高三数学上学期周周练试卷-周练8(附答案)

合集下载

高三数学上学期周末练习试题(8)试题

高三数学上学期周末练习试题(8)试题

心尺引州丑巴孔市中潭学校塘栖2021届高三数学上学期周末练习试题一、选择题〔05510'='⨯〕1、{}n a 为等差数列,假设π8951=++a a a ,那么)cos(73a a +的值为 〔 〕A .32B .32-C .12 D .12-2、以下区间中,函数()()2ln +=x x f 在其上为减函数的是 〔〕A .〔-∞,1]B .[)1,-+∞C .(]2,0-D .(]2,1--3、假设函数a ax x f 213)(-+=在区间)1,1(-上存在一个零点,那么a 的取值范围是〔 〕A .51>aB .51>a 或1-<a C .511<<-a D .1-<a 4、假设要得到函数 y =sin2x +cos2x 的图象,只需将曲线 y =2sin2x 上所有的点〔 〕(A) 向左平移π4个单位 (B) 向右平移π4个单位 (C) 向左平移π8个单位 (D) 向右平移π8个单位 5、与不等式302x x-≥-同解的不等式是 〔 〕A .0)2)(3(≥--x xB .0)2lg(≤-xC .032≥--x xD .0)2)(3(>--x x 6、函数()176log 221+-=x x y 的值域是〔 〕A .RB .(]3,-∞- C .[)+∞,3 D .(]3,07、在∆ABC 中,A,B,C 为内角,且sincos sin cos A A B B =,那么∆ABC 是 〔 〕A.等腰三角形B.直角三角形C.等腰且直角三角形D.等腰或直角三角形8、i, j 为互相垂直的单位向量,a = i – 2j , b = i + λj ,且a 与b 的夹角为锐角,那么实数λ的取值范围是 〔 〕(A) ),(21∞+ (B) ),2()2,(21---∞ (C) ),(),2(3232∞+⋃- (D) ),(21-∞9、设四边形ABCD 为平行四边形,6AB =,4AD =.假设点M ,N 满足3BM MC =,2DN NC =,那么AM NM ⋅= 〔 〕〔A 〕20 〔B 〕15 〔C 〕9 〔D 〕6 10、数列{}n a .假设1a b =〔0b >〕,111n n a a +=-+〔n N +∈〕,那么能使n a b =成立的n 的值可能..是 ( )〔A 〕14〔B 〕15〔C 〕16 〔D 〕17二、填空题〔8247'='⨯〕11、 函数211()log ,(),()12x f x f a f a x -==-+若则=__ ___. 12、设232555322(),(),()555a b c ===,那么a ,b ,c 从大到小关系是13、等比数列{}n a 的前n 项和为n S ,假设362,18S S ==,那么105S S =___________ 14、在ABC ∆中,,1,120-=•=∠A 的最小值是15.设公差不为零的等差数列{}n a 的前n 项和为n S ,假设22222345a a a a +=+,那么6S =16、在ABC △中,4a=,5b =,6c =,那么sin 2sin AC= .17、在平行四边形ABCD 中,2AB =,1AD =,60BAD ∠=,E 为CD 的中点,那么AE BD ⋅= .三、简答题〔5151414141'+'+'+'+'〕 18、函数2()cos 222x x x f x =.(Ⅰ) 求()f x 的最小正周期; (Ⅱ) 求()f x 在区间[π0]-,上的最小值.19、函数()2sin sin 2f x x x x π⎛⎫=-- ⎪⎝⎭〔1〕求()f x 的最小正周期和最大值; 〔2〕讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.20、数列}{n a 中各项均为正数,n S 是数列}{n a 的前n 项和,且)(212n n na a S +=. 〔1〕求数列}{n a 的通项公式〔2〕对*N n ∈,试比较nS S S 11121+++ 与2a 的大小.21、函数()22)(-+=x x x f .〔1〕假设不等式a x f ≤)(在[]2,3-上恒成立,求实数a 的取值范围;〔2〕解不等式x x f 3)(>.22、数列{}n a 的前n 项和n S 满足:)1(+-=n n n a S a S 〔为常数,0,1a a ≠≠〕〔Ⅰ〕求{}n a 的通项公式;〔Ⅱ〕设n n n na S ab ⋅+=2,假设数列{}n b 为等比数列,求a 的值;〔Ⅲ〕在满足条件〔Ⅱ〕的情形下,11111--+=+n n na a c ,数列{}n c 的前n 项和为n T . 求证:212->n T n.。

