遗传算法及遗传编程_OK

合集下载

遗传算法遗传算法

遗传算法遗传算法
11
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10

遗传算法详解(含MATLAB代码)

遗传算法详解(含MATLAB代码)

遗传算法详解(含MATLAB代码)Python遗传算法框架使用实例(一)使用Geatpy实现句子匹配在前面几篇文章中,我们已经介绍了高性能Python遗传和进化算法框架——Geatpy的使用。

本篇就一个案例进行展开讲述:pip install geatpy更新至Geatpy2的方法:pip install --upgrade --user geatpy查看版本号,在Python中执行:import geatpyprint(geatpy.__version__)我们都听过“无限猴子定理”,说的是有无限只猴子用无限的时间会产生特定的文章。

在无限猴子定理中,我们“假定”猴子们是没有像人类那样“智能”的,而且“假定”猴子不会自我学习。

因此,这些猴子需要“无限的时间"。

而在遗传算法中,由于采用的是启发式的进化搜索,因此不需要”无限的时间“就可以完成类似的工作。

当然,需要产生的文章篇幅越长,那么就需要越久的时间才能完成。

下面以产生"T om is a little boy, isn't he? Yes he is, he is a good and smart child and he is always ready to help others, all in all we all like him very much."的句子为例,讲述如何利用Geatpy实现句子的搜索。

之前的文章中我们已经讲述过如何使用Geatpy的进化算法框架实现遗传算法编程。

这里就直接用框架。

把自定义问题类和执行脚本编写在下面的"main.py”文件中:# -*- coding: utf-8 -*-import numpy as npimport geatpy as eaclass MyProblem(ea.Problem): # 继承Problem父类def __init__(self):name = 'MyProblem' # 初始化name(函数名称,可以随意设置) # 定义需要匹配的句子strs = 'Tom is a little boy, isn't he? Yes he is, he is a good and smart child and he is always ready to help others, all in all we all like him very much.'self.words = []for c in strs:self.words.append(ord(c)) # 把字符串转成ASCII码M = 1 # 初始化M(目标维数)maxormins = [1] # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)Dim = len(self.words) # 初始化Dim(决策变量维数)varTypes = [1] * Dim # 初始化varTypes(决策变量的类型,元素为0表示对应的变量是连续的;1表示是离散的)lb = [32] * Dim # 决策变量下界ub = [122] * Dim # 决策变量上界lbin = [1] * Dim # 决策变量下边界ubin = [1] * Dim # 决策变量上边界# 调用父类构造方法完成实例化ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)def aimFunc(self, pop): # 目标函数Vars = pop.Phen # 得到决策变量矩阵diff = np.sum((Vars - self.words)**2, 1)pop.ObjV = np.array([diff]).T # 把求得的目标函数值赋值给种群pop的ObjV执行脚本if __name__ == "__main__":"""================================实例化问题对象============================="""problem = MyProblem() # 生成问题对象"""==================================种群设置================================"""Encoding = 'RI' # 编码方式NIND = 50 # 种群规模Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges,problem.borders) # 创建区域描述器population = ea.Population(Encoding, Field, NIND) # 实例化种群对象(此时种群还没被初始化,仅仅是完成种群对象的实例化)"""================================算法参数设置=============================="""myAlgorithm = ea.soea_DE_rand_1_L_templet(problem, population) # 实例化一个算法模板对象myAlgorithm.MAXGEN = 2000 # 最大进化代数"""===========================调用算法模板进行种群进化========================="""[population, obj_trace, var_trace] = myAlgorithm.run() # 执行算法模板population.save() # 把最后一代种群的信息保存到文件中# 输出结果best_gen = np.argmin(obj_trace[:, 1]) # 记录最优种群是在哪一代best_ObjV = obj_trace[best_gen, 1]print('最优的目标函数值为:%s'%(best_ObjV))print('有效进化代数:%s'%(obj_trace.shape[0]))print('最优的一代是第 %s 代'%(best_gen + 1))print('评价次数:%s'%(myAlgorithm.evalsNum))print('时间已过 %s 秒'%(myAlgorithm.passTime))for num in var_trace[best_gen, :]:print(chr(int(num)), end = '')上述代码中首先定义了一个问题类MyProblem,然后调用Geatpy内置的soea_DE_rand_1_L_templet算法模板,它实现的是差分进化算法DE-rand-1-L,详见源码:运行结果如下:种群信息导出完毕。

