2015年高考数学专项训练——空间几何大题

合集下载

2015年高考数学真题分类汇编:专题(10)立体几何(理科)及答案

2015年高考数学真题分类汇编:专题(10)立体几何(理科)及答案

专题十 立体几何1.【2015高考安徽,理5】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行(B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线(D )若m ,n 不平行,则m 与n 不可能垂直于同一平面【答案】D【解析】由A ,若α,β垂直于同一平面,则α,β可以相交、平行,故A 不正确;由B ,若m ,n 平行于同一平面,则m ,n 可以平行、重合、相交、异面,故B 不正确;由C ,若α,β不平行,但α平面内会存在平行于β的直线,如α平面中平行于α,β交线的直线;由D 项,其逆否命题为“若m 与n 垂直于同一平面,则m ,n 平行”是真命题,故D 项正确.所以选D.【考点定位】1.直线、平面的垂直、平行判定定理以及性质定理的应用.【名师点睛】空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.2.【2015高考北京,理4】设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件.考点定位:本题考点为空间直线与平面的位置关系,重点考察线面、面面平行问题和充要条件的有关知识.【名师点睛】本题考查空间直线与平面的位置关系及充要条件,本题属于基础题,本题以空间线、面位置关系为载体,考查充要条件.考查学生对空间线、面的位置关系及空间面、面的位置关系的理解及空间想象能力,重点是线面平行和面面平行的有关判定和性质.3.【2015高考新课标1,理6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

2015年高考数学真题分类汇编:专题(10)立体几何(文科)及答案

2015年高考数学真题分类汇编:专题(10)立体几何(文科)及答案

2015年高考数学真题分类汇编 专题10 立体几何 文1.【2015高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m【答案】A【解析】采用排除法,选项A 中,平面与平面垂直的判定,故正确;选项B 中,当αβ⊥时,,l m 可以垂直,也可以平行,也可以异面;选项C 中,//l β时,,αβ可以相交;选项D 中,//αβ时,,l m 也可以异面.故选A.【考点定位】直线、平面的位置关系.【名师点睛】本题主要考查空间直线、平面的位置关系.解答本题时要根据空间直线、平面的位置关系,从定理、公理以及排除法等角度,对个选项的结论进行确认真假.本题属于容易题,重点考查学生的空间想象能力以及排除错误结论的能力.2.【2015高考新课标1,文6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛【答案】B【解析】设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 【考点定位】圆锥的性质与圆锥的体积公式【名师点睛】本题以《九章算术》中的问题为材料,试题背景新颖,解答本题的关键应想到米堆是14圆锥,底面周长是两个底面半径与14圆的和,根据题中的条件列出关于底面半径的方程,解出底面半径,是基础题.3.【2015高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cmD .4033cm【答案】C 【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 【考点定位】1.三视图;2.空间几何体的体积.【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间想象能力和基本的运算能力.4.【2015高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )(A) 123π+ (B) 136π (C) 73π (D) 52π【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B.【考点定位】三视图及柱体与锥体的体积.【名师点睛】本题考查三视图的概念和组合体体积的计算,采用三视图还原成直观图,再利用简单几何体的体积公式进行求解.本题属于基础题,注意运算的准确性.5.【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+【答案】D【解析】由几何体的三视图可知该几何体为圆柱的截去一半,所以该几何体的表面积为21121222342πππ⨯⨯+⨯⨯⨯+⨯=+,故答案选D【考点定位】1.空间几何体的三视图;2.空间几何体的表面积.【名师点睛】1.本题考查空间几何体的三视图及几何体的表面积,意在考查考生的识图能力、空间想象能力以及技术能力;2.先根据三视图判断几何体的结构特征,再计算出几何体各个面的面积即可;3.本题属于基础题,是高考常考题型.6.【2015高考广东,文6】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交【答案】A【解析】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则l 至少与1l ,2l 中的一条相交,故选A .【考点定位】空间点、线、面的位置关系.【名师点晴】本题主要考查的是空间点、线、面的位置关系,属于容易题.解题时一定要注意选项中的重要字眼“至少”、“至多”, 否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.7.【2015高考浙江,文7】如图,斜线段AB 与平面α所成的角为60o ,B 为斜足,平面α上的动点P 满足30∠PAB =o ,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支【答案】C【解析】由题可知,当P 点运动时,在空间中,满足条件的AP 绕AB 旋转形成一个圆锥,用一个与圆锥高成60o 角的平面截圆锥,所得图形为椭圆.故选C.【考点定位】1.圆锥曲线的定义;2.线面位置关系.【名师点睛】本题主要考查圆锥曲线的定义以及空间线面的位置关系.解答本题时要能够根据给出的线面位置关系,通过空间想象能力,得到一个无限延展的圆锥被一个与之成60o 角的平面截得的图形是椭圆的结论.本题属于中等题,重点考查学生的空间想象能力以及对圆锥曲线的定义的理解.8.【2015高考湖北,文5】12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件【答案】A .【解析】若p :12,l l 是异面直线,由异面直线的定义知,12,l l 不相交,所以命题q :12,l l 不相交成立,即p 是q 的充分条件;反过来,若q :12,l l 不相交,则12,l l 可能平行,也可能异面,所以不能推出12,l l 是异面直线,即p 不是q 的必要条件,故应选A .【考点定位】本题考查充分条件与必要条件、异面直线,属基础题.【名师点睛】以命题与命题间的充分条件与必要条件为契机,重点考查空间中直线的位置关系,其解题的关键是弄清谁是谁的充分条件谁是谁的必要条件,正确理解异面直线的定义,注意考虑问题的全面性、准确性.9、【2015高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.【考点定位】简单几何体的三视图;球的表面积公式;圆柱的测面积公式【名师点睛】本题考查简单组合体的三视图的识别,是常规提,对简单组合体三三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状,再根据“长对正,宽相等,高平齐”的法则组合体中的各个量.10.【2015高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )A .822+B .1122+C .1422+D .15【答案】B【解析】由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为1,斜腰为2.底面积为12332⨯⨯=,侧面积为2+2+4+22=8+22, 所以该几何体的表面积为1122+,故选B .【考点定位】三视图和表面积.【名师点睛】本题考查三视图和表面积计算,关键在于根据三视图还原体,要掌握常见几何体的三视图,比如三棱柱、三棱锥、圆锥、四棱柱、四棱锥、圆锥、球、圆台以及其组合体,并且要弄明白几何体的尺寸跟三视图尺寸的关系;有时候还可以利用外部补形法,将几何体补成长方体或者正方体等常见几何体,属于中档题.11.【2015高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )错误!未找到引用源。