2021年高三上学期周练(8.14)数学试题 含解析

2021年高三上学期周练(8.14)数学试题 含解析

2021年高三上学期周练(8.14)数学试题含解析一、选择题(共12小题,共60分)1.设函数是定义在上的偶函数, 对任意,都有,且当时,, 若在区间内关于的方程恰有三个不同的实数根, 则的取值范围是()A. B. C. D.2.已知分别是双曲线的左、右焦点, 点在双曲线右支上, 且为坐标原点), 若,则该双曲线的离心率为()A. B. C. D.3.已知双曲线的离心率为,则的渐近线方程为()A. B.C. D.4.函数落在区间的所有零点之和为()A. 2B. 3C. 4D. 55.要完成下列3项抽样调查:①从15瓶饮料中抽取5瓶进行食品卫生检查.②某校报告厅有25排,每排有38个座位,有一次报告会恰好坐满了学生,报告会结束后,为了听取意见,需要抽取25名学生进行座谈.③某中学共有240名教职工,其中一般教师180名,行政人员24名,后勤人员36名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①简单随机抽样,②系统抽样,③分层抽样 B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样 D.①分层抽样,②系统抽样,③简单随机抽样6.已知分别是双曲线的左、右焦点, 点在双曲线右支上, 且为坐标原点), 若,则该双曲线的离心率为()A. B. C. D.7.已知函数,则函数的零点个数为()A. 2 B. 3 C.4 D. 58.设数列首项,为的前项和,若,当取最大值时,()A. 4 B.2 C. 6 D. 39.已知为函数的导函数,且,若,则方程有且仅有一个根时的取值范围是()A. B. C. D.10.已知点在双曲线的右支上,分别为双曲线的左、右焦点,若,则该双曲线的离心率的取值范围是()A. B. C. D.11.已知为抛物线上异于原点的两个点,为坐标原点,直线斜率为2,则重心的纵坐标为()A.2 B. C. D.112.已知点是抛物线与圆在第一象限的公共点,且点到抛物线焦点的距离为,若抛物线上一动点到其准线与到点的距离之和的最小值为,为坐标原点,则直线被圆所截得的弦长为()A.2 B. C. D.第II卷(非选择题)二、填空题(4小题,共20分)13.已知数列满足,若不等式恒成立,则实数的取值范围是 .14.过双曲线的右焦点作与轴垂直的直线,直线与双曲线交于两点,与双曲线的渐近线交于两点.若,则双曲线的离心率为_______.15.关于下列命题:①若一组数据中的每一个数据都加上同一个数后,方差恒不变;②满足方程的值为函数的极值点;③命题“p 且q 为真” 是命题“p 或q 为真”的必要不充分条件;④若函数(且)的反函数的图像过点,则的最小值为;⑤点是曲线上一动点,则的最小值是。

高三上学期数学(理)周练8

高三上学期数学(理)周练8

周练高三数学(理科)试题命题人:陈从猛一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若复数z=(a ∈R ,i 是虚数单位)是纯虚数,则|a+2i|等于( )A .2B .2C .4D .82.已知{}2log ,1,U y y x x ==>1,2,P y y x x ⎧⎫==>⎨⎬⎩⎭则U C P 等于( ) A. 1,2⎡⎫+∞⎪⎢⎣⎭ B. 10,2⎛⎫ ⎪⎝⎭C. ()0,+∞D. (]1,0,2⎡⎫-∞+∞⎪⎢⎣⎭3.=-00017cos 30cos 17sin 47sin ( )A 、23-B 、 21-C 、21 D 、234.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若,则角A 的大小为( )A .或B .C .或D .5.设等差数列{n a }的前n 项和为n s ,已知1a =-2012,2013201120132011S S -=2,则2012S=( )A.-2013B.2013C.-2012D. 20126.等差数列{}n a 前n 项和n S , 15890,0S a a >+<,则使0nn S a n+<的最小的n 为( ) A .10 B . 11 C . 12 D . 13 7.函数cos622x xxy -=-的图像大致为( )8.已知△ABC 中,||=2,||=3,且△ABC 的面积为,则∠BAC=( )A . 150°B . 120°C . 60°或120°D . 30°或150°9.设等差数列{}n a 的前n 项和为n S ,若112,0,3m m m S S S -+=-==,则m=( ) A .3 B .4 C .5 D .610.已知M (x ,y )为由不等式组,所确定的平面区域上的动点,若点,则的最大值为( )A . 3B .C . 4D .11.已知函数=y )(x f 是定义在R 上的奇函数,且当)0,(-∞∈x 时不等式()()0f x xf x '+<成立,0.30.33311993(3),(log 3)(log 3),(log )(log )a fb fc f ππ=⋅=⋅=⋅,则c b a ,,的大小关系是( )A. a b c >>B. c a b >>C. c b a >>D. b c a >>12.定义在R 上的函数()f x 满足2log (1),(0),()(1)(2),(0).x x f x f x f x x -≤⎧=⎨--->⎩则f(1)+ f(2) +f(3)+… +f(2013)的值为 A .-2B .-1C .1D .2二.填空题 (本题共4小题,每小题5分,共20分,把答案填在答题卷中的横线上)13.计算错误!未找到引用源。