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。

它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。

它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。

遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。

从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。

如此模仿生命的进化进行不断演化,直到满足期望的终止条件。

运算流程:Step 1:对遗传算法的运行参数进行赋值。

参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。

Step 2:建立区域描述器。

根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。

Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。

Step 4:执行比例选择算子进行选择操作。

Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。

Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。

Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。

运用遗传算法工具箱:运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。

目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。

实际上,GADS就是大家所看到的Matlab中自带的工具箱。

我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。

因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。

遗传算法代码

遗传算法代码

遗传算法代码遗传算法是一种基于自然选择和遗传学原理的优化算法,用于解决许多复杂的优化问题,如机器学习、图像处理、组合优化等。

以下是一个简单的遗传算法代码示例:1. 初始化种群首先,我们需要创建一组初始个体,称为种群。

每个个体都是由一组基因表示的,这些基因可能是一些数字、布尔值或其他类型的值。

我们可以使用随机数生成器生成这些基因,并将它们组合成一个个体。

2. 适应度函数为了衡量每个个体的表现,我们需要编写一个适应度函数。

该函数将计算每个个体的适应度得分,该得分反映了该个体在解决优化问题方面的能力。

适应度函数将对每个个体进行评分,并将其分配到一个适应度等级。

3. 选择操作选择操作是基于每个个体的适应度得分来选择哪些个体将被选择并用于生成下一代种群。

较高适应度的个体将有更高的概率被选择,而较低适应度的个体将有更低的概率被选择。

这通常是通过轮盘赌选择方法实现的。

4. 交叉操作交叉操作是将两个个体的基因组合并以生成新的个体。

我们可以将两个随机个体中的某些基因进行交换,从而创建新的个体。

这样的交叉操作将增加种群的多样性,使其更有可能找到最优解。

5. 变异操作变异操作是用于引入种群中的随机性的操作。

在变异操作中,我们将随机选择一个个体,并随机更改其中的一个或多个基因。

这将引入新的、未经探索的基因组合,从而增加种群的多样性。

6. 迭代随着种群不断进化,每个个体的适应度得分也将不断提高。

我们将重复执行选择、交叉和变异操作,以生成新的个体,并淘汰旧的个体。

这个不断迭代的过程将继续,直到达到预设的迭代次数或找到最优解为止。

这是一个简单的遗传算法代码示例,它演示了如何使用遗传算法来解决优化问题。

在实际应用中,我们可以进一步对算法进行优化,以获得更好的结果。

遗传算法解释及代码一看就懂

遗传算法解释及代码一看就懂

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。

遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。

因此在介绍遗传算法前有必要简单的介绍生物进化知识。

一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。

个体:组成种群的单个生物。

基因 ( Gene ) :一个遗传因子。

染色体 ( Chromosome ):包含一组的基因。

生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。

适应度低的个体参与繁殖的机会比较少,后代就会越来越少。

遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。

那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。

二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。

这样进化N代后就很有可能会进化出适应度函数值很高的个体。

举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。

这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。

编码:需要将问题的解编码成字符串的形式才能使用遗传算法。

进化计算的主要分支

进化计算的主要分支

进化计算的主要分支
进化计算是一种模拟自然进化过程的计算方法,它的主要分支包括以下几种:
1. 遗传算法(Genetic Algorithm,GA):遗传算法是进化计算中最经典和广泛应用的方法之一。