2015年三年高考数学(理)真题精编——专题10立体几何(大题01)

2015年三年高考数学(理)真题精编——专题10立体几何(大题01)

三、解答题1. 【2015高考天津,理17】(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD ⊥底面,AB AC ⊥,1AB =,12,AC AA AD CD ===且点M 和N 分别为11C D B D 和的中点.(I)求证://MN 平面ABCD ; (II)求二面角11D AC B --的正弦值;(III)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1A E 的长 【答案】(I)见解析;(III)2-. 【解析】如图,以A 为原点建立空间直角坐标系,依题意可得(0,0,0),(0,1,0),(2,0,0),(1,2,0)A B C D -,N1DND(III)依题意,可设111A E A B λ=,其中[0,1]λ∈,则(0,,2)E λ,从而(1,2,1)NE λ=-+,又(0,0,1)n =为平面ABCD 的一个法向量,由已知得1cos ,3(NE n NE n NE n⋅===⋅-,整理得2430λλ+-=,又因为[0,1]λ∈,解得2λ=-,所以线段1A E 2 .【考点定位】直线和平面平行和垂直的判定与性质,二面角、直线与平面所成的角,空间向量的应用.4. 【2013天津,理17】如图,四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ∥DC ,AB ⊥AD ,AD =CD=1,AA 1=AB =2,E 为棱AA 1的中点.(1)证明B 1C 1⊥CE ;(2)求二面角B 1-CE -C 1的正弦值;(3)设点M 在线段C 1E 上,且直线AM 与平面ADD 1A 1,求线段AM 的长.【答案】(Ⅰ)详见解析;;易得11B C =(1,0,-1),CE =(-1,1,-1),于是11B C ·CE =0, 所以B1C1⊥CE.(2)1B C =(1,-2,-1).设平面B1CE 的法向量m =(x ,y ,z),则10,0,B C CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.x y z x y z --=⎧⎨-+-=⎩(3)AE =(0,1,0),1EC =(1,1,1).设EM =λ1EC =(λ,λ,λ),0≤λ≤1,有AM =AE +EM =(λ,λ+1,λ). 可取AB =(0,0,2)为平面ADD1A1的一个法向量. 设θ为直线AM 与平面ADD1A1所成的角,则sin θ=|cos 〈AM ,AB 〉|=AM ABAM AB⋅⋅=.=,解得13λ=,所以AM (方法二)(1)证明:因为侧棱CC1⊥底面A1B1C1D1,B1C1⊂平面A1B1C1D1, 所以CC1⊥B1C1.经计算可得B1E B1C1,EC1, 从而B1E2=22111B C EC +, 所以在△B1EC1中,B1C1⊥C1E ,又CC1,C1E ⊂平面CC1E ,CC1∩C1E =C1, 所以B1C1⊥平面CC1E , 又CE ⊂平面CC1E ,故B1C1⊥CE.(3)连接D1E ,过点M 作MH ⊥ED1于点H ,可得MH ⊥平面ADD1A1,连接AH ,AM ,则∠MAH 为直线AM 与平面 ADD1A1所成的角.设AM =x ,从而在Rt △AHM 中,有MH x ,AH x .在Rt △C1D1E 中,C1D1=1,ED1,得EH 13x =.5. 【2014天津,理17】如图,在四棱锥P ABCD -中,PA ^底面ABCD ,AD AB ^,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.C(Ⅰ)证明:BE DC ^;(Ⅱ)求直线BE 与平面PBD 所成角的正弦值;(Ⅲ)若F 为棱PC 上一点,满足BF AC ^,求二面角F AB P --的余弦值. 【答案】(Ⅰ)详见试题分析;(Ⅱ)直线BE 与平面PBD;. 【解析】试题分析:(Ⅰ)可以建立空间直角坐标系,利用向量数量积来证明BE DC ^。