高三数学经典周测卷 高三上周考卷及答案详解

高三数学经典周测卷   高三上周考卷及答案详解

高三年级上学期数学周测试卷(答案附后)姓名: 班级: 学号: 得分: 1 一、填空题(请把正确的答案写在题后的横线上,每小题5分,共80分)1.设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T = ;2.已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B = ;3.已知A ,B 均为集合U ={1,2,3,4,5,6}的子集,且A ∩B ={3},(∁U B )∩A ={1},(∁U A )∩(∁U B )={2,4},则B ∩(∁U A )= ;4.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为 个;5.已知集合{}{}131x A x x B x =<=<,,则=B A ,=B A ;6.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B = ;7.已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则A B = ; 8.若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为 ;9..已知f (x )=⎩⎪⎨⎪⎧ log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))= ; 10.已知函数f (x )=⎩⎪⎨⎪⎧ 2x,x >0,x +1,x ≤0.若f (a )+f (1)=0,则实数a 的值为 ; 11..函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x 的取值范围是 ;112.函数()f x =的定义域为 ; 13.设函数f (x )=是(﹣∞,+∞)上的增函数,那么实数k 的取值范围为 ;14.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )= ;15.已知函数()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x , 则()2=f ;16.设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-≤<=⎨≤<⎩,则3()2f =___________;111二、解答题(20分)17.(1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.高三年级上学期数学周测试卷参考答案1.解析:T ={x |-4≤x ≤1},根据补集定义,∁R S ={x |x ≤-2},所以(∁R S )∪T ={x |x ≤1},2.解析:0<log 4x <1,即log 41<log 4x <log 44,∴1<x <4,∴集合A ={x |1<x <4},∴A ∩B ={x |1<x ≤2}.3.解析:依题意及韦恩图得,B ∩(∁U A )={5,6}.答案:{5,6}4.【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故A B表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2,5.【解答】{}1A x x =<,{}{}310x B x x x =<=< ∴{}0A B x x =<,{}1A B x x =<,6.【解析】1是方程240x x m -+=的解,1x =代入方程得3m =∴2430x x -+=的解为1x =或3x =,∴{}13B =,7.【答案】{1,0,1,2}-8.解析:函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0,恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0]9.解析:f (0)=a 0+b =1+b =2,解得b =1;f (-1)=a -1+b =a -1+1=3,解得a =12. 故f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=210.解析:当a >0时,由f (a )+f (1)=0得2a +2=0,故此时不存在实数a 满足条件;当a ≤0时,由f (a )+f (1)=0得a +1+2=0,解得a =-3,满足条件11.【解答】因为()f x 为奇函数,所以()()111f f -=-=,于是()121f x --≤≤等价于()()()121f f x f --≤≤|又()f x 在()-∞+∞,单调递减 121x ∴--≤≤3x ∴1≤≤或[]13,12.【解答】(2,)+∞13.【解答】解:∵f (x )=是(﹣∞,+∞)上的增函数,∴,解得k ≤﹣1或1≤k ≤2,则实数k 的取值范围是(﹣∞,﹣1]∪[1,2],故答案为:(﹣∞,﹣1]∪[1,2].14.解析:设-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)] 15.【答案】1216.【答案】117.解析:(1)令t =2x +1,则x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1. (2)设f (x )=ax +b ,则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b =2x +17,则有a =2,b +5a =17,∴a =2,b =7,故f (x )=2x +7.(3)x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).①令x =-x 得,2f (-x )-f (x )=lg(-x +1).②由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).。

高三数学周周练(含答案)

高三数学周周练(含答案)