它基于生物进化的遗传原理,通过模拟基因的交叉、变异和选择等操作,来优化问题的解。

2. 进化策略(Evolution Strategies,ES):进化策略是一种基于种群的搜索方法,它通过个体的变异和选择来更新种群,以找到最优解。

与遗传算法不同,进化策略通常不使用交叉操作。

3. 遗传编程(Genetic Programming,GP):遗传编程是一种基于树结构的进化计算方法,它用于解决问题的编程任务。

个体在遗传编程中表示为树状结构,通过遗传操作和适应度评估来优化程序的性能。

4. 协同进化(Coevolution):协同进化是指多个物种或多个智能体在相互作用和共同演化的环境中进行进化。

它可以应用于多目标优化、生态系统建模等领域。

5. 免疫算法(Immunological Algorithm,IA):免疫算法是一种受生物免疫系统启发的计算方法,它利用免疫机制来实现优化和问题求解。

6. 粒子群优化(Particle Swarm Optimization,PSO):粒子群优化是一种基于群体智能的优化算法,它模拟鸟群或鱼群的行为,通过个体之间的协作和竞争来寻找最优解。

这些分支在不同的应用领域和问题类型中都有广泛的应用,并且不断有新的分支和改进方法涌现。

进化计算的优点包括全局搜索能力、适应性和鲁棒性等,使其成为解决复杂优化问题的有效工具。

遗传算法与遗传编程的区别与联系

遗传算法与遗传编程的区别与联系

遗传算法与遗传编程的区别与联系遗传算法和遗传编程是两种常用的优化算法,它们都源自生物学中的遗传和进化的概念,但在应用和实现上有一些区别与联系。

一、遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。

它通过模拟自然界中的进化过程,通过遗传操作(选择、交叉和变异)来搜索最优解。

遗传算法的基本流程包括:初始化种群、计算适应度、选择操作、交叉操作、变异操作和终止条件。

遗传算法的特点是可以处理多个变量的优化问题,适用于连续优化问题和离散优化问题。

它的优点是简单易懂、易于实现,且具有较强的全局搜索能力。

然而,遗传算法也存在一些缺点,如收敛速度较慢、对于复杂问题的求解能力较差等。

二、遗传编程遗传编程是一种基于遗传算法的演化计算方法,它主要用于生成计算机程序。

与遗传算法不同,遗传编程的基本单位是程序而不是参数。

遗传编程通过遗传操作来优化程序的结构和参数,以求解特定的问题。

遗传编程的基本流程包括:初始化种群、计算适应度、选择操作、交叉操作、变异操作和终止条件。

遗传编程的特点是能够自动地生成程序,适用于复杂问题的求解。

它的优点是能够处理非线性、非凸和多模态问题,且具有较强的自适应能力。

然而,遗传编程也存在一些挑战,如编码方式的选择、运算符的设计等。

三、区别与联系遗传算法和遗传编程在应用和实现上有一些区别与联系。

首先,遗传算法主要用于求解优化问题,而遗传编程主要用于生成程序。

其次,遗传算法的基本单位是参数,而遗传编程的基本单位是程序。

此外,遗传算法更加通用,适用于各种优化问题,而遗传编程更加专注于程序生成。

然而,遗传算法和遗传编程也有一些共同之处。

它们都基于遗传和进化的思想,通过遗传操作来搜索最优解。

它们的基本流程和操作也大致相同,如选择、交叉和变异。

此外,它们都需要设置适当的参数和终止条件,以保证算法的有效性和效率。

综上所述,遗传算法和遗传编程是两种常用的优化算法,它们在应用和实现上有一些区别与联系。

遗传算法主要用于求解优化问题,而遗传编程主要用于生成程序。

python遗传算法代码

python遗传算法代码

python遗传算法代码遗传算法是一种模拟生物进化过程的优化算法,常用于解决复杂的优化问题。

Python是一种简单易用且功能强大的编程语言,非常适合实现遗传算法。

下面是一个简单的Python遗传算法代码示例,用于求解一个二进制字符串中最长连续1的长度。