2015届高考理科数学立体几何一轮练习题-数学试题

2015届高考理科数学立体几何一轮练习题-数学试题

2015届高考理科数学立体几何一轮练习题-数学试题第1课时立体几何的结构及其三视图和直观图1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.会画某些建筑物的三视图与直观图(在不影响图形特征的基础上,尺寸、线条等没有严格要求).[对应学生用书P109]【梳理自测】一、空间几何体的结构特征1.(教材改编)下列说法正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥D.棱台各侧棱的延长线交于一点2.如图是一个正方体的展开图,将其折叠起来,变成正方体后的图形是()答案:1.D 2.B◆以上题目主要考查了以下内容:多面体棱柱棱柱的侧棱都平行且相等,上下底面是平行且全等的多边形.棱锥棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.棱台棱台可由平行于底面的平面截棱锥得到,其上下底面是平行且相似的多边形.旋转体圆柱圆柱可由矩形绕其任意一边所在直线旋转得到.圆锥圆锥可以由直角三角形绕其一条直角边所在直线旋转得到.圆台圆台可由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.球球可以由半圆或圆绕直径所在直线旋转得到.二、三视图1.有一个几何体的三视图如图所示,这个几何体应是一个()A.棱台B.棱锥C.棱柱D.都不对2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱答案:1.A 2.D◆以上题目主要考查了以下内容:名称几何体的三视图有:正视图、侧视图、俯视图画法1.画三视图时,重叠的线只画一条,挡住的线画成虚线. 2.三视图的正视图、侧视图、俯视图分别是从几何体的正前方、左方、正上方观察几何体得到的正投影图.规则1.画法规则:长对正、高平齐、宽相等. 2.摆放规则:侧视图在正视图的右侧,俯视图在正视图的下方.三、直观图及投影1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()2.如图,过BC的平面截去长方体的一部分,所得的几何体________棱柱(填“是”或“不是”).答案:1.A 2.是◆以上题目主要考查了以下内容:直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z 轴两两垂直,直观图中,x′轴、y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直. (2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴,平行于x轴和z轴的线段长度在直观图中不变,平行于y轴的线段长度在直观图中等于原来的一半.投影1.平行投影:平行投影的投影线互相平行. 2.中心投影:中心投影的投影线相交于一点.【指点迷津】1.一个程序由三视图还原几何体按下面的程序进行定底面根据俯视图确定定棱及侧面根据正视图确定几何体的侧棱与侧面特征,调整实线、虚线对应棱的位置定形状确定几何体的形状2.三个“变”与“不变”斜二测画直观图时“三变”坐标轴的夹角改变,与y轴平行的线段的长度变为原来的一半,图形改变.“三不变”平行性不改变,与x、z轴平行的线段的长度不改变,相对位置不改变.[对应学生用书P110]考向一空间几何体的结构特征给出下列四个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2 D.3【审题视点】根据柱、锥、台几何体的结构特征判定.【典例精讲】①不一定,只有这两点的连线平行于轴时才是母线;②正确;③错误.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥.如图所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.【答案】B【类题通法】(1)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.(2)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.1.给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中不正确的命题的个数是________个.解析:认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,故①③都不准确,②中对等腰三角形的腰是否为侧棱未作说明,故也不正确,④平行六面体的两个相对侧面也可能与底面垂直且互相平行,故④也不正确.答案:4考向二空间几何体的三视图(2014•陕西省高三质检)如图是由若干个相同的小立方体组成的几何体的俯视图,其中小立方体中的数字表示相应位置的小立方体的个数,则该几何体的左视图为()【审题视点】从左侧看这个几何体中小立方体组成的几何体的高度.【典例精讲】由俯视图知左视图从左到右最高的小立方体个数分别为2,3,1,选C.【答案】C【类题通法】(1)由实物图画三视图或判断选择三视图,此时需要注意“长对正、高平齐、宽相等”的原则;(2)由三视图还原实物图,这一题型综合性较强,解题时首先对柱、锥、台、球的三视图要熟悉,再复杂的几何体也是由这些简单的几何体组合而成的;其次,要遵循以下三步:①看视图,明关系;②分部分,想整体;③综合起来,定整体.2.(2014•山西高考训练)某几何体的三视图均为直角三角形,如图所示,则围成该几何体的各面中,直角三角形的个数为()A.1B.2C.3 D.4解析:选D.依题意得,该几何体是一个底面为直角三角形、一条侧棱垂直于底面的三棱锥,其四个面均为直角三角形,选D.考向三空间几何体的直观图已知正三角形ABC的边长为a,那么◆ABC的平面直观图◆A′B′C′的面积为()A.34a2B.38a2C.68a2D.616a2【审题视点】画出正三角形◆ABC的平面直观图◆A′B′C′,求◆A′B′C′的高即可.【典例精讲】先画出正三角形ABC,然后再画出它的水平放置的直观图,如图所示,由斜二测画法规则知B′C′=a,O′A′=34a.过A′作A′M◆x′轴,垂足为M,则A′M=O′A′•sin 45°=34a×22=68a.◆S◆A′B′C′=12B′C′•A′M=12a×68a=616a2.【答案】D【类题通法】对于直观图,除了了解斜二测画法的规则外,还要了解原图形面积S与其直观图面积S′之间的关系S′=24S,能进行相关问题的计算.3.如图所示,四边形A′B′C′D′是一平面图形的水平放置的斜二测画法的直观图,在斜二测直观图中,四边形A′B′C′D′是一直角梯形,A′B′◆C′D′,A′D′◆C′D′,且B′C′与y′轴平行,若A′B′=6,D′C′=4,A′D′=2.求这个平面图形的实际面积.解析:根据斜二测直观图画法规则可知该平面图形是直角梯形,且AB=6,CD=4保持不变.由于C′B′=2A′D′=22.所以CB=42.故平面图形的实际面积为12×(6+4)×42=202.[对应学生用书P111]忽视几何体的放置与特征致误在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【正解】由正视图和俯视图可以推测几何体为半圆锥和三棱锥的组合体(如图所示),且顶点在底面的射影恰是底面半圆的圆心,可知侧视图为等腰三角形,且轮廓线为实线,故选D.【答案】D【易错点】(1)根据正视图和俯视图确定原几何体的形状时出现错误,误把半圆锥看成半圆柱,不能准确判断出几何体的形状而误选A.(2)对实线与虚线的画法规则不明确而误选C.【警示】 1.首先确定几何体,面对读者是怎么放置的.2.要分清三视图中的虚线是被哪部分挡住的.3.要明确三视图中三角形的高度是不是几何体的高度.1.(2013•高考四川卷)一个几何体的三视图如图所示,则该几何体的直观图可以是()解析:选D.先观察俯视图,再结合主视图和侧视图还原为空间几何体.由俯视图是圆环可排除A,B,C,进一步将已知三视图还原为几何体,可得选项D. 2.(2013•高考湖南卷)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于()A.32B.1C.2+12D.2解析:选D.根据正方体的俯视图及侧视图特征想象出其正视图后求面积.由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为2的矩形,因此该几何体的正视图是一个长为2,宽为1的矩形,其面积为2.3.(2012•高考陕西卷)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左视图为()解析:选B.还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线.D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.4.(2012•高考湖南卷)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()解析:选C.若为C选项,则主视图为:故不可能是C选项.。