高三数学周周练2018.9一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应得位置上..........) 1.设集合A ={﹣1,0,1},B ={0,1,2,3},则A B = .2.若复数12miz i-=+(i 为虚数单位)得模等于1,则正数m 得值为 . 3.命题“(0x ∀∈,)2π,sin x <1”得否定就是 命题(填“真”或“假”).4.已知1sin 4α=,(2πα∈,)π,则tan α= . 5.函数()sin(2)sin(2)33f x x x ππ=-++得最小正周期为 .6.函数2()log f x x =在点A(2,1)处切线得斜率为 .7.将函数sin(2)6y x π=+得图像向右平移ϕ(02πϕ<<)个单位后,得到函数()f x 得图像,若函数()f x 就是偶函数,则ϕ得值等于 .8.设函数240()30x x f x x x ⎧->=⎨--<⎩,,,若()(1)f a f >,则实数a 得取值范围就是 .9.已知函数2()f x x =,()lg g x x =,若有()()f a g b =,则b 得取值范围就是 .10.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba得值为 .11.已知函数()sin ([0f x x x =∈,])π与函数1()tan 2g x x =得图像交于A,B,C 三点,则△ABC 得面积为 .12.已知210()ln 0x x f x x x +≤⎧⎪=⎨>⎪⎩,,,则方程[()]3f f x =得根得个数就是 .13.在△ABC 中,若tanA =2tanB,2213a b c -=,则c = .14.设函数2()x af x e e=-,若()f x 在区间(﹣1,3﹣a )内得图像上存在两点,在这两点处得切线相互垂直,则实数a 得取值范围就是 .二、解答题(本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分)已知函数2()cos cos f x x x x =-.(1)求()f x 得最小正周期; (2)若()1f x =-,求2cos(2)3x π-得值. 16.(本题满分14分)已知a ,b ,c 分别为△ABC 三个内角A,B,C 得对边,且满足cos B sin C b =+.(1)求∠C 得值;(2)若c =求2a +b 得最大值. 17.(本题满分14分)已知函数()33()xxf x R λλ-=+⋅∈.(1)当1λ=时,试判断函数()33xxf x λ-=+⋅得奇偶性,并证明您得结论; (2)若不等式()6f x ≤在[0x ∈,2]上恒成立,求实数λ得取值范围. 18.(本题满分16分)如图,在C 城周边已有两条公路l 1,l 2在点O 处交汇,现规划在公路l 1,l 2上分别选择A,B两处为交汇点(异于点O)直接修建一条公路通过C 城,已知OC =)km ,∠AOB =75°,∠AOC =45°,设OA =x km,OB =y km.(1)求y 关于x 得函数关系式并指出它得定义域; (2)试确定点A 、B 得位置,使△ABO 得面积最小.19.(本题满分16分)已知函数2()2ln ()f x x x a x a R =-+∈.(1)当a =2时,求函数()f x 在(1,(1)f )处得切线方程 ; (2)求函数()f x 得单调区间;(3)若函数()f x 有两个极值点1x ,2x (1x <2x ),不等式12()f x mx ≥恒成立,求实数m 得取值范围. 20.(本题满分16分)给出定义在(0,+∞)上得两个函数2()ln f x x a x =-,()g x x a x =-(1)若()f x 在1x =处取最值,求a 得值;(2)若函数2()()()h x f x g x =+在区间(0,1]上单调递减,求实数a 得取值范围; (3)试确定函数()()()6m x f x g x =--得零点个数,并说明理由.附加题21.(本题满分10分)已知矩阵2A=4⎡⎢-⎣ 13-⎤⎥⎦,4B=3⎡⎢-⎣ 11-⎤⎥⎦,求满足AX =B 得二阶矩阵X.22.(本题满分10分)在如图所示得四棱锥S —ABCD 中,SA ⊥底面ABCD,∠DAB =∠ABC =90°,SA =AB =BC =a ,AD =3a (a >0),E 为线段BS 上得一个动点.(1)证明:DE 与SC 不可能垂直;(2)当点E 为线段BS 得三等分点(靠近B)时,求二面角S —CD —E 得余弦值.23.(本题满分10分)某公司对新招聘得员工张某进行综合能力测试,共设置了A,B,C 三个测试项目.假定张某通过项目A 得概率为12,通过项目B 、C 得概率均为a (0<a <1),且这三个测试项目能否通过相互独立.用随机变量X 表示张某在测试中通过得项目个数,求X 得概率分布与数学期望E(X)(用a 表示). 24.(本题满分10分)在集合A ={1,2,3,4,…,2n}中,任取m(m ≤n,m,n N *∈)个元素构成集合A m .若A m 得所有元素之与为偶数,则称A m 为A 得偶子集,其个数记为()f m ;A m 得所有元素之与为奇数,则称A m 为A 得奇子集,其个数记为()g m .令()()()F m f m g m =-.(1)当n =2时,求(1)F ,(2)F ,(3)F 得值; (2)求()F m .参考答案1.{0,1}2.23.假4.15155.π6.12ln 27.3π8.(-∞,1)(1-,)+∞9.[1,)+∞10.12-11.34π 12.5 13.1 14.1(2-,1)215.(1)π,(2)12-. 16.(1)3π,(2)47. 17.(1)偶函数,(2)27λ≤-. 18.19.20.21.22.23.24.。

2021年高三上学期数学周练试卷(理科实验班12.29) 含答案

2021年高三上学期数学周练试卷(理科实验班12.29) 含答案

2021年高三上学期数学周练试卷(理科实验班12.29)含答案一.选择题(本大题共12小题,每小题5分,共60分)1.三条直线l1:x-y=0;l2:x+y-2=0;l3:5x-ky-15=0围成一个三角形,则k的取值范围()A.k≠±5且k≠1 B.k≠±5且k≠-10 C.k≠±1且k≠0 D.k≠±5 2.直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是()A.[-,0] B.(-∞,-]∪[0,+∞)C.[-,] D.[-,0]3.若直线与圆相切,且为锐角,则这条直线的斜率是( )A. B. C. D.4.已知圆和两点,,若圆上存在点,使得,则的最大值为()A. B. C. D.5.已知圆:上到直线的距离等于1的点至少有2个,则的取值范围为()A. B. C. D.6.设点是函数图象上的任意一点,点是直线上的任意一点,则的最小值为()A. B. C. D.以上答案都不对7.已知函数()的导函数为,若存在使得成立,则实数的取值范围为()A.B.C.D.8.由的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到的图象,则为()A. B. C. D.9.已知实数变量满足且目标函数的最大值为8,则实数的值为( )A. B. C.2 D.110.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.2 D.11.已知圆和圆,动圆M与圆,圆都相切,动圆的圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为,(),则的最小值是()A. B. C. D.12. 已知,函数,若关于的方程有6个解,则的取值范围为()A.B.C.D.二.填空题(本大题共4小题,每小题5分,共20分)13.若点在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程_____.14. ∆ABC 中,|CB →|cos ∠ACB =|BA →|cos ∠CAB =3,且AB →·BC →=0,则AB 长为 . 15. 正实数满足,则的最小值为 .16. 四棱锥底面是一个棱长为2的菱形,且∠DAB=60º,各侧面和底面所成角均为60º,则此棱锥内切球体积为 .丰城中学xx 学年上学期高三周练试卷 数学答题卡(理科尖子、重点班)班级 姓名 学号 得分一、选择题(本大题共10个小题,每小题5分,共60分)13. 14. 15. 16. 三、解答题:(10分*2=20分)17. 已知过点A (0,1),且方向向量为a =(1,k )的直线l 与圆C :(x -2)2+(y -3)2=1相交于M 、N 两点.(1)求实数k 的取值范围;(2)若O 为坐标原点,且OM →·ON →=12,求k 的值.18.如图, 已知四边形和均为直角梯形,∥,∥,且,平面⊥平面,(Ⅰ)证明:AG平面BDE;(Ⅱ)求平面和平面所成锐二面角的余弦值.参考答案1-6:BAABAB 7-12:CBDDAD 13.14..15.9 16.15.16.17.(1)∵直线l过点A(0,1)且方向向量a=(1,k),∴直线l的方程为y=kx+1.由|2k -3+1|k 2+1<1,得4-73<k <4+73.(2)设M (x 1,y 1)、N (x 2,y 2),将y =kx +1代入方程(x -2)2+(y -3)2=1, 得(1+k 2)x 2-4(1+k )x +7=0, ∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2, ∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1.∴4k (1+k )1+k 2+8=12,∴4k (1+k )1+k 2=4,解得k =1.18. 【解析】由平面,平面,平面BCEG , .………2分根据题意建立如图所示的空间直角坐标系,可得(0,2,0(20,0(002(2,1,0)(0,2,1)B D E A G ),,),,,),………….3分(Ⅰ)设平面BDE 的法向量为,则 即 , ,平面BDE 的一个法向量为………………………………………………..5分 ,,,∴AG ∥平面BDE . ……………………………………………….7分 (Ⅱ)设平面的法向量为,平面和平面所成锐二面角为……….8分 因为,,由得,……….10分平面的一个法向量为,.故平面和平面所成锐二面角的余弦值为……….12分 25977 6579 敹40350 9D9E 鶞35800 8BD8 诘B31335 7A67 穧31420 7ABC窼>36693 8F55 轕22490 57DA 埚25615 640F 搏32844 804C 职21150 529E 办,。

