电场中的电介质
静电场中的电介质

在国际单位制中,ε的单位为法拉每米(F·m–1)。
3.电介质的击穿
如果外电场足够大,电介质分子就会摆脱分子的束缚成为 自由电子,电介质的绝缘性被破坏而成为导体,这个过程称为 电介质的击穿,这个外电场的场强称为击穿场强。下表所示为 几种电介质的相对电容率和击穿场强。
1.3 电介质中的高斯定理
1.2 电介质的极化
电介质的极化是指在外电场作用下电介质表面产生极化电 荷的现象。其中,极化电荷又称束缚电荷,是指在外电场中, 均匀介质内部各处仍成电中性,但在介质表面出现的不能离开 电介质到其他带电体,也不能在电介质内部自由移动的电荷。
1.电介质极化的机理
由于组成电介质的分子结构不同,所以在外电场中极化 的微观机理也有所不同。对于无极分子,在外电场E0的作用 下,正、负电荷的中心被电场力拉开,使得正、负电荷中心 产生相对位移(这种极化称为位移极化),形成电偶极子。
由于受到外电场E0的作用,这些电偶极子的电偶极矩P 的方向将转向与外电场E0的方向一致。这样,在垂直E0方向 的介质两端表面就会出现正负电荷,如下图所示。
无外点场时,无极分子 正负电荷中心重合
外电场作用下,正负电荷 中心分离,形成电偶极子
电介质在垂直于外电场的 两端表面出现极化电荷
对于有极分子,无外电场时,虽然每个分子都有一定的电 偶极矩,但由于分子作无规则的热运动,所以各电偶极子的电 偶极矩的取向是杂乱无章的,对外不呈现出电性,如左图所示 但有外电场E0时,每个分子都受到一个力偶矩的作用。在此力 偶矩的作用下,有极分子的电偶极矩方向将转向与外电场基本 一致的方向,这种极化称为转向极化,其结果是电介质的两端 出现等量异号的电荷,如中图和右图所示。
物理学
静电场中的电介质
电场中的导体与电介质

电场中的导体与电介质一般的物体分为导体与电介质两类。
导体中含有大量自由电子;而电介质中各个分子的正负电荷结合得比较紧密。
处于束缚状态,几乎没有自由电荷,而只有束缚电子当它们处于电场中时,导体与电介质中的电子均会逆着原静电场方向偏移,由此产生的附加电场起着反抗原电场的作用,但由于它们内部电子的束缚程度不同。
使它们处于电场中表现现不同的现象。
1.3.1、静电感应、静电平衡和静电屏蔽①静电感应与静电平衡把金属放入电场中时,自由电子除了无规则的热运动外,还要沿场强反方向做定向移动,结果会使导体两个端面上分别出现正、负净电荷。
这种现象叫做“静电感应”。
所产生的电荷叫“感应电荷”。
由于感应电荷的聚集,在导体内部将建立起一个与外电场方向相反的内电场(称附加电场),随着自由电荷的定向移动,感应电荷的不断增加,附加电场也不断增强,最终使导体内部的合场强为零,自由电荷的移动停止,导体这时所处的状态称为静电平衡状态。
处于静电平衡状态下的导体具有下列四个特点:(a)导体内部场强为零;(b)净电荷仅分布在导体表面上(孤立导体的净电荷仅分布在导体的外表面上);(c)导体为等势体,导体表面为等势面;(d)电场线与导体表面处处垂直,表面处合场强不为0。
图1-3-1②静电屏蔽静电平衡时内部场强为零这一现象,在技术上用来实现静电屏蔽。
金属外壳或金属网罩可以使其内部不受外电场的影响。
如图1-3-1所示,由于感应电荷的存在,金属壳外的电场线依然存在,此时,金属壳的电势高于零,但如图把外壳接地,金属壳外的感应电荷流入大地(实际上自由电子沿相反方向移动),壳外电场线消失。
可见,接地的金属壳既能屏蔽外场,也能屏蔽内场。
在无线电技术中,为了防止不同电子器件互相干扰,它们都装有金属外壳,在使用时,这些外壳都必须接地,如精密的电磁测量仪器都装有金属外壳,示波管的外部也套有一个金属罩就是为了实现静电屏蔽,高压带电作用时工作人员穿的等电势服也是根据静电屏蔽的原理制成。
学院14-2静电场中的电介质