2015高考数学(理)一轮题组训练:8-1空间几何体及其表面积与体积

2015高考数学(理)一轮题组训练:8-1空间几何体及其表面积与体积

第八篇立体几何第1讲空间几何体及其表面积与体积基础巩固题组(建议用时:40分钟)一、填空题1.以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数是________.解析命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥.命题②题,因这条腰必须是垂直于两底的腰.命题③对.命题④错,必须用平行于圆锥底面的平面截圆锥才行.答案 12.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的四个顶点,这些几何形体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析①显然可能;②不可能;③取一个顶点处的三条棱,连接各棱端点构成的四面体;④取正方体中对面上的两条异面对角线的四个端点构成的几何体;⑤正方体ABCD-A1B1C1D1中,三棱锥D1-DBC满足条件.答案 ①③④⑤3.在三棱锥S -ABC 中,面SAB ,SBC ,SAC 都是以S 为直角顶点的等腰直角三角形,且AB =BC =CA =2,则三棱锥S -ABC 的表面积是________. 解析 设侧棱长为a ,则2a =2,a =2,侧面积为3×12×a 2=3,底面积为34×22=3,表面积为3+ 3. 答案 3+ 34.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为________. 解析 设圆锥的底面圆半径为r ,高为h ,母线长为l ,则⎩⎨⎧πrl =2π,πr 2=π,∴⎩⎨⎧r =1,l =2.∴h =l 2-r 2=22-12= 3. ∴圆锥的体积V =13π·12·3=33π. 答案 33π5.(2012·新课标全国卷改编)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为________.解析 如图,设截面圆的圆心为O ′,M 为截面圆上任一点,则OO ′=2,O ′M =1,∴OM =(2)2+1=3,即球的半径为3,∴V =43π(3)3=43π.答案 43π6.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案 267.(2013·天津卷)已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析 设正方体的棱长为a ,外接球的半径为R ,由题意知43πR 3=9π2,∴R 3=278,而R =32. 由于3a 2=4R 2,∴a 2=43R 2=43×⎝ ⎛⎭⎪⎫322=3,∴a = 3.答案38.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为________.解析 如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BHC +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23.答案 23 二、解答题9.如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC .(1)求证:PC ⊥AB ;(2)求点C 到平面APB 的距离. (1)证明 取AB 中点D ,连接PD ,CD .因为AP =BP ,所以PD ⊥AB ,因为AC=BC,所以CD⊥AB.因为PD∩CD=D,所以AB⊥平面PCD.因为PC⊂平面PCD,所以PC⊥AB.(2)解设C到平面APB的距离为h,则由题意,得AP=PB=AB=AC2+BC2=22,所以PC=AP2-AC2=2.因为CD=12AB=2,PD=32PB=6,所以PC2+CD2=PD2,所以PC⊥CD.由(1)得AB⊥平面PCD,于是由V C-APB =V A-PDC+V B-PDC,得13·h·S△APB=13AB·S△PDC,所以h=AB·S△PDCS△APB=22×12×2×234×(22)2=233.故点C到平面APB的距离为23 3.10.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解如图所示,作出轴截面,因轴截面是正三角形,根据切线性质知当球在容器内时,水的深度为3r,水面半径BC的长为3r,则容器内水的体积为V=V圆锥-V球=13π(3r)2·3r-43πr3=53πr3,将球取出后,设容器中水的深度为h,则水面圆的半径为33h,从而容器内水的体积为V′=13π⎝⎛⎭⎪⎫33h2h=19πh3,由V=V′,得h=315r.能力提升题组(建议用时:25分钟)一、填空题1.已知球的直径SC=4,A,B是该球球面上的两点,AB=3,∠ASC=∠BSC =30°,则棱锥S-ABC的体积为________.解析由题意知,如图所示,在棱锥S-ABC中,△SAC,△SBC都是有一个角为30°的直角三角形,其中AB=3,SC=4,所以SA=SB=23,AC =BC=2,作BD⊥SC于D点,连接AD,易证SC⊥平面ABD,因此V S-ABC=13×34×(3)2×4= 3.答案 32.(2014·南京模拟)如图,在直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=5,AA1=3,M为线段B1B上的一动点,则当AM+MC1最小时,△AMC1的面积为________.解析如图,当AM+MC1最小时,BM=1,所以AM2=2,C1M2=8,AC21=14,于是由余弦定理,得cos ∠AMC 1=AM 2+MC 21-AC 212AM ·MC1=-12,所以sin ∠AMC 1=32,=12×2×22×32= 3.答案33.如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2 cm 、高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为________cm.解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122= 13 cm.答案 13 二、解答题4.如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D -ABC ,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体D -ABC 的体积.(1)证明 在图中,可得AC =BC =22, 从而AC 2+BC 2=AB 2,故AC ⊥BC , 又平面ADC ⊥平面ABC , 平面ADC ∩平面ABC =AC , BC ⊂平面ABC , ∴BC ⊥平面ACD .(2)解 由(1)可知,BC 为三棱锥B -ACD 的高,BC =22,S △ACD =2, ∴V B -ACD =13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体D -ABC 的体积为423.。