2021年高三上学期数学周练试卷(文科实验班12.29) 含答案

2021年高三上学期数学周练试卷(文科实验班12.29) 含答案

2021年高三上学期数学周练试卷(文科实验班12.29)含答案一、选择题(本大题共小题,每小题分,共5分在每个题给出的四个选项中,有且只有一项是符合题目要求的,请将答案填写在答卷纸上)1、过点(4,0)且斜率为的直线交圆于A,B两点,C为圆心,则的值为()A、6B、8C、D、42、已知数列{}为等差数列,是它的前n项和,若,,则=()A、32B、36C、40D、423、已知双曲线的一条渐近线方程是,则该双曲线的离心率等于()A、 B、C、 D、4、满足约束条件的目标函数的最大值是()A、-6B、e+1C、0D、e-15、设定义域为R的函数,则关于x的方程有5个不同的实数解,则=()A、B、C、2 D、16、点A是抛物线与双曲线的一条渐近线的交点(异于原点),若点A到抛物线的准线的距离为,则双曲线的离心率等于()A. B.2 C. D.47、已知符号函数,则函数的零点个数为()A.1 B.2 C.3 D.48、有下列命题:①在函数的图象中,相邻两个对称中心的距离为;②“且”是“”的必要不充分条件;③已知命题对任意的,都有,则“是:存在,使得”;④在中,若,则角等于或。

其中所有真命题的个数是()A.1 B.2 C.3 D.49.设集合,,函数若,且,则的取值范围是A.(]B. (]C. D .()10设集合A n ={x|(x -1)(x -n 2-4+ln n)<0},当n 取遍区间(1,3)内的一切实数,所有的集合A n 的并集是( )A .(1,13-ln 3)B .(1,6)C .(1,+∞)D .(1,2)二填空题(共6题,每题5分,共30分)11已知(1+x)+(1+x)2+…+(1+x)n =a 0+a 1x +a 2x 2+…+a n x n ,且a 1+a 2+…+a n -1=29-n ,则n =________12、早平面直角坐标系中中,直线是曲线的切线,则当时,实数的最小值是 -213、已知函数,。