电场中的电介质
1. 电介质对电场的影响 2. 电介质的极化 3. 电介质的高斯定理 电位移矢量
一
电介质对电场的影响
电介质: 绝缘体(insulator) 电介质: 绝缘体(insulator)
(放在电场中的)电介 放在电场中的)
+Q
+
+ + + + +
-Q
-
+
电场 质 实验 结论: 结论: 介质充满电场或介质表面为等势面时
σ σ = d1 + d2 εoεr1 εoεr 2
ε1ε2S C = q / ∆V = ε1d2 + ε2d1
• 各电介质层中的场强不同 • 相当于电容器的串联
平板电容器中充介质的另一种情况 由极板内为等势体
∆V1 = ∆V2
σ
σ1 ∆S1 ε1 A ε2
−σ
∆V 1 E1 = d
∆V2 E2 = d
+
+ +
v v v v 令: D = ε0εr E = ε E ε —介电常数 D ---电位移矢量 ---电位移矢量 v v 则: --电介质的高斯定理 D⋅ dS = ∑q0i --电介质的高斯定理 ∫
S i
εr v v ε0εr E⋅ dS =σ0∆S = q0 ∫
S
E=
E0
+σ '
- - - - - - - - - - - - - - - - -
S1
A
ε1
S2 d1
ε2
B
D ∆S1 = σ∆S1 1
D =σ 1
同理, 同理,做一个圆柱形高斯面 S2
v v ∫ D⋅ dS = ∑qi (S2内) D2 = σ
电介质物理学

电介质物理学绪论电介质(dielectric)是在电场作用下具有极化能力并能在其中长期存在电场的一种物质。
电介质具有极化能力和其中能够长期存在电场这种性质是电介质的基本属性.也是电介质多种实际应用(如储存静电能)的基础。
静电场中电介质内部能够存在电场这一事实,已在静电学中应用高斯定理得到了证明,电介质的这一特性有别于金属导体材料,因为在静电平衡态导体内部的电场是等于零的。
如果运用现代固体物理的能带理论来定义电介质,则可将电介质定义为这样一种物质:它的能级图中基态被占满.基态与第一激发态之间被比较宽的禁带隔开,以致电子从正常态激发到相对于导带所必须的能量,大到可使电介质变到破坏。
电介质的能带结构可以用图一示意,为了便于将电介质的能带结构和半导体、导体的能带结构相比较,图中分别画出了它们的能带结构示意图.电介质对电场的响应特性不同于金属导体。
金属的特点是电子的共有化,体内有自由载流子,从而决定了金属具有良好的导电件,它们以传导方式来传递电的作用和影响。
然而,在电介质体内,一股情况下只具有被束缚着的电荷。
在电场的作用下,将不能以传导方式而只能以感应的方式,即以正、负电荷受电场驱使形成正、负电荷中心不相重合的电极化方式来传递和记录电的影响。
尽管对不同种类的电介质,电极化的机制各不相同,然而,以电极化方式响应电场的作用,却是共同的。
正因为如此研究电介质在电场作用下发生极化的物理过程并导出相应的规律,是电介质物理的一个重要课题。
由上所述,电介质体内一般没有自由电荷,具有良好的绝缘性能。
在工程应用上,常在需要将电路中具有不同电势的导体彼此隔开的地方使用电介质材料,就是利用介质的绝缘特性,从这个意义上讲,电介质又可称为绝缘材料(Insulating material)或绝缘体(insulator)。
与理想电介质不同,工程上实际电介质在电场作用下存在泄漏电流相电能的耗散以及在强电场下还可能导致电介质的破坏。
因此,如果将电介质物理看成是一种技术物理,那么除要研究极化外,还要研究有关电介质的电导、损耗以及击穿特性,这些就是电介质物理需要研究的主要问题。
静电场中的电介质

C 与 d S 0 有关
S
C ; d C
插入介质
0S q C u A uB d
C
0 r S
d
C
(2)球形电容器 已知
设+q、-q 场强分布: E 电势差:
RB
RA RB
q
r q
B A
RA
q 4 0 r 2
q q
RB
1 1 u A uB dr ( ) 2 4 0 RA RB R A 4 0 r
f
pe
pe
3;
+ E + 外 + + + +
在外电场中有极分子的固有电 矩要受到一个力矩作用,电矩方 向趋于外电场方向。但由于热运 动的存在,不会完全一致。
有极分子的取向极化!
+ E + 外 + + + +
+
两端面出现极化电荷层
电介质被极化的宏观效果
①外电场越强,极化电荷越多; ②电介质不均匀,则不仅在电介质表面会出现极 化电荷,在电介质内部也会出现极化电荷; ③对均匀电介质,在其内部任一小区域内,正负 电荷数量仍然相等,因而仍然表现出电中性。
二、电极化强度和极化电荷
单位体积内分子电偶极矩的矢量和 P
1、电极化强度(矢量)
pi
V
物理意义:描述了电介质极化强弱,反映了电介质 内分子电偶极矩排列的有序或无序程度。
在各向同性的电介质中,P 0 E
称为电介质的电极化率,它取决于电介质的性质。
2、极化电荷和自由电荷 极化电荷
E E0
++++++ r + ------- C
静电场中的电介质习题及答案