2015年全国各地高考模拟数学试题汇编空间几何体的三视图、表面积与体积(理卷A)

2015年全国各地高考模拟数学试题汇编空间几何体的三视图、表面积与体积(理卷A)

2015年全国各地高考模拟数学试题汇编空间几何体的三视图、表面积与体积(理卷A)专题5 立体几何第1讲空间几何体的三视图、表面积与体积(A卷)一、选择题(每题5分,共70分)1.(2015·陕西省咸阳市高考模拟考试(三)·8)2.(2015·汕头市普通高考第二次模拟考试试题·6)3.(2015·厦门市高三适应性考试·9)如图1,已知正方体ABCD-A1B1C l D1的棱长为a,动点M、N、Q分别在线段1111AD B C C D上.,,当三棱锥Q-BMN的俯视图如图2所示时,三棱锥Q-BMN的正视图面积等于()A. 212a B. 214aC. 224a D. 234a4.(2015济宁市曲阜市第一中学高三校模拟考试·4)一个几何体的三视图及部分数据如图所示,正视图、侧视图和俯视图都是等腰直角三角形,则该几何体的体积为()A.16B.13C.23D.1正视方向图1 图2B11CDBMN5.(2015·黑龙江省哈尔滨市第三中学高三第三次模拟考试数学(理)试题·5)一个空间几何体的三视图如图所示,其中正视图和侧视图都是半径为1的圆,则这个几何体的表面积为( )A .π3B .π4C .π5D .π6 【解析】由三视图知原几何体是一个球的43,,球的半径为1,其表面积为πππ41144322=⨯+⨯⨯⨯.6.(2015·大连市高三第二次模拟考试·10)已知某几何体的三视图如图所示,三视图是边长为1的等腰直角三角形和边长为1的正方形,则该几何体的体积为( )(A )16 (B )13(C )12 (D )237.(2015·丰台区学期统一练习二·5)某三棱锥的正视图和俯视图如图所示,则其左视图面积为( )32213(A) 6 (B) 29 (C) 3(D) 238.(2015·合肥市高三第三次教学质量检测·7)某三棱锥的三视图如图所示,则该三棱锥的各个面中,最大的面积是( )A .62.1 C .22D 69.(2015·开封市高三数学(理)冲刺模拟考试·5)某几何体的三视图如下图所示,则该几何体的体积为( )A .12B .24C .30D .4810.(2015·开封市高三数学(理)冲刺模拟考试·11)如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点.将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则三棱锥P-DCE 的外接球的体积俯视图左视图正视图3245为( )A .86πB.66π C .64π D .62π11. (2015·哈尔滨市第六中学高三第三次模拟考试·9) 如图,一个空间几何体的正视图、侧视图都是面积为32,一个内角为60︒ 的菱形,俯视图为正方形,那么这个几何体的表面积为( )A.23B.43C.8D. 412.(2015·河北省唐山市高三第三次模拟考试·8)13.(2015·山东省潍坊市高三第二次模拟考试·7)已知三棱锥S—ABC的所有顶点都在球O的球面上,底面△ABC是边长为1的正三角形,棱SC是球O的直径且SC=2,则此三棱锥的体积为()A .62 B .63 C .32 D .2214.(江西省九江市2015届高三第三次模拟考试·5)已知某锥体的正视图和侧视图如图所示,其体积为23,则该锥体的俯视图可以是( )二、非选择题(30分)15.(2015·日照市高三校际联合5月检测·13)若某几何体的三视图如右图所示,则此几何体的体积是______.第15题图22侧视图322正视图11BPA.16. (2015·济宁市5月高考模拟考试·14)17. (江西省九江市2015届高三第三次模拟考试·15)已知点A 、B 、C 、D 在同一球面上,且2,2AB BC AC ===ABCD 体积的最大值为43,则该球的表面积为 18、(2015·海南省高考模拟测试题·15)某几何体的三视图如图所示,则此几何体的对应直观图中PAB ∆的面积为__________.19 (2015·哈尔滨市第六中学高三第三次模拟考试·15)已知球O的直径4=PQ,C B A,,是球O球面上的三点, 30=∠CPQ=APQ,ABCBPQ∠∠=∆是正三角形,则三棱锥ABCP-的体积为. 20. (2015·济南市高三教学质量调研考试·15)如图,三个半径都是5cm的小球放在一个半球面的碗中,三个小球的顶端恰好与碗的上沿处于同一水平面,则这个碗的半径R是_________cm.