高三数学上学期周练八文 试题

高三数学上学期周练八文 试题

正阳县第二高级中学2021-2021学年上期高三文科数学周练〔八〕制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一.选择题:1..假设i 为复数单位,那么220141...i i i ++++的值是____________:1()44x π-=,那么sin2x 的值是___________: A.1516 B.916 C.78 34{}n a 满足21120141,21(),n n n a a a a n N a ++==-+∈则=________:O 在一个密闭的棱长为O 外表积的最大值是______A. C.2π D.23π5.使函数f(x)=kx-lnx 在区间(1,)+∞单调递增,那么k 的取值范围是____________:A.(,2]-∞-B.(,1]-∞-C.[2,)+∞D.[1,)+∞()ln(f x x =,假设实数a,b 满足f(a)+f(b-2)=0,那么a+b=________7..假设存在一个正数x 使2()1x x a -<成立,那么实数a 的取值范围是______________:A.RB.(2,)-+∞C.(0,)+∞D.(-1,+∞)8.直线3x-4y+4=0与抛物线24x y =和圆22(1)1x y +-=从左到右的交点依次为A 、B 、C 、 D ,那么:AB CD 的值是_______________: A.16 B.4 C.116 D.149.以下函数中,既是偶函数又在(,0)-∞上单调递减的是_____________ A.21()f x x= B.2()1f x x =+ C.3()f x x = D.()2x f x -= 10.f(x)是定义在R 数的奇函数,当0x ≥时,3()(1)f x x ln x =++,那么当x<0时,f(x)=____A.3ln(1)x x ---B.3ln(1)x x +-C. 3ln(1)x x --D.3ln(1)x x -+-11.0,0ωϕπ><<,直线4x π=与直线54x π=是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,那么ϕ=_____: A.4π B.3π C.2π D.34π ()f x x x px q =++,现给出四个命题,①当q=0时,f(x)为奇函数 ②y=f(x)的图像关于点〔0,q 〕中心对称 ③当p=0,q>0时,f(x)只有一个零点 ④f(x)至多由两个零点 其中所有正确命题的序号是________:A.①④B.①②③C.②③D. ①②③④二.填空题:ABC ∆中,060A ∠=,∠A 的平分线交BC 于D 点,假设AB =3,存在R μ∈使得13AD AC AB μ=+成立,那么AD =_____________14. 假设实数a,b 都大于1,且21000ab =,那么13lg lg a b+的最小值是__________15.偶函数f(x) 在[0,)+∞单调递增且f(-1)=0,那么不等式f(2x-1)<0的解集是________16.f(x)是定义在R 上的奇函数,,其最小正周期为3,且当3(,0)2x ∈-时, 12()log (1),f x x =-那么f(2021)+f(2021)=___________三.解答题:ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c 的对边,c=2,C=3π①假设ABC ∆,求a 和b②假设sinC+sin(B-A)=sin2A,且b<a,求ABC ∆的面积18.为了对某课题进展研究,用分层抽样方法从三所高校A 、B 、C 的相关人员中,抽取假设干人组成研究小组,有关数据见下表〔单位:人〕:②假设从高校B 、C 抽取的人中选出2人作专题发言,求这2人都来自高校C 的概率19.在四棱锥P —ABCD 中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,E 为AD 的中点,PA=2,AB=1,PA ⊥平面ABCD①求四棱锥P —ABCD 的体积②假设F 为∠BAC 的平分线与BC 的交点,求证:EF ⊥PC1C :2214x y +=和动圆2C :222(0)x y r r +=>,直线l :y=kx+m 与1C 和2C 分别有唯一的公一共点A 和B 〔A 与B 不重合〕①求r 的取值范围 ②求AB 的最大值,并求此时圆2C 的方程2()ln ,()f x b x g x ax x ==-①假设曲线f(x)与g(x)在公一共点A 〔1,0〕处有一样的切线,务实数a,b 的值 ②在①的条件下,证明f(x)≤g(x) (x>0)选做题:O 的直径,C 、F 为圆O 上的点,AC 为∠BAF 的平分线,过C 作直线AF 的垂线,垂足为D ,CM ⊥AB 于M ,①求证:DC 为圆O 的切线②()f x =①求不等式f(x)≥f(4)的解集②设函数()(3)g x k x =-,假设f(x)>g(x)在R 上恒成立,求k 的取值范围参考答案:1-6 BCBCDA 7-12 DCBCAB13.17.①a=b=2 18.①x=1,y=3 ②31019.②只需证明EF ⊥AC 即可 20.①〔1,2〕②AB 的最大值为1,此时2C 的方程是222x y +=21.①a=1,b=1 ②略23.①(,5][4,)-∞-+∞ ②(1,2]-制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学练习卷(8)一、填空题:本大题共14小题,每小题5分,共70分. 1. 命题“若a b >, 则22a b >”的否命题为 ▲ . 2.函数2()sin f x x =的最小正周期为 ▲ .3.若幂函数()()f x x Q αα=∈的图象过点,则α= ▲ . 4.若等比数列{}n a 满足23a =,49a =,则6a = ▲ .5.若,a b 均为单位向量,且(2)⊥-a a b ,则,a b 的夹角大小为 ▲ .6.若函数12()21x xmf x ++=-是奇函数,则m = ▲ . 7.已知点P 是函数()cos (0)3f x x x π=≤≤图象上一点,则曲线()y f x =在点P 处的切线斜率的最小值为 ▲ .8.过点P (1,2)作直线l ,使直线l 与点M (2,3)和点N (2,-5)距离相等,则直线l 的方程为 ▲ .9.在等差数列}{n a 中,n S 是其前n 项和,若75=+4S S ,则93S S -= ▲ .10.