```pythonimport random# 设置遗传算法的参数POPULATION_SIZE = 100 # 种群大小GENERATION_COUNT = 50 # 迭代次数MUTATION_RATE = 0.01 # 变异率# 初始化种群def initialize_population():population = []for i in range(POPULATION_SIZE):individual = []for j in range(10): # 假设二进制字符串长度为10gene = random.randint(0, 1)individual.append(gene)population.append(individual)return population# 计算适应度def calculate_fitness(individual):fitness = 0current_streak = 0for gene in individual:if gene == 1:current_streak += 1fitness = max(fitness, current_streak)else:current_streak = 0return fitness# 选择操作:轮盘赌选择def selection(population):total_fitness = sum([calculate_fitness(individual) for individual in population])probabilities = [calculate_fitness(individual) /total_fitness for individual in population]selected_population = []for _ in range(POPULATION_SIZE):selected_individual = random.choices(population, weights=probabilities)[0]selected_population.append(selected_individual)return selected_population# 交叉操作:单点交叉def crossover(parent1, parent2):point = random.randint(1, len(parent1) - 1)child1 = parent1[:point] + parent2[point:]child2 = parent2[:point] + parent1[point:]return child1, child2# 变异操作def mutation(individual):for i in range(len(individual)):if random.random() < MUTATION_RATE:individual[i] = 1 - individual[i] # 变异位点翻转return individual# 主函数def genetic_algorithm():population = initialize_population()for _ in range(GENERATION_COUNT):population = selection(population)# 交叉操作new_population = []for i in range(0, POPULATION_SIZE, 2):parent1 = population[i]parent2 = population[i + 1]child1, child2 = crossover(parent1, parent2)new_population.append(child1)new_population.append(child2)# 变异操作population = [mutation(individual) for individual in new_population]best_individual = max(population, key=calculate_fitness) return best_individual# 运行遗传算法best_individual = genetic_algorithm()best_fitness = calculate_fitness(best_individual)print('Best individual:', best_individual)print('Best fitness:', best_fitness)```该代码首先初始化一个种群,然后通过选择、交叉和变异操作迭代地更新种群,并最终返回适应度最高的个体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

s4 0.31
s30.06
s1 0.14 s2 0.49
赌轮选择示意