专题5 立体几何第1讲 空间几何体的三视图、表面积与体积(A 卷)答案与解析1.【答案】 B.【命题立意】考查立体几何中三视图的观察与应用,以及简单几何体体积的计算.【解析】由于从三视图可以看出几何体的上半部分是截面为正方形的直四棱柱,下半部分是截面为等腰梯形的直四棱柱,所以其体积为312(26)22244482V V V cm +⨯=+=⨯⨯+⨯=.故选B.2.【答案】A【命题立意】本题考查的知识点是三视图和几何体的表面积.【解析】由三视图可知,该几何体的形状如图,它是底面为正方形,各个侧面均为直角三角形的四棱锥,用去的铁皮的面积即该棱锥的表面积,其底面边长为10,故底面面积为10×10=100与底面垂直的两个侧面是全等的直角,两直角连年长度分别为10,20,故它们的面积皆为100另两个侧面也是全等的直角三角形,两直角边中一边是底面正方形的边长10,另一边可在与底面垂直的直角三角形中求得,其长为221020105+=,故此两侧面的面积皆为505故此四棱锥的表面积为S =100(3+5)cm 2. 故选A.3.【答案】B【命题立意】本题旨在考查几何体的三视图.【解析】由俯视图可知点N 和点C 重合,Q 点和1D 重合,M 为1AD 的中点,故其正视图为三角形,如图:从而得到其面积为:2111224a a a ⨯⨯=.故选:B 4.【答案】B【命题立意】本题考查的知识点是由三视图求体积,其中根据三视图判断出几何体的形状,分析出几何体的几何特征,进而求出底面面积,高是解答本题的关键.【解析】由三视图判断几何体为三棱锥,如图:由已知中侧视图是一个等腰直角三角形,宽为1,∴棱锥的高H=1;底面△的高也为1,又由俯视图为等腰直角三角形,且底面斜边长为2,∴底面面积S=12×2×1=1,则几何体的体积V=13×1×1=13.5.【答案】B【命题立意】考查三视图,考查空间想象能力,容易题.6.【答案】A【命题立意】本题重点考查了三视图、空间几何体的结构特征等知识。

2015届高考数学 立体几何1(基础及能力训练)

2015届高考数学 立体几何1(基础及能力训练)

2015届高考数学 立体几何1(基础及能力训练)111.在如图所示的空间直角坐标系O ­xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为( )A .①和②B D .④和②2.一块石材表示的几何体的三视图如右图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .43.几何体的三视图(单位:cm)如图右所示,则此几何体的表面积是( )A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 24.某几何体三视图如右图所示,则该几何体表面积为( )A .54B .60C .66D .725.把边长为2的正方形ABCD 沿对角线BD 折起,连接AC ,得到三棱锥C - ABD ,其正视图、俯视图为全等的等腰直角三角形(如右图所示)其侧视图的面积为( )A.32B.12 C .1 D.226.四面体ABCD 及其三视图如右下图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱BD ,DC ,CA 于点F ,G ,H .(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值.7.三棱锥A -BCD及其侧视图、俯视图如图所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A -NP -M的余弦值.8.在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图所示.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.9.如图①所示,四边形ABCD为等腰梯形,AE⊥DC,AB=AE=13DC,F为EC的中点.现将△DAE沿AE翻折到△P AE的位置,如图②所示,且平面P AE⊥平面ABCE.(1)求证:平面P AF⊥平面PBE;(2)求三棱锥A-PBC与三棱锥E-BPF 体积之比.。

