
本题可设________,这时列出的方程为____________.
10.代数式26
5
x
的值等于1,则x=________.
11.已知关于x的方程mx=x-2的解是3,求m的值.
12.某地抢险救灾中,甲处有146名战士,乙处有78名战士,现又从别处调来160名战士支援甲、乙两处.如果要使甲处的人数是乙处人数的3倍,问应往甲处调多少名战士,你能列出方程吗?
13.初三(1)班第一小组的同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学们,若每人3个,还剩9个;若每人5个,就会有一人只分到4个,试问第一小组有多少个学生,共摘了多少个苹果.题中有两个不变的量没有告诉.
(1)请指出这两个量是什么;
(2)根据这两个不变的量列出两个不同的方程(不必解).
14.某种商品因换季准备打折出售:若按原定价的七五折出售将赔25元;若按原定价的九折出售将赚20元.如果问这种商品的原定价是多少元,请你列出方程.
15.植树节甲班植树的株数比乙班多20%,乙班植树的株数比甲班的一半多10株,若乙班植树x株.
(1)列两个不同的含x的代数式表示甲班植树的株数;
(2)根据题意列出以x为未知数的方程;
(3)检验乙班、甲班植树的株数是不是分别为25株、35株.
16.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了22分,甲队胜了多少场?平了多少场?(只列方程)
17.茂名课改实验区根据图3-1-2中对话内容列出方程.
图3-1-2
答案
1.B
2.C
3.(1)统一(2)x+2=5
4.设、根据题意列方程、解方程、答.
5.①将这个数代入方程的左、右两边;②分别计算出方程左、右两边的值;③如果左、右两边的值相等,那么这个数是该方程的解,否则不是方程的解.
6.把x=2分别代入方程左边和右边,得左边=3×2=6,右边=2+3=5.因为左边≠右边,所以x=2
不是方程3x=x+3的解.把x=3
2
分别代入方程左边和右边,得左边=3×
3
2
=
9
2
,右边=
3
2

3=9
2
.因为左边=右边,所以x=
3
2
是方程3x=x+3的解.
7. (1)(a+b)x (2)(a-b)y (3) x x
b a
-=2
8.20%×1.98%x=3.96
9.解:从甲车队调x辆车到乙车队50+x=2(60-x)+5
10.解:- 1 2
11.解:因为x=3是方程mx=x-2的解,所以,将x=3代入方程,得3m=3-2,得m=1 3 .
12.解:设调往甲处x人,则调往乙处(160-x)人,由题意得146+x=3(78+160-x).
13.解:(1)学生人数及苹果个数.
(2)设有学生x人,可列方程为3x+9=5x-1;设摘苹果y个,可列方程
91 35
y y
-+
=.
14.解:设商品原价是x元,由题意得90%x-75%x=20+25.
15.解:(1)根据甲班植树的株数比乙班多20%,得甲班植树的株数为(1+20%)x.根据乙班植树
的株数比甲班的一半多10株,即乙班植树的株数=1
2
甲班植树的株数+10,上式变形得甲班
植树的株数为2(x-10).
(2)由于(1+20%)x,2(x-10)都表示甲班植树的株数,便得方程(1+20%)x=2(x-10).
(3)把x=25分别代入方程的左边和右边得左边=(1+20%)×25=30,右边=2(25-10)=30,因为左边=右边,所以x=25是方程(1+20%)x=2(x-10)的解.这就是说乙班植树的株数的确是25株.从上面检验过程可以看到甲班植树株数应是30株,而不是35株.
16.解:若设甲队胜了x场,由于其保持不败记录,则其平了(10-x)场,得3x+1·(10-x)=22. 本题也可换一种方式来列方程.设甲队平了y场,则其胜了(10-y)场,因而根据题意又可列出
方程y+3(10-y)=22.
17.解:设一本笔记本需x元,则一枝钢笔需(6-x)元,依题意,得x+4(6-x)=18.。

相关文档
最新文档