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,若4a =,3b =,2A B =,则sin B = ▲ .11.如图,在等腰ABC ∆中,=AB AC ,M 为BC 中点,点D 、E 分别在边AB 、AC 上,且1=2AD DB ,=3AE EC ,若90DME ∠=,则cos A =▲ .12.若函数2()2f x x a x =+-在(0,)+∞上单调递增,则实数a 的取值范围是 ▲ . 13. 设函数211*3224()n n y x x n N --=-⨯+⨯∈的图象在x 轴上截得的线段长为n d ,记数列{}n d 的前n项和为n S ,若存在正整数n ,使得()22log 118m n n S -+≥成立,则实数m 的最小值为 ▲ .14.已知函数32|2|(1)()ln (1)x x x x f x x x ⎧--+<=⎨≥⎩,若命题“t R ∃∈,且0t ≠,使得()f t kt ≥”是假命题,则实数k 的取值范围是 ▲ .M EDABC第11题高三数学练习卷(8)答卷班级 姓名 学号 成绩一、填空题(每小题5分,满分70分)1. 2. 3. 4. 5. 6. 7. 8. 9. 10.11.12.13.14.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明或演算步骤) 15. (本小题满分14分)已知函数()sin cos (0)f x x a x ωωω=+>满足(0)f =且()f x 图象的相邻两条对称轴间的距离为π.(1)求a 与ω的值; (2)若()1f α=,(,)22ππα∈-,求5cos()12πα-的值.16. (本小题满分14分)设函数2lg(43)y x x =-+-的定义域为A ,函数2,(0,)1y x m x =∈+的值域为B . (1)当2m =时,求A B ;(2)若“x A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.17. (本小题满分14分)设△ABC 的面积为S,且20S AC ⋅=.(1)求角A 的大小; (2)若||3BC =,且角B 不是最小角,求S 的取值范围.18. (本小题满分16分)如图是一块镀锌铁皮的边角料ABCD ,其中,,AB CD DA 都是线段,曲线段BC 是抛物线的一部分,且点B 是该抛物线的顶点,BA 所在直线是该抛物线的对称轴. 经测量,AB =2米,3AD =米,AB AD ⊥,点C 到,AD AB 的距离,CH CR 的长均为1米.现要用这块边角料裁一个矩形AEFG (其中点F 在曲线段BC 或线段CD 上,点E 在线段AD 上,点G 在线段AB 上). 设BG 的长为x 米,矩形AEFG 的面积为S 平方米.(1)将S 表示为x 的函数;(2)当x 为多少米时,S 取得最大值,最大值是多少?AB C D EFG R 第18题H19. (本小题满分16分)设数列{}n a 的前n 项和为n S ,且21132(2,)n n n S S S n n n N *-+++=+≥∈.(1)若{}n a 是等差数列,求{}n a 的通项公式; (2)若11a =.① 当21a =时,试求100S ; ② 若数列{}n a 为递增数列,且3225k S =,试求满足条件的所有正整数k 的值.20. (本小题满分16分)已知函数()x f x e =,()g x x m =-,m R ∈.(1)若曲线()y f x =与直线()y g x =相切,求实数m 的值; (2)记()()()h x f x g x =⋅,求()h x 在[]01,上的最大值; (3)当0m =时,试比较()2f x e -与()g x 的大小.周练(8)参考答案一、填空题:本大题共14小题,每小题5分,计70分.1. 若a b ≤, 则22a b ≤2. π3. 12-4. 275. 3π6. 27. 38. 3x +y -5=0或x =19. 12 10. 5 11. 15 12. [4,0]- 13. 13 14. 1(,1]e二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.解:(1)(0)3f =∴sin 0cos 03a +=3a = ……………2分∴()sin 32sin()3f x x x x πωωω==+, ……………4分()f x 图象的相邻两条对称轴间的距离为π,∴22||T ππω==,∴||1ω=,又0ω>,所以1ω=. ……………6分(2)()1f α=,∴1sin()32πα+=, ……………8分(,)22ππα∈-,∴5(,)366πππα+∈-,∴36ππα+=,即6πα=-, ……………10分∴57cos()cos 1212ππα-=,又7cos cos()1234πππ=+,∴526cos()cos cos sin sin 123434πππππα--=⋅-⋅=. …………14分16.解:(1)由2430x x -+->,解得13x <<,所以(1,3)A =, …………2分又函数21y x =+在区间(0,)m 上单调递减,所以2(,2)1y m ∈+,即2(,2)1B m =+, …………4分当2m =时,2(,2)3B =,所以(1,2)A B =. …………6分(2)首先要求0m >, …………8分而“x A ∈”是“x B ∈”的必要不充分条件,所以B A ,即2(,2)(1,3)1m +, …………10分从而211m ≥+, …………12分解得01m <≤. …………14分 17.解:(1)设ABC ∆中角,,A B C 所对的边分别为,,a b c ,由230S AC +⋅=,得12sin 3cos 02bc A bc A ⨯+=,即sin 30A A +=, …………2分所以tan 3A =, …………4分又(0,)A π∈,所以23A π=. …………6分(2)因为3BC =,所以3a =, 3sin sin 3b cB C π==, 所以2sin ,2sin b B c C ==, …………8分从而1sin 3sin 3sin()23S bc A B C B B π===- …………10分11cos2sin)2))246BB B B B Bπ-=-=-=+,…………12分又5(,),2(,)63626B Bπππππ∈+∈,所以S∈. …………14分(说明:用余弦定理处理的,仿此给分)18.