2015年高考试题汇编数学文-立体几何

2015年高考试题汇编数学文-立体几何

2015年高考真题――立体几何1. [新课标卷1]11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )A. 1B. 2C. 4D. 82.[全国课标2]6. 一个正方体被一个平面截取一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( ) A.B. C. D.3.[北京卷]7. 某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( ) A. 1B.C.D. 24. [天津卷]10.一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 .5. [山东卷]9. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.B.C.D. 6.[广东卷]6. 若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )81716151111A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 7. [重庆卷]5. 某几何体的三视图如图所示,则该几何体的体积为( ) A.123π+ B. 136π C. 73π D. 52π8.[安徽卷]9. 一个四面体的三视图如图所示,则该四面体的表面积是( )A.1B.1+C.2D.9.[江苏卷]9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个. 若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 .10.[浙江卷]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .83cmB .123cmC .3233cm D .4033cm11.[湖南卷]10.某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)( )A.89πB.827πC.21)πD.21)π221112212.[陕西卷]5. 一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB. 4πC. 2π+4D. 3π+313.[湖北卷]5.12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( ) A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件14.[新课标1]18.(本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I)证明:平面AEC ⊥平面BED ;(II)若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -.15.[全国课标2]19.(本小题满分12分)如图,长方体ABCD ﹣A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,分别在A 1B 1, D 1C 1上,A 1E= D 1F=4.过点E,F 的平面α与此长方体的面相交,交线围成一个正方形. (I)在图中画出这个正方形(不必说明画法和理由) (II)求平面α把该长方体分成的两部分体积的比值.22FD C 1A 1C如图,在三棱锥E-ABC 中,平面EAB ⊥平面ABC ,三角形EAB 为等边三角形,AC ⊥ BC,且AC=BC=,O,M 分别为AB,V A 的中点.(I)求证:VB//平面MOC.(II)求证:平面MOC ⊥平面 V AB (III)求三棱锥V-ABC 的体积.17. [天津卷]17.(满分13分) 如图,已知1AA ⊥平面ABC ,11,BB AA AB=AC=3,1BC AA =,1BB =点E ,F 分别是BC ,1AC 的中点, (I )求证:EF 平面11A B BA ; (II )求证:平面1AEA ⊥平面1BCB 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高考数学专项复习——空间几何大题一.选择题(共9小题)1.(2015•惠州模拟)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于()cm3.4.(2014•太原一模)在三棱锥S﹣ABC中,AB⊥BC,AB=BC=,SA=SC=2,,二面角S﹣AC﹣B的余弦值是,.C=B=SB=BS=BS==R=OB=5.(2012•北海一模)如图,在120°二面角α﹣l﹣β内半径为1的圆O1与半径为2的圆O2分别在半平面α、β内,且与棱l切于同一点P,则以圆O1与圆O2为截面的球的表面积为()C D.,再由正弦定理求出=OP===应该改为:7.(2014•阜阳一模)如图,在直三棱柱A1B1C1﹣ABC中,,AB=AC=A1A=1,已知G与E分别是棱A1B1和CC1的中点,D与F分别是线段AC与AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围是(),[)[,,=,时,线段8.(2013•北京)如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()∴,∵,∴,,=到各顶点的距离的不同取值有,共9.(2012•安徽模拟)如图所示,点S在平面ABC外,SB⊥AC,SB=AC=2,E、F分别是SC和AB的中点,则EF 的长是()C D.EF=二.解答题(共21小题)10.如图,在直三棱柱ABC﹣A1B1C1中,AB1⊥BC1,AB=CC1=1,BC=2.(1)求证:A1C1⊥AB;(2)求点B1到平面ABC1的距离.的高,求出AC=∴∴∴∴••d=d=11.如图所示,在四棱锥V﹣ABCD中,底面四边形ABCD是边长为4的菱形,并且∠BAD=120°,V A=3,V A⊥底面ABCD,O是AC、BD的交点,OE⊥VC于E.求:(1)点V到CD的距离;(2)异面直线VC与BD的距离.,VF==的距离等于AC=2=,∴=.OE=的距离是.12.如图,正四棱柱ABCD﹣A′B′C′D′中,底面边长为2,侧棱长为3,E为BC的中点,FG分别为CC′、DD′上的点,且CF=2GD=2.求:(1)C′到面EFG的距离;(2)DA与面EFG所成的角;(3)在直线BB′上是否存在点P,使得DP∥面EFG?,若存在,找出点P的位置,若不存在,试说明理由.,及面d=的法向量的坐标,代入向量夹角公式,即可得到,则=0∴=,取)∵=====∴=013.