在算法中赌轮选择法可用下面的子过程来模拟:
① 在[0, 1]区间内产生一个均匀分布的随机数r。
② 若r≤q1,则染色体x1被选中。
③ 若qk-1<r≤qk(2≤k≤N), 则染色体xk被选中。 其中的 qi称为染色体xi (i=1, 2, …, n)的累计概率, 其计算 公式为
2014-2-27
遗传算法的起源
6
遗传算法的生物学基础
遗传学的基本结论
1. 生物的所有遗传信息都包含在其染色体中,染色体决定了生物的 性状 2. 染色体是由基因及其有规律的排列所构成.遗传和进化过程发生 在染色体上 3. 生物的繁殖过程是由基因的复制过程来完成的 4. 通过染色体间的交叉和变异会产生新的物种,使生物呈现新的性 状 5. 对环境适应性好的基因或染色体比适应性差的基因或染色体有更 多的机会遗传到下一代
遗传算法及遗传编程
Ⅰ遗 传 算 法
生物进化
什么是遗传算法 (Genetic Algorithm)
生命自从在地球上诞生以来,就开始了漫长的生
物演化历程,低级、简单的生物类型逐渐发展为 高级、复杂的生物类型。这一过程已经由古生物 学、胚胎学和比较解剖学等方面的研究工作所证 实。生物进化的原因自古至今有着各种不同的解 释,其中被人们广泛接受的是达尔文的自然选择 学说。 生物进化
选择方法
比例选择法(轮盘赌)
锦标赛选择法
比例选择法(轮盘赌)

基本思想
各个个体被选中的概率与其适应度大小成正比。 设群体大小为M,个体 i 的适应度大小为F ( xi ) ,则 个体i 被选中的概率为
Pi
F ( xi )
F (x )
i 1 i
M
比例选择法(轮盘赌)
①计算各基因适应度值和选择概率及累计概率
组成M/2对配对个体组,交叉操作就是在这些 配对个体组中的两个个体之间进行
二进制编码染色体的交叉
单点交叉
基因位数为 l ,交叉点k的范围为[1, l -1],在该点为分界相互交 换变量(保证第一个交叉点左边子串不交换)
例如:
子个体1 子个体2
0 1 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0
最优解与具有最大适应值得个体相对应。 适应值能够反映个体质量的差异。 计算量应尽可能小

例:当优化问题为maxf(x),适应度函数可取为f(x)
当优化问题为minf(x),适应度函数可取为-f(x)
个体适应度评价
f ( x)
f ( x)
f ( x)
f ( x)
f ( x)
f ( x)
F(x)
2014-2-27
5
20世纪60年代中期,美国Michigan(密西 根)大学的John Holland提出了位串编码技 术,这种编码既适合于变异又适合杂交操 作,并且他强调将杂交作为主要的遗传操 作。随后,Holland将该算法用于自然和人 工系统的自适应行为的研究之中,并于 1975年出版其开创性的著作《Adaptation in Natural and Artificial Systems》。后来, Holland与他的学生们将该算法加以推广并 应用到优化及机器学习等问题之中,而且 正式定名为遗传算法。遗传算法的通用编 码技术及简单有效的遗传操作为其广泛的 应用和成功奠定了基础。
二进制编码染色体的交叉
多点交叉
多点交叉的破坏性可以促进解空间的搜索
二进制编码染色体的交叉
均匀交叉
两个配对个体的染色体每个基因位以相同的交叉概率进行交 换 具体步骤
随机产生一个与个体编码串长度等长的屏蔽字W= 12 l
按下列规则交叉两个父本的基因
若i=0,则父代第i个基因不相互交换 若i=1,则父代第i个基因相互交换

某个优化问题含有6个变量,则它的一个基因表达为
X: 2.50 9.54 3.25 0.25 4.25 7.00
对应的表现型为 x=[2.50,9.54,3.25,0.25,4.25,7.00]
编码与解码
符号编码
个体基因值取自一个无数值含意,而只有代码含义的符号集。 符号集可以是字母,也可以是数字序号。 如血型A,B,AB,O可以分别用[a,b,c,d]表示,或者 [a1,a2,a3,a4],也可表示为[1,2,3,4]

遗传算法基本要素与实现技术
个体适应度评价
为正确计算个体的遗传概率,个体的适应度必须为正 数或者为零,不能为负数。 适应函数的作用是对每一个个体指定一个适应值,使 得我们可以区分种群中个体的好坏,适应值越大,个体越 好,反之。适应函数是区分种群中个体好坏的唯一方式, 是进行选择的基础。
设计适应函数遵循原则
二进制编码染色体的变异