解:(1)以点B为坐标原点,BA所在直线为x轴,建立平面直角坐标系. …………2分设曲线段BC所在抛物线的方程为22(0)y px p=>,将点(1,1)C代入,得21p=,即曲线段BC的方程为1)y x=≤≤. …………4分又由点(1,1),(2,3)C D得线段CD的方程为21(12)y x x=-≤≤. …………6分而2GA x=-,所以),01,(21)(2),1 2.x xSx x x⎧-<≤⎪=⎨--<<⎪⎩…………8分(2)①当01x<≤时,因为1322)2S x x x=-=-,所以112232S x x-'=-=0S'=,得23x=,…………10分当2(0,)3x∈时,0S'>,所以S递增;当2(,1)3x∈时,0S'<,所以S递减,所以当23x=时,max9S=;…………12分②当12x<<时,因为259(21)(2)2()48S x x x=--=--+,所以当54x=时,max98S=;…………14分综上,因为989>,所以当54x=米时,max98S=平方米. …………16分(说明:本题也可以按其它方式建系,如以点A为坐标原点,AD所在直线为x轴,建立平面直角坐标系,仿此给分)19.解:(1)由等差数列求和公式211(1)()222nn n d dS na d n a n-=+=+-,11n n nS S S-+∴++222111(1)()(1)()(1)()(1)222222d d d d d dn a n n a n n a n=-+--++-+++-+21(32)3(),22d dn a n=++-……………2分∴222113(32)3()3()322222d d d dn a n n a n d n++-=+-+=+,∴133,,222d da d=-=,解得12,1d a==,∴21na n=-;……………4分(说明:也可以设2nS an bn=+;或令2,3n n==,先求出首项1a与公差d)(2)由21132(2)n n nS S S n n-+++=+≥,得2123(1)2n n n S S S n ++++=++ , ……………6分∴1263(2)n n n a a a n n ++++=+≥, ∴10012345679899100()()()S a a a a a a a a a a =++++++++++11(6236983)33100002=+⋅++⋅+⋅=. ………………8分(说明:用21a =,利用分组方法求和,类似给分.)(3)设2a x =,由21132(2)n n n S S S n n -+++=+≥,得12314S S S ++=与23429S S S ++=,∴1233214a a a ++=,∴3112a x =-,∴123433229a a a a +++=,∴44a x =+, ……………10分又2123(1)2n n n S S S n ++++=++,∴1263(2)n n n a a a n n ++++=+≥,∴1163(3)n n n a a a n n -+++=-≥, 相减得216(3)n n a a n +--=≥, ∴5266a a x =+=+,数列{}n a 为递增数列, ∴12345a a a a a <<<<,解得71133x <<, ……………12分 由312345678932313()()()k k k k S a a a a a a a a a a a a --=++++++++++++,∴3112(6436(32)3)(1)2k S x k k =-+⋅++-+-,∴2393225k S k x =-+=, ……………14分∴27119222(,)33x k =-∈,解得5k =. ……………16分20.解:(1)设曲线()x f x e =与()g x x m =-相切于点()00,P x y ,由()xf x e '=,知0=1xe ,解得00x =, ……………2分 又可求得点P 为()01,,所以代入()g x x m =-,得1m =-. ……………4分 (2)因为()()xh x x m e =-,所以()()()(1),[0,1]xxxh x e x m e x m e x '=+-=--∈.①当10m -≤,即1m ≤时,()0h x '≥,此时()h x 在[]01,上单调递增,所以()()()max 11h x h m e ==-; ……………6分 ②当011m <-<即12m <<时,当()01x m ∈-,时,()0h x '<,()h x 单调递减,当()1,1x m ∈-时,()0h x '>,()h x 单调递增,()0h m =-,()()11h m e =-.(i)当()1m m e -≥-,即21em e ≤<-时,()()max 0h x h m ==-; (ii) 当()1m m e -<-,即11em e <<-时,()()()max 11h x h m e ==-; ……………8分③当11m -≥,即2m ≥时,()0h x '≤,此时()h x 在[]01,上单调递减,所以()()min 0h x h m ==-. 综上,当1e m e <-时,()()max 1h x m e =-;当1em e ≥-时,()max h x m =-. ……………10分 (3)当0m =时,()22=x f x e ee--,()g x x =,①当0x ≤时,显然()()2f x e g x ->;②当0x >时,()222ln =ln x f x ex e e e ---=,()ln ln g x x =,记函数()221=ln ln x x x ex e x eϕ--=⨯-, ……………12分 则()22111=e x x x e e x xϕ-'⨯-=-,可知()x ϕ'在()0,+∞上单调递增,又由()10ϕ'<,()20ϕ'>知,()x ϕ'在()0,+∞上有唯一实根0x ,且012x <<,则()02001=0x x e x ϕ-'-=,即0201x e x -=(*),当()00,x x ∈时,()0x ϕ'<,()x ϕ单调递减;当()0+x x ∈∞,时,()0x ϕ'>,()x ϕ单调递增, 所以()()0200=ln x x x e x ϕϕ-≥-, ……………14分结合(*)式021x ex -=,知002ln x x -=-, 所以()()()22000000001211=2=0x x x x x x x x x ϕϕ--+≥+-=>,则()2=ln 0x x e x ϕ-->, 即2ln x ex ->,所以2x e ex ->.综上,()()2f x eg x ->. ……………16分(说明:若学生找出两个函数()2f x y e-=与()y g x =图象的一条分隔线,如1y x =-,然后去证()21f x e x -≥-与()1x g x -≥,且取等号的条件不一致,同样给分)精心整理资料,感谢使用!。

相关文档
最新文档