如图,正三棱柱ABC﹣A1B1C1的所有棱长都为2,D为CC1中点.(1)求异面直线A1D和BC所成角的大小;(2)求证:AB1⊥平面A1BD;(3)求点C到平面A1BD的距离.)由D=E=所成角为D=BD=B=2的距离为得∴的距离为14.如图,在三棱锥A﹣BCD中,AO⊥平面BCD;O,E分别是BD,BC的中点,CA=CB=CD=BD=2,AB=AD=.(1)求异面直线AB与CD所成角的余弦值;(2)求点E到平面ACD的距离.,∴∴∴∴∴到平面的距离为15.如图,在长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=1,点E、F、G分别是各自所在棱的中点.(1)在棱A1D1所在的直线上是否存在一点P,使得PE与平面B1FG平行?若存在,确定点P的位置,并证明;否则说明理由.(2)求点B1到平面EFG的距离.,利用向量法进行证明.P=P=),∴(﹣),(的法向量=)∵+0+=0,∴的法向量=∵,,(﹣,,﹣∴,∴∵)d==116.如图,AB是圆O的直径,点C是圆O上异于A、B的点,直线PC⊥平面ABC,E,F分别为PA,PC的中点.(Ⅰ)记平面BEF与平面ABC的交线为l,试判断l与平面PAC的位置关系,并加以说明;(Ⅱ)设(Ⅰ)中的直线l与圆O的另一个交点为D,且点Q满足,记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的锐角为α,二面角E﹣l﹣C的大小为β,①求证:sinθ=sinα•sinβ.②当点C为弧AB的中点时,PC=AB,求直线DQ与平面BEF所成的角的正弦值.,且中,分别可得,,所成的角,所成的角的正弦值为17.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC=1,∠ABC=90°,AA1=2,M为棱AA1上一点,且B1M与平面ACC1所成角为30°.(1)确定M的位置,并证明你的结论;(2)求二面角M﹣B1C﹣C1的大小正切值;(3)求点B到平面MB1C的距离.N=,,从而得到N=,∴,∴MFE==的正切值为.18.如图所示,四棱锥S﹣ABCD中,AB∥CD,CD⊥面SAD.且.(1)当H为SD中点时,求证:AH∥平面SBC;平面SBC⊥平面SCD.(2)求点D到平面SBC的距离.的中点,∴∴,则,∴∴∵,∴19.如图甲,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD,E、F、G分别是PC、PD、BC的中点,现将△PDC沿CD折起,使平面PDC⊥平面ABCD(如图乙),且所得到的四棱锥P﹣ABCD的正视图、侧视图、俯视图的面积总和为8.(1)求点C到平面EFG的距离;(2)求二面角G﹣EF﹣D夹角的余弦值;(3)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明过程.DQ=(=+=,由•,即点,DQ=AD=1,余弦值为)设λ(,则=+,∴•,又20.如图,在三棱锥P﹣ABC中,,∠ACB=∠PAC=∠PBC=90°,D为AB的中点.(Ⅰ)求证:平面PDC⊥平面ABC;(Ⅱ)求点P到平面ABC的距离;(Ⅲ)已知点E在线段PB上,且BE=1,求EC与平面ABC所成的角.,,∴,,∴中,中,所成的角为21.如图,三棱柱ABC﹣A1BC1的底面是边长2的正三角形,侧面与底面垂直,且长为,D是AC的中点.(1)求证:B1C∥平面A1BD;(2)求证:BD⊥平面AA1C1C;(3)求点A到平面A1BD的距离.D=,∴A=,∴的距离为∴h=的距离是22.已知四棱锥P﹣ABCD,底面ABCD是∠A=60°的菱形且PD=AD=2,又PD⊥底面ABCD,点M、N分别是棱AD、PC的中点.(1)证明:DN∥平面PMB;(2)证明:平面PMB⊥平面PAD;(3)求点M到平面PBC的距离.=∴PB=PC=2,∴;的距离为23.如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(1)求证:PO⊥平面ABCD;(2)求异面直线PB与CD所成角的余弦值;(3)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.,AP=PB=PBO=所成的角的余弦值为的距离为x CD=OB=PC==x=满足题意,此时=.24.如图示,在底面为直角梯形的四棱椎P﹣ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2,BC=6.(1)求证:BD⊥平面PAC;(2)求二面角A﹣PC﹣D的正切值;(3)求点D到平面PBC的距离.AC=4AO=AB=2AC=,∵BO=AO=4,)×××=3∴,又∵PC=OH=DHO==∴=PB==2PC==8=6h=的距离为25.如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,且A1A=4.梯形ABCD的面积为6,且AD∥BC,AD=2BC,AB=2.平面A1DCE与B1B交于点E.(1)证明:EC∥A1D;(2)求点C到平面ABB1A1的距离.)法一:直接利用等体积方法,,求出.,因为(26.在直角梯形ABCD中,AB∥CD,∠DAB=∠ADC=、AB=AD=2CD=4,作MN∥AB,连接AC交MN于P,现沿MN将直角梯形ABCD折成直二面角(I)若M为AD中点时,求异面直线MN与AC所成角;(Ⅱ)证明:当MN在直角梯形内保持MN∥AB作平行移动时,折后所成∠APC大小不变;(Ⅲ)当点M在怎样的位置时,点M到面ACD的距离最大?并求出这个最大值.AD=ACD=AP=PC==,APC=为定值,ME==ME===取得最大值27.如图,正三棱柱ABC﹣A1B1C1的所有棱长都为1,D为CC1中点.(Ⅰ)求证:AB1⊥平面A1BD;(Ⅱ)求点C到平面A1BD的距离.)利用D=B=2∴的距离为,的距离为28.P点是△ABC外一点,PA⊥平面ABC,PA=4cm,AC=3cm,∠ACB=150°.求:(1)P到直线BC的距离;(2)两条异面直线PA和BC的距离;(3)当∠CBA=θ时,C到平面PAB的距离(用θ表示).的距离;∴∴的距离为∵的距离为29.如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.(1)求证AM∥平面BDE;(2)求点A到平面BDF的距离;(3)试计算多面体ABCDEF的体积.S,的距离为S=30.正方体ABCD﹣A′B′C′D′的棱长等于2,E,F分别是B′D′,AC的中点.求:(1)直线AB′和平面ACD′所成角的正弦值;(2)二面角B′﹣CD′﹣A的余弦值;(3)点B到平面ACD′的距离.的距离,,的一个法向量所成角的正弦值是得,取的一个法向量)∵,平面的一个法向量的距离31。

相关文档
最新文档