具体步骤

随机产生一个与个体编码串长度等长的屏蔽字W= 12 l i 为[0,1]间的随机数 按下列规则对基因进行变异

i Pm,则父代基因第i位变异 若
i > Pm,则父代基因第i位不变异 若
浮点编码染色体的变异
浮点编码变异
算法中的一些控制参数:
遗传算法的生物进化模型
选择 遗传 变异
优胜劣汰 保持特性 产生新特性
ห้องสมุดไป่ตู้
遗传算法的基本术语

编码:从问题域到遗传域的映射。即性状与基因的DNA序列的映射


解码:从遗传域到问题域的映射。即将DNA序列解释成个体的性状
适应度:种群的某个个体对生存环境的适应程度。适应度高的个体 可以获得更多的繁殖机会,而适应度低的个体,其繁殖机会就会比 较少,甚至逐渐灭绝 选择:以一定概率从种群中选择若干个体的操作。一般而言,选择 就是基于适应度的优胜劣汰的过程 交叉:在一个或多个染色体的相同位置处被切断,分别交换组合形 成新的染色体
均匀交叉
例如
浮点编码染色体的交叉
线性交叉
交叉公式
子个体=父个体1*f+父个体2*(1-f)
f为[0,1]间的均匀分布随机数
遗传算法基本要素与实现技术
变异算子
将个体染色体编码串中的某些基因位编码与字符集 的其它字符替换
二进制编码染色体的变异
编码字符集为{0,1},变异操作就是将变异点上的基因 取反(即若是1,则取0,若是0,则取1) 变异点是按概率Pm在染色体基因位上指定的
②在[0, 1]区间内产生一个均匀分布的随机数r。
③ 若r≤q1,则染色体x1被选中。
若qk-1<r≤qk(2≤k≤N), 则染色体xk被选中。
qi P( x j )
j 1
i
比例选择法(轮盘赌)
举例
染色体的适应度和所占的比例
锦标赛选择法
基本思想
每次随机选取K个个体,比较之后选择其中适应度最高 的个体做为下一代种群的父体,这个过程反复进行N次。

编码公式
U max U min
2l 1
l
解码公式
x U min ( bi 2
i 1
i 1
U max U min ) 2l 1
编码与解码


浮点编码
个体的基因值用某一范围内决策变量的一个浮点数来表示, 个体的编码长度等于其决策变量的个数。 浮点编码使用的是决策变量的真实值
遗传算法基本要素与实现技术

交叉算子
选择是对优秀个体的复制,不能产生新个体,交叉对相互 配对的染色体按某种方式相互交换其部分基因,从而形成 两个新的个体。交叉操作是产生新个体的主要方法

主要关注
1. 2. 3.
如何对染色体进行配对 如果确定交叉点的位置 如何进行部分基因交换
随机配对
将选择出的种群中的M个个体以随机的方式
再计算种群S1中各个体的选择概率。 选择概率的计算公式为
P ( xi ) f ( xi )
f (x )
j 1 j
N
由此可求得 P(s1) = P(13) = 0.14
P(s2) = P(24) = 0.49
P(s3) = P(8) = 0.06
P(s4) = P(19) = 0.31
● 赌轮选择法
(3) 计算各代种群中的各个体的适应度 , 并
对其染色体进行遗传操作,直到适应度最高的个
体(即31(11111))出现为止。
首先计算种群S1中各个体 s1= 13(01101), s2= 24(11000) s3= 8(01000), s4= 19(10011) 的适应度f (si) 。 容易求得 f (s1) = f(13) = 132 = 169 f (s2) = f(24) = 242 = 576 f (s3) = f(8) = 82 = 64 f (s4) = f(19) = 192 = 361
■ M :种群规模
■ T :最大换代数

一般为20-100
一般为100-500
Pc :交叉率(crossover rate)就是参加交叉运 算的染色体个数占全体染色体总数的比例,取 值范围一般为0.4~0.99。 rate)是指发生变异的基 因位数所占全体染色体的基因总位数的比例, 取值范围一般为0.0001~0.1。


遗传算法的基本思想
遗传算法基本要素与实现技术
编码与解码 问题域(解空间) 优化变量 二进制编码 浮点数编码 符号编码 . . .
映射
遗传域(基因空间) 优化变量的代码表示
编码与解码
二进制编码

二进制编码是遗传算法中最常用、最原始的一种编码方法,它将 原问题的解空间映射到二进制空间上,然后进行遗传操作。找到 最优个体后再通过解码过程还原原始的数据形式。 二进制编码的串长度 l 取决于求解的精度
相关文档
最新文档