2、带电棒能吸引轻小物体的原因是()。
轻小物体由于极化在靠近带电棒一端出现与带电棒异号的极化电荷
3、附图给出了A、B两种介质的分界面,设两种介质
A、B中的极化强度都是与界面垂直,且,当
取由A指向B时,界面上极化电荷为()号。
当由B指向A时,界面上极化电荷为()号。
正负
4、如果电介质中各的()相同,这种介质为均匀电介质。如果电介质的总体或某区域内各点的()相同,这个总体或某区域内是均匀极化的。
板面积为A,两极板的间距为2d,略去边缘效
应,此电容器的电容是()。
11、无限长的圆柱形导体,半径为R,沿轴线单位长度上带电量λ,将此圆柱形导体放在无限大的均匀电介质中,则电介质表面的束缚电荷面密度是()。
12\半径为a的长直导线,外面套有共轴导体圆筒,筒的内半径为b,导线与圆筒间充满介电常数为的均匀介质,沿轴线单位长度上导线带电为λ,圆筒带电为-λ,略去边缘效应,则沿轴线单位长度的电场能量是()。
√
6、如果一平行板电容器始终连在电源两端,则充满均匀电介质后的介质中的场强与真空中场强相等。
√
7、在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷。
√
8、在均匀电介质中,只有为恒矢量时,才没有体分布的极化电荷。
=恒矢量
×
9、电介质可以带上自由电荷,但导体不能带上极化电荷。
√
10、电位移矢量仅决定于自由电荷。
在结内任意点P的电势为
电势随变化曲线如图4-4所示,结内电荷体密度随变化曲线如图4-2所示。
5、半导体器件的p-n结中,n型内有不受晶格束缚的自由电子、p型区内则有相当于正电荷的空穴。由于两区交界处自由电子和空穴密度不同,电子向p区扩散,空穴向n区扩散,在结的两边留下杂质离子,因而产生电场,阻止电荷继续扩散,当扩散作用与电场的作用相平衡时,电荷及电场的分布达到稳定状态,而在结内形成了一个偶电区(如图5-1所示),称为阻挡层。现设半导体材料的相对介电常数为,如果电荷的体分布为
电场中的导体和电介质

二、电容器
1、电容器的定义
两个带有等值而异号电荷的导体 所组成的系统,叫做电容器。
+Q
-Q
2、电容器的电容
如图所示的两个导体放在真空中,它们所 带的电量为+Q、-Q,它们的电势分别为 V1、V2,定义电容器的电容为: 计算电容的一般步骤为: •设电容器的两极板带有等量异号电荷; •求出两极板之间的电场强度的分布; •计算两极板之间的电势差; •根据电容器电容的定义求得电容。
3-4 物质中的电场
在静电场中总是有导体或电介质存在的,而且静电场 的一些应用都要涉及静电场中导体和电介质的行为, 以及它们对静电场的影响。
一、静电场中的导体
1、静电感应及静电平衡
若把导体放在静电场中,导体中的自由电子将在电场力的 作用下作宏观定向运动,引起导体中电荷重新分布而呈现 出带电的现象,叫作静电感应。 开始时, E’< E0 ,金属内部的场强不零, 自由电子继续运动,使得E’增大。这个过 程一直延续到E’= E0即导体内部的场强为零 时为止。此时导体内没有电荷作定向运动, 导体处于静电平衡状态。
根据静电平衡条件,空腔 由静电平衡条件,腔内壁非均匀 分布的负电荷对外效应等效于: 导体内表面总的感应电荷为 -q, 非均匀分布;外表面,总的感 在与 q 同位置处置 q 。 应电荷为 q,非均匀分布。
9
R
q q q U U U U U 0 q 壳 地 内壁 外壁 q q O o d q外壁 0
C Q V
Q C= 4 0 R V
第三章 电场中的电介质

注意: 是由介质2指向介质1 en
4.电介质外表面极化电荷面密度
ˆ dq P dS P dSn PndS
dq ˆ P n Pn dS
内
dS
P
面外
l
dS
ˆ P n
ˆ n
介质外法线方向
23
讨论:1)介质与真空界面
介质极化强度为 P2 ,真空
n
真空
极化强度为P1 0 ( P1
' P2 n P2n
pi )。 V
+
+
+
介质
n
2)介质金属界面
介质极化强度为 P2 ,金属内
电场为零,故极化强度 P1 0
金属
+
+
+
介质
' P2 n P2n
在极化的介质内任意作一闭合面S。
基本认识:
1)S 把位于S 附近的电介质分子分为两部分,
一部分在 S 内 , 一部分在 S 外;
2)只有电偶极矩穿过S 的分子对
S内外的极化电荷才有贡献;
S
或被S截为两段的偶极子才对极化电荷有贡献。
17
1. 面元dS附近分子对面S内极化电荷的贡献
在dS附近薄层内认为介质均匀极化 以dS为底、长为l(偶极子正负电 荷的距离)作斜圆柱。 只有中心落在薄层内的偶极子才 对面S内电荷有贡献。所以,
E0
-
E 介质
+ + +
E E0 E
26
例1 平行板电容器 ,自由电荷面密度为0 其间充满相对介电常数为r的均匀的各向 同性的线性电介质。 0 0 